#### Econometrics 2 - Lecture 1

### ML Estimation, Diagnostic Tests

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### The Linear Model

Y: explained variable
X: explanatory or regressor variable
The model describes the data-generating process of Y under the condition X

A simple linear regression model  $Y = \alpha + \beta X$   $\beta$ : coefficient of X  $\alpha$ : intercept

A multiple linear regression model  $Y = \beta_1 + \beta_2 X_2 + \ldots + \beta_K X_K$ 

#### Fitting a Model to Data

Choice of values  $b_1$ ,  $b_2$  for model parameters  $\beta_1$ ,  $\beta_2$  of  $Y = \beta_1 + \beta_2 X$ , given the observations ( $y_i$ ,  $x_i$ ), i = 1,...,N

Fitted values:  $\hat{y}_i = b_1 + b_2 x_i$ , i = 1,...,N

Principle of (Ordinary) Least Squares gives the OLS estimators  $b_i = \arg \min_{\beta_1,\beta_2} S(\beta_1, \beta_2), i=1,2$ 

Objective function: sum of the squared deviations  $S(\beta_1, \beta_2) = \sum_i [y_i - \hat{y}_i]^2 = \sum_i [y_i - (\beta_1 + \beta_2 x_i)]^2 = \sum_i e_i^2$ 

Deviations between observation and fitted values, residuals:  $e_i = y_i - \hat{y}_i = y_i - (\beta_1 + \beta_2 x_i)$ 

#### Observations and Fitted Regression Line

Simple linear regression: Fitted line and observation points (Verbeek, Figure 2.1)



#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### **OLS** Estimators

Equating the partial derivatives of  $S(\beta_1, \beta_2)$  to zero: normal equations

$$b_{1} + b_{2} \sum_{i=1}^{N} x_{i} = \sum_{i=1}^{N} y_{i}$$
$$b_{1} \sum_{i=1}^{N} x_{i} + b_{2} \sum_{i=1}^{N} x_{i}^{2} = \sum_{i=1}^{N} x_{i} y_{i}$$

OLS estimators  $b_1$  und  $b_2$  result in



with mean values  $\overline{X}$  and and second moments  $s_{xy} = \frac{1}{N} \sum_{i} (x_i - \overline{x})(y_i - \overline{y})$  $s_x^2 = \frac{1}{N} \sum_{i} (x_i - \overline{x})^2$ 

# OLS Estimators: The General Case

Model for Y contains K-1 explanatory variables

 $Y = \beta_1 + \beta_2 X_2 + \dots + \beta_K X_K = x'\beta$ with  $x = (1, X_2, \dots, X_K)'$  and  $\beta = (\beta_1, \beta_2, \dots, \beta_K)'$ Observations:  $[y_i, x_i] = [y_i, (1, x_{i2}, \dots, x_{iK})'], i = 1, \dots, N$ OLS-estimates  $b = (b_1, b_2, \dots, b_K)'$  are obtained by minimizing  $S(\beta) = \sum_{i=1}^{N} (y_i - x'_i \beta)^2$ this results in the OLS estimators

$$b = \left(\sum_{i=1}^{N} x_i x_i'\right)^{-1} \sum_{i=1}^{N} x_i y_i$$

#### Matrix Notation

N observations

$$(y_{1}, x_{1}), \dots, (y_{N}, x_{N})$$
  
Model:  $y_{i} = \beta_{1} + \beta_{2}x_{i} + \varepsilon_{i}, i = 1, \dots, N$ , or  
 $y = X\beta + \varepsilon$   
with  
 $y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{N} \end{pmatrix}, X = \begin{pmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{N} \end{pmatrix}, \beta = \begin{pmatrix} \beta_{1} \\ \beta_{2} \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_{1} \\ \vdots \\ \varepsilon_{N} \end{pmatrix}$ 

OLS estimators

$$b = (XX)^{-1}XY$$

#### Gauss-Markov Assumptions

Observation  $y_i$  (*i* = 1, ..., *N*) is a linear function

 $y_i = x_i'\beta + \varepsilon_i$ 

of observations  $x_{ik}$ , k = 1, ..., K, of the regressor variables and the error term  $\varepsilon_i$ 

$$x_i = (x_{i1}, \dots, x_{iK})'; X = (x_{ik})$$

| A1 | $E{\epsilon_i} = 0$ for all <i>i</i>                                                                 |
|----|------------------------------------------------------------------------------------------------------|
| A2 | all $\varepsilon_i$ are independent of all $x_i$ (exogenous $x_i$ )                                  |
| A3 | $V{\varepsilon_i} = \sigma^2$ for all <i>i</i> (homoskedasticity)                                    |
| A4 | $Cov{\epsilon_i, \epsilon_j} = 0$ for all <i>i</i> and <i>j</i> with $i \neq j$ (no autocorrelation) |

#### Normality of Error Terms

A5  $\varepsilon_i$  normally distributed for all *i* 

Together with assumptions (A1), (A3), and (A4), (A5) implies

 $\varepsilon_i \sim \text{NID}(0, \sigma^2)$  for all *i* 

- i.e., all  $\varepsilon_i$  are
- independent drawings
- from the normal distribution  $N(0,\sigma^2)$
- with mean 0
- and variance  $\sigma^2$

Error terms are "normally and independently distributed" (NID, n.i.d.)

#### **Properties of OLS Estimators**

OLS estimator  $b = (XX)^{-1}Xy$ 

- 1. The OLS estimator *b* is unbiased:  $E\{b\} = \beta$
- 2. The variance of the OLS estimator is given by

 $V{b} = \sigma^2(\Sigma_i x_i x_i')^{-1}$ 

- 3. The OLS estimator b is a BLUE (best linear unbiased estimator) for  $\beta$
- 4. The OLS estimator *b* is normally distributed with mean  $\beta$  and covariance matrix V{*b*} =  $\sigma^2(\Sigma_i x_i x_i^{'})^{-1}$

Properties

- 1., 2., and 3. follow from Gauss-Markov assumptions
- 4. needs in addition the normality assumption (A5)

#### Distribution of *t*-statistic

t-statistic

$$t_k = \frac{b_k}{se(b_k)}$$

follows

- the *t*-distribution with *N-K* d.f. if the Gauss-Markov assumptions
   (A1) (A4) and the normality assumption (A5) hold
- approximately the *t*-distribution with *N-K* d.f. if the Gauss-Markov assumptions (A1) (A4) hold but not the normality assumption (A5)
- 3. asymptotically  $(N \rightarrow \infty)$  the standard normal distribution N(0,1)
- 4. approximately the standard normal distribution N(0,1)

The approximation errors decrease with increasing sample size N

#### **OLS Estimators: Consistency**

The OLS estimators *b* are consistent,

 $\operatorname{plim}_{N\to\infty} b = \beta$ ,

if one of the two set of conditions are fulfilled:

- (A2) from the Gauss-Markov assumptions and the assumption (A6), or
- the assumption (A7), weaker than (A2), and the assumption (A6)
   Assumptions (A6) and (A7):

| A6 | 1/N $\Sigma_{i=1}^{N} x_i x_i$ converges with growing N to a finite,<br>nonsingular matrix $\Sigma_{xx}$        |
|----|-----------------------------------------------------------------------------------------------------------------|
| A7 | The error terms have zero mean and are uncorrelated with each of the regressors: $E\{x_i \ \varepsilon_i\} = 0$ |

Assumption (A7) is weaker than assumption (A2)!

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### **Estimation Concepts**

OLS estimator: minimization of objective function  $S(\beta)$  gives

- *K* first-order conditions  $\Sigma_i (y_i x_i'b) x_i = \Sigma_i e_i x_i = 0$ , the normal equations
- Moment conditions

 $E\{(y_i - x_i'\beta) x_i\} = E\{\varepsilon_i x_i\} = 0$ 

- OLS estimators are solution of the normal equations
- IV estimator: Model allows derivation of moment conditions

 $E\{(y_i - x_i'\beta) z_i\} = E\{\varepsilon_i z_i\} = 0$ 

which are functions of

- observable variables  $y_i$ ,  $x_i$ , instrument variables  $z_i$ , and unknown parameters  $\beta$
- Moment conditions are used for deriving IV estimators
- OLS estimators are special case of IV estimators

#### Estimation Concepts, cont'd

GMM estimator: generalization of the moment conditions

 $\mathsf{E}\{f(w_i, z_i, \beta)\} = 0$ 

- with observable variables w<sub>i</sub>, instrument variables z<sub>i</sub>, and unknown parameters β; f: multidimensional function with as many components as conditions
- Allows for non-linear models
- Under weak regularity conditions, the GMM estimators are
  - consistent
  - asymptotically normal

Maximum likelihood estimation

- Basis is the distribution of y<sub>i</sub> conditional on regressors x<sub>i</sub>
- Depends on unknown parameters  $\beta$
- The estimates of the parameters  $\beta$  are chosen so that the distribution corresponds as well as possible to the observations  $y_i$  and  $x_i$

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### Example: Urn Experiment

Urn experiment:

- The urn contains red and black balls
- Proportion of red balls: p (unknown)
- N random draws
- Random draw *i*:  $y_i = 1$  if ball i is red, 0 otherwise;  $P\{y_i = 1\} = p$
- Sample: N<sub>1</sub> red balls, N-N<sub>1</sub> black balls
- Probability for this result:

 $P{N_1 \text{ red balls}, N-N_1 \text{ black balls}} = p^{N1} (1-p)^{N-N1}$ 

Likelihood function: the probability of the sample result, interpreted as a function of the unknown parameter p

#### Urn Experiment: Likelihood Function

Likelihood function: the probability of the sample result, interpreted as a function of the unknown parameter *p* 

 $L(p) = p^{N1} (1 - p)^{N-N1}$ 

Maximum likelihood estimator: that value  $\hat{p}$  of p which maximizes L(p)

 $\hat{p} = \arg\max_{p} L(p)$ 

Calculation of  $\hat{p}$ : maximization algorithms

- As the log-function is monotonous, extremes of L(p) and log L(p) coincide
- Use of log-likelihood function is often more convenient

 $\log L(p) = N_1 \log p + (N - N_1) \log (1 - p)$ 

#### Urn Experiment: Likelihood Function, cont'd



#### Urn Experiment: ML Estimator

Maximizing log L(p) with respect to p gives the first-order condition

$$\frac{d\log L(p)}{dp} = \frac{N_1}{p} - \frac{N - N_1}{1 - p} = 0$$

Solving this equation for *p* gives the maximum likelihood estimator (ML estimator)

$$\hat{p} = \frac{N_1}{N}$$

For N = 100,  $N_1 = 44$ , the ML estimator for the proportion of red balls is  $\hat{p} = 0.44$ 

#### Maximum Likelihood Estimator: The Idea

- Specify the distribution of the data (of y or y given x)
- Determine the likelihood of observing the available sample as a function of the unknown parameters
- Choose as ML estimates those values for the unknown parameters that give the highest likelihood
- In general, this leads to
  - consistent
  - asymptotically normal
  - efficient estimators

provided the likelihood function is correctly specified, i.e., distributional assumptions are correct

#### Example: Normal Linear Regression

Model

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ 

with assumptions (A1) - (A5)

From the normal distribution of  $\varepsilon_i$  follows: contribution of observation *i* to the likelihood function:

$$f(y_i|x_i;\beta,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\frac{(y_i-\beta_1-\beta_2x_i)^2}{\sigma^2}\right\}$$

due to independent observations, the log-likelihood function is given by

$$\log L(\beta, \sigma^2) = \log \prod_i f(y_i | x_i; \beta, \sigma^2)$$
$$= -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_i \frac{(y_i - \beta_1 - \beta_2 x_i)^2}{\sigma^2}$$

#### Normal Linear Regression, cont'd

Maximizing log L with respect to  $\beta$  and  $\sigma^2$  gives the ML estimators

$$\hat{\beta}_2 = Cov\{y, x\} / V\{x\}$$
$$\hat{\beta}_1 = \overline{y} - \hat{\beta}_2 \overline{x}$$

which coincide with the OLS estimators, and

$$\hat{\sigma}^2 = \frac{1}{N} \sum_i e_i^2$$

which is biased and underestimates  $\sigma^2$ !

Remarks:

- The results are obtained assuming normally and independently distributed (NID) error terms
- ML estimators are consistent but not necessarily unbiased; see the properties of ML estimators below

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### **ML Estimator: Notation**

Let the density (or probability mass function) of  $y_i$ , given  $x_i$ , be given by  $f(y_i|x_i,\theta)$  with *K*-dimensional vector  $\theta$  of unknown parameters Given independent observations, the likelihood function for the sample of size *N* is

$$L(\theta \mid y, X) = \prod_{i} L_{i}(\theta \mid y_{i}, x_{i}) = \prod_{i} f(y_{i} \mid x_{i}; \theta)$$

The ML estimators are the solutions of

 $\max_{\theta} \log L(\theta) = \max_{\theta} \Sigma_{i} \log L_{i}(\theta)$ or the solutions of the first-order conditions  $s(\hat{\theta}) = \frac{\partial \log L(\theta)}{\partial \theta}|_{\hat{\theta}} = \sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta}|_{\hat{\theta}} = 0$ 

 $s(\theta) = \Sigma_i s_i(\theta)$ , the vector of gradients, also denoted as *score vector* Solution of  $s(\theta) = 0$ 

- analytically (see examples above) or
- by use of numerical optimization algorithms

#### Matrix Derivatives

The scalar-valued function

$$L(\theta \mid y, X) = \prod_{i} L_{i}(\theta \mid y_{i}, x_{i}) = L(\theta_{1}, ..., \theta_{K} \mid y, X)$$

or – shortly written as log L( $\theta$ ) – has the *K* arguments  $\theta_1, \ldots, \theta_K$ 

K-vector of partial derivatives or gradient vector or gradient

$$\frac{\partial \log L(\theta)}{\partial \theta} = \left(\frac{\partial \log L(\theta)}{\partial \theta_1}, \dots, \frac{\partial \log L(\theta)}{\partial \theta_K}\right)$$

KxK matrix of second derivatives or Hessian matrix



#### **ML Estimator: Properties**

The ML estimator

- 1. is consistent
- 2. is asymptotically efficient
- 3. is asymptotically normally distributed:

$$\sqrt{N}(\hat{\theta} - \theta) \rightarrow N(0, V)$$

*V*: asymptotic covariance matrix of  $\sqrt{N}\hat{\theta}$ 

#### The Information Matrix

Information matrix  $I(\theta)$ 

•  $I(\theta)$  is the limit (for  $N \to \infty$ ) of

$$\overline{I}_{N}(\theta) = -\frac{1}{N} E\left\{\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta'}\right\} = -\frac{1}{N} \sum_{i} E\left\{\frac{\partial^{2} \log L_{i}(\theta)}{\partial \theta \partial \theta'}\right\} = \frac{1}{N} \sum_{i} I_{i}(\theta)$$

- For the asymptotic covariance matrix V can be shown:  $V = I(\theta)^{-1}$
- *I*(θ)<sup>-1</sup> is the lower bound of the asymptotic covariance matrix for any consistent, asymptotically normal estimator for θ: Cramèr-Rao lower bound

Calculation of  $I_i(\theta)$  can also be based on the outer product of the score vector

$$I_{i}(\theta) = -E\left\{\frac{\partial^{2}\log L_{i}(\theta)}{\partial\theta\partial\theta'}\right\} = E\left\{s_{i}(\theta)s_{i}(\theta)'\right\} = J_{i}(\theta)$$

for a miss-specified likelihood function,  $J_i(\theta)$  can deviate from  $I_i(\theta)$ 

#### Covariance Matrix V: Calculation

Two ways to calculate *V*:

• A consistent estimate is based on the information matrix  $I(\theta)$ :

$$\hat{V}_{H} = \left(-\frac{1}{N}\sum_{i}\frac{\partial^{2}\log L_{i}(\theta)}{\partial\theta\,\partial\theta'}\Big|_{\hat{\theta}}\right)^{-1} = \overline{I}_{N}(\hat{\theta})^{-1}$$

index "H": the estimate of V is based on the Hessian matrix

The BHHH (Berndt, Hall, Hall, Hausman) estimator

$$\hat{V}_{G} = \left(\frac{1}{N}\sum_{i} s_{i}(\hat{\theta})s_{i}(\hat{\theta})'\right)^{T}$$

with score vector  $s(\theta)$ ; index "G": the estimate of V is based on gradients

also called: OPG (outer product of gradient) estimator

 $\Box \quad E\{s_i(\theta) \ s_i(\theta)'\} \text{ coincides with } I_i(\theta) \text{ if } f(y_i| \ x_i, \theta) \text{ is correctly specified}$ 

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### Urn Experiment: Once more

Likelihood contribution of the *i*-th observation log  $L_i(p) = y_i \log p + (1 - y_i) \log (1 - p)$ 

This gives scores

$$\frac{\partial \log L_i(p)}{\partial p} = s_i(p) = \frac{y_i}{p} - \frac{1 - y_i}{1 - p}$$

and

$$\frac{\partial^2 \log L_i(p)}{\partial p^2} = -\frac{y_i}{p^2} - \frac{1 - y_i}{(1 - p)^2}$$

With  $E{y_i} = p$ , the expected value turns out to be

$$I_{i}(p) = E\left\{-\frac{\partial^{2} \log L_{i}(p)}{\partial p^{2}}\right\} = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}$$

The asymptotic variance of the ML estimator  $V = I^{-1} = p(1-p)$ 

# Urn Experiment and Binomial Distribution

The asymptotic distribution is

$$\sqrt{N}(\hat{p}-p) \to N(0, p(1-p))$$

Small sample distribution:

 $N\hat{p} \sim B(N, p)$ 

Use of the approximate normal distribution for portions  $\hat{p}$  rule of thumb:

N p (1-p) > 9

Test of  $H_0$ :  $p = p_0$  can be based on test statistic

 $(\hat{p} - p_0) / se(\hat{p})$ 

#### Example: Normal Linear Regression

Model

 $y_{i} = x_{i}'\beta + \varepsilon_{i}$ with assumptions (A1) – (A5) Log-likelihood function  $\log L(\beta, \sigma^{2}) = -\frac{N}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{i}(y_{i} - x_{i}'\beta)^{2}$ Score contributions:  $s_{i}(\beta, \sigma^{2}) = \begin{pmatrix} \frac{\partial \log L_{i}(\beta, \sigma^{2})}{\partial\beta} \\ \frac{\partial \log L_{i}(\beta, \sigma^{2})}{\partial\sigma^{2}} \end{pmatrix} = \begin{pmatrix} \frac{y_{i} - x_{i}'\beta}{\sigma^{2}}x_{i} \\ -\frac{1}{2\sigma^{2}} + \frac{1}{2\sigma^{4}}(y_{i} - x_{i}'\beta)^{2} \end{pmatrix}$ 

The first-order conditions – setting both components of  $\Sigma_i s_i(\beta, \sigma^2)$  to zero – give as ML estimators: the OLS estimator for  $\beta$ , the average squared residuals for  $\sigma^2$ :

#### Normal Linear Regression, cont'd

$$\hat{\beta} = \left(\sum_{i} x_{i} x_{i}'\right)^{-1} \sum_{i} x_{i} y_{i}, \ \hat{\sigma}^{2} = \frac{1}{N} \sum_{i} (y_{i} - x_{i}' \hat{\beta})^{2}$$

Asymptotic covariance matrix: Contribution of the *i*-th observation  $(E\{\varepsilon_i\} = E\{\varepsilon_i^3\} = 0, E\{\varepsilon_i^2\} = \sigma^2, E\{\varepsilon_i^4\} = 3\sigma^4)$   $I_i(\beta, \sigma^2) = E\{s_i(\beta, \sigma^2)s_i(\beta, \sigma^2)'\} = diag\left(\frac{1}{\sigma^2}x_ix_i', \frac{1}{2\sigma^4}\right)$ gives

$$V = I(\beta, \sigma^2)^{-1} = \text{diag} (\sigma^2 \Sigma_{xx}^{-1}, 2\sigma^4)$$

with  $\Sigma_{xx} = \lim (\Sigma_i x_i x_i)/N$ 

The ML estimate for  $\beta$  and  $\sigma^2$  follow asymptotically

$$\sqrt{N(\hat{\beta}-\beta)} \rightarrow N(0,\sigma^2 \Sigma_{xx}^{-1})$$

 $\sqrt{N}(\hat{\sigma}^2 - \sigma^2) \rightarrow N(0, 2\sigma^4)$ 

#### Normal Linear Regression, cont'd

For finite samples: covariance matrix of ML estimators for  $\beta$ 

$$\hat{V}(\hat{\beta}) = \hat{\sigma}^2 \left(\sum_i x_i x_i'\right)^{-1}$$

similar to OLS results

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### **Diagnostic Tests**

Diagnostic (or specification) tests based on ML estimators Test situation:

- *K*-dimensional parameter vector  $\theta = (\theta_1, ..., \theta_K)'$
- $J \ge 1$  linear restrictions ( $K \ge J$ )
- $H_0: R\theta = q$  with  $J_XK$  matrix R, full rank; J-vector q

Test principles based on the likelihood function:

- 1. Wald test: Checks whether the restrictions are fulfilled for the unrestricted ML estimator for  $\theta$ ; test statistic  $\xi_W$
- 2. Likelihood ratio test: Checks whether the difference between the log-likelihood values with and without the restriction is close to zero; test statistic  $\xi_{LR}$
- 3. Lagrange multiplier test (or score test): Checks whether the firstorder conditions (of the unrestricted model) are violated by the restricted ML estimators; test statistic  $\xi_{LM}$



#### The Asymptotic Tests

Under  $H_0$ , the test statistics of all three tests

- follow asymptotically, for finite sample size approximately, the Chisquare distribution with J df
- The tests are asymptotically (large *N*) equivalent
- Finite sample size: the values of the test statistics obey the relation

 $\xi_{\rm W} \geq \xi_{\rm LR} \geq \xi_{\rm LM}$ 

Choice of the test: criterion is computational effort

- Wald test: Requires estimation only of the unrestricted model; e.g., testing for omitted regressors: estimate the full model, test whether the coefficients of potentially omitted regressors are different from zero
- 2. Lagrange multiplier test: Requires estimation only of the restricted model; preferable if restrictions complicate estimation
- 3. Likelihood ratio test: Requires estimation of both the restricted and the unrestricted model

#### Wald Test

Checks whether the restrictions are fulfilled for the unrestricted ML estimator for  $\boldsymbol{\theta}$ 

Asymptotic distribution of the unrestricted ML estimator:

$$\sqrt{N}(\hat{\theta} - \theta) \to N(0, V)$$

Hence, under  $H_0$ :  $R \theta = q$ ,

$$\sqrt{N}(R\hat{\theta} - R\theta) = \sqrt{N}(R\hat{\theta} - q) \rightarrow N(0, RVR')$$

The test statistic

$$\xi_{W} = N(R\hat{\theta} - q)' \left[ R\hat{V}R' \right]^{-1} (R\hat{\theta} - q)$$

- $\Box$  under H<sub>0</sub>,  $\xi_W$  is expected to be close to zero
- $\Box$  *p*-value to be read from the Chi-square distribution with J df

#### Wald Test, cont'd

Typical application: tests of linear restrictions for regression coefficients

• Test of  $H_0: \beta_i = 0$ 

 $\xi_{\rm W} = b_{\rm i}^2 / [{\rm se}(b_{\rm i})^2]$ 

- $\xi_W$  follows the Chi-square distribution with 1 df
- $\xi_W$  is the square of the *t*-test statistic
- Test of the null-hypothesis that a subset of J of the coefficients β are zeros

 $\xi_{\rm W} = (e_{\rm R}'e_{\rm R} - e'e)/[e'e/(N-K)]$ 

- e: residuals from unrestricted model
- $\Box$   $e_{R}$ : residuals from restricted model
- $\xi_W$  follows the Chi-square distribution with *J* df
- $\xi_W$  is related to the *F*-test statistic by  $\xi_W = FJ$

#### Likelihood Ratio Test

Checks whether the difference between the ML estimates obtained with and without the restriction is close to zero for nested models

- Unrestricted ML estimator:  $\hat{\theta}$
- Restricted ML estimator:  $\tilde{\theta}$ ; obtained by minimizing the loglikelihood subject to  $R \theta = q$

Under  $H_0$ :  $R \theta = q$ , the test statistic

$$\xi_{LR} = 2\left(\log L(\hat{\theta}) - \log L(\tilde{\theta})\right)$$

- is expected to be close to zero
- $\Box$  *p*-value to be read from the Chi-square distribution with J df

#### Likelihood Ratio Test, cont'd

Test of linear restrictions for regression coefficients

Test of the null-hypothesis that J linear restrictions of the coefficients β are valid

 $\xi_{LR} = N \log(e_R'e_R/e'e)$ 

- e: residuals from unrestricted model
- *e*<sub>R</sub>: residuals from restricted model
- $\xi_{LR}$  follows the Chi-square distribution with *J* df
- Requires that the restricted model is nested within the unrestricted model

#### Lagrange Multiplier Test

Checks whether the derivative of the likelihood for the constrained ML estimator is close to zero

Based on the Lagrange constrained maximization method

Lagrangian, given  $\theta = (\theta_1', \theta_2')'$  with restriction  $\theta_2 = q$ , *J*-vectors  $\theta_2, q$ H( $\theta, \lambda$ ) =  $\Sigma_i \log L_i(\theta) - \lambda'(\theta - q)$ 

First-order conditions give the constrained ML estimators  $\tilde{\theta} = (\tilde{\theta}_1', q')'$ and  $\tilde{\lambda}$ 

$$\sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{1}} |_{\widetilde{\theta}} = \sum_{i} s_{i1}(\widetilde{\theta}) = 0$$
$$\widetilde{\lambda} = \sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{2}} |_{\widetilde{\theta}} = \sum_{i} s_{i2}(\widetilde{\theta})$$

λ measures the extent of violation of the restriction, basis for  $\xi_{LM}$ s<sub>i</sub> are the scores; LM test is also called *score test* 

#### Lagrange Multiplier Test, cont'd

For  $\tilde{\lambda}$  can be shown that  $N^{-1}\tilde{\lambda}$  follows asymptotically the normal distribution N(0,  $V_{\lambda}$ ) with

$$V_{\lambda} = I_{22}(\theta) - I_{21}(\theta)I_{11}^{-1}(\theta)I_{22}(\theta) = [I^{22}(\theta)]^{-1}$$

i.e., the lower block diagonal of the inverted information matrix

$$I(\theta)^{-1} = \begin{pmatrix} I_{11}(\theta) & I_{12}(\theta) \\ I_{21}(\theta) & I_{22}(\theta) \end{pmatrix}^{-1} = \begin{pmatrix} I^{11}(\theta) & I^{12}(\theta) \\ I^{21}(\theta) & I^{22}(\theta) \end{pmatrix}$$

The Lagrange multiplier test statistic

$$\boldsymbol{\xi}_{LM} = N^{-1} \widetilde{\boldsymbol{\lambda}}' \widehat{\boldsymbol{I}}^{22} (\widetilde{\boldsymbol{\theta}}) \widetilde{\boldsymbol{\lambda}}$$

has under  $H_0$  an asymptotic Chi-square distribution with J df  $\hat{I}^{22}(\tilde{\theta})$  is the block diagonal of the estimated inverted information matrix, based on the constrained estimators for  $\theta$ 

#### Calculation of the LM Test Statistic

Outer product gradient (OPG) of  $\xi_{LM}$ 

- $N \times K$  matrix of first derivatives  $S' = [s_1(\widetilde{\Theta}), ..., s_N(\widetilde{\Theta})]$
- $\tilde{\lambda}$  can be calculated as  $\tilde{\lambda} = \sum_{i} s_{i2}(\tilde{\theta}) = \sum_{i} s_{i}(\tilde{\theta}) = S'i$
- Information matrix

$$\hat{I}(\tilde{\theta}) = N^{-1} \sum_{i} s_i(\tilde{\theta}) s_i(\tilde{\theta})' = N^{-1} S' S$$

Therefore

$$\xi_{LM} = \sum_{i} s_{i}(\tilde{\theta})' \left( \sum_{i} s_{i}(\tilde{\theta}) s_{i}(\tilde{\theta})' \right)^{-1} \sum_{i} s_{i}(\tilde{\theta}) = i' S(S'S)^{-1} S'i$$

Auxiliary regression of a *N*-vector i = (1, ..., 1)' on the scores  $s_i(\theta)$ , i.e., on the columns of *S*; no intercept

- Predicted values from auxiliary regression: S(S'S)<sup>-1</sup>S'i
- Explained sum of squares:  $i^{\circ}S(S^{\circ}S)^{-1}S^{\circ}S(S^{\circ}S)^{-1}S^{\circ}i = i^{\circ}S(S^{\circ}S)^{-1}S^{\circ}i$
- LM test statistic  $\xi_{LM} = N R^2$  with the uncentered  $R^2$  of the auxiliary regression; cf. total sum of squares *i*'i

#### An Illustration

The urn experiment: test of  $H_0$ :  $p = p_0$  (J = 1, R = I) The likelihood contribution of the *i*-th observation is log  $L_i(p) = y_i \log p + (1 - y_i) \log (1 - p)$ This gives  $s_i(p) = y_i/p - (1-y_i)/(1-p)$  and  $I_i(p) = [p(1-p)]^{-1}$ 

Wald test:

$$\xi_{W} = N(\hat{p} - p_{0}) \left[ \hat{p}(1 - \hat{p}) \right]^{-1} (\hat{p} - p_{0}) = N \frac{(\hat{p} - p_{0})^{2}}{\hat{p}(1 - \hat{p})} = N \frac{(N_{1} - Np_{0})^{2}}{N(N - N_{1})}$$
  
Likelihood ratio test:

 $\xi_{LR} = 2(\log L(\hat{p}) - \log L(\tilde{p}))$ 

with

$$\log L(\hat{p}) = N_1 \log(N_1 / N) + (N - N_1) \log(1 - N_1 / N)$$
  
$$\log L(\tilde{p}) = N_1 \log(p_0) + (N - N_1) \log(1 - p_0)$$

#### An Illustration, cont'd

Lagrange multiplier test:

with

$$\tilde{\lambda} = \sum_{i} s_{i}(p) |_{p_{0}} = \frac{N_{1}}{p_{0}} - \frac{N - N_{1}}{1 - p_{0}} = \frac{N_{1} - Np_{0}}{p_{0}(1 - p_{0})}$$

and the inverted information matrix  $[I(p)]^{-1} = p(1-p)$ , calculated for the restricted case, the LM test statistic is

$$\xi_{LM} = N^{-1} \tilde{\lambda} [p_0 (1 - p_0)] \tilde{\lambda}$$
  
=  $N(\hat{p} - p_0) [p_0 (1 - p_0)]^{-1} (\hat{p} - p_0)$ 

Example

- In a sample of N = 100 balls, 44 are red
- $H_0: p_0 = 0.5$
- $\xi_W = 1.46, \xi_{LR} = 1.44, \xi_{LM} = 1.44$
- Corresponding *p*-values are 0.227, 0.230, and 0.230

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### Normal Linear Regression: Scores

Log-likelihood function

$$\log L(\boldsymbol{\beta}, \boldsymbol{\sigma}^2) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_i (y_i - x_i'\boldsymbol{\beta})^2$$

Scores:

$$s_{i}(\boldsymbol{\beta}, \boldsymbol{\sigma}^{2}) = \begin{pmatrix} \frac{\partial \log L_{i}(\boldsymbol{\beta}, \boldsymbol{\sigma}^{2})}{\partial \boldsymbol{\beta}} \\ \frac{\partial \log L_{i}(\boldsymbol{\beta}, \boldsymbol{\sigma}^{2})}{\partial \boldsymbol{\sigma}^{2}} \end{pmatrix} = \begin{pmatrix} \frac{y_{i} - x_{i}'\boldsymbol{\beta}}{\boldsymbol{\sigma}^{2}} x_{i} \\ -\frac{1}{2\boldsymbol{\sigma}^{2}} + \frac{1}{2\boldsymbol{\sigma}^{4}} (y_{i} - x_{i}'\boldsymbol{\beta})^{2} \end{pmatrix}$$

**Covariance matrix** 

$$V = I(\beta, \sigma^2)^{-1} = diag(\sigma^2 \Sigma_{xx}^{-1}, 2\sigma^4)$$

#### Testing for Omitted Regressors

Model:  $y_i = x_i'\beta + z_i'\gamma + \varepsilon_i$ ,  $\varepsilon_i \sim NID(0,\sigma^2)$ 

Test whether the *J* regressors  $z_i$  are erroneously omitted:

- Fit the restricted model
- Apply the LM test to check  $H_0$ :  $\gamma = 0$

First-order conditions give the scores

$$\frac{1}{\tilde{\sigma}^2} \sum_i \tilde{\varepsilon}_i x_i = 0, \quad \frac{1}{\tilde{\sigma}^2} \sum_i \tilde{\varepsilon}_i z_i, \quad -\frac{N}{2\tilde{\sigma}^2} + \frac{1}{2} \sum_i \frac{\tilde{\varepsilon}_i^2}{\tilde{\sigma}^4} = 0$$

with constrained ML estimators for  $\beta$  and  $\sigma^2$ ; ML-residuals  $\tilde{\mathcal{E}}_i = y_i - x_i'\beta$ 

- Auxiliary regression of *N*-vector i = (1, ..., 1)' on the scores  $\tilde{\mathcal{E}}_i x_i, \tilde{\mathcal{E}}_i z_i$  gives the uncentered  $R^2$
- The LM test statistic is  $\xi_{LM} = N R^2$
- An asymptotically equivalent LM test statistic is  $NR_e^2$  with  $R_e^2$  from the regression of the ML residuals on  $x_i$  and  $z_i$

#### Testing for Heteroskedasticity

Model:  $y_i = x_i'\beta + \varepsilon_i$ ,  $\varepsilon_i \sim NID$ ,  $V\{\varepsilon_i\} = \sigma^2 h(z_i'\alpha)$ , h(.) > 0 but unknown, h(0) = 1,  $\partial/\partial \alpha \{h(.)\} \neq 0$ , *J*-vector  $z_i$ 

Test for homoskedasticity: Apply the LM test to check  $H_0$ :  $\alpha = 0$ First-order conditions with respect to  $\sigma^2$  and  $\alpha$  give the scores

 $\widetilde{\varepsilon}_i^2 - \widetilde{\sigma}^2, \quad (\widetilde{\varepsilon}_i^2 - \widetilde{\sigma}^2) z_i'$ 

with constrained ML estimators for  $\beta$  and  $\sigma^2$ ; ML-residuals  $\tilde{\mathcal{E}}_i$ 

- Auxiliary regression of *N*-vector *i* = (1, ..., 1)' on the scores gives the uncentered *R*<sup>2</sup>
- LM test statistic  $\xi_{LM} = NR^2$ ; a version of Breusch-Pagan test
- An asymptotically equivalent version of the Breusch-Pagan test is based on NR<sub>e</sub><sup>2</sup> with R<sub>e</sub><sup>2</sup> from the regression of the squared ML residuals on z<sub>i</sub> and an intercept
- Attention: no effect of the functional form of *h*(.)

#### Testing for Autocorrelation

Model:  $y_t = x_t'\beta + \varepsilon_t$ ,  $\varepsilon_t = \rho\varepsilon_{t-1} + v_t$ ,  $v_t \sim NID(0,\sigma^2)$ LM test of  $H_0$ :  $\rho = 0$ 

First-order conditions give the scores

 $\widetilde{\boldsymbol{\varepsilon}}_t \boldsymbol{x}'_t, \quad \widetilde{\boldsymbol{\varepsilon}}_t \widetilde{\boldsymbol{\varepsilon}}_{t-1}$ 

with constrained ML estimators for  $\beta$  and  $\sigma^2$ 

- The LM test statistic is  $\xi_{LM} = (T-1) R^2$  with  $R^2$  from the auxiliary regression of the *N*-vector *i* = (1,...,1)' on the scores
- If  $x_t$  contains no lagged dependent variables: products with  $x_t$  can be dropped from the regressors
- An asymptotically equivalent test is the Breusch-Godfrey test based on  $NR_e^2$  with  $R_e^2$  from the regression of the ML residuals on  $x_t$  and the lagged residuals

#### Contents

- Linear Regression: A Review
- Estimation of Regression Parameters
- Estimation Concepts
- ML Estimator: Idea and Illustrations
- ML Estimator: Notation and Properties
- ML Estimator: Two Examples
- Asymptotic Tests
- Some Diagnostic Tests
- Quasi-maximum Likelihood Estimator

#### Quasi ML Estimator

The quasi-maximum likelihood estimator

- refers to moment conditions
- does not refer to the entire distribution
- uses the GMM concept
- Derivation of the ML estimator as a GMM estimator
- weaker conditions
- consistency applies

#### Generalized Method of Moments (GMM)

The model is characterized by R moment conditions

 $\mathsf{E}\{f(w_i, z_i, \theta)\} = 0$ 

- f(.): *R*-vector function
- $w_i$ : vector of observable variables,  $z_i$ : vector of instrument variables

 $\Box$   $\theta$ : *K*-vector of unknown parameters

Substitution of the moment conditions by sample equivalents:

 $g_{\mathsf{N}}(\theta) = (1/N) \Sigma_{\mathsf{i}} f(w_{\mathsf{i}}, z_{\mathsf{i}}, \theta) = 0$ 

Minimization wrt  $\boldsymbol{\theta}$  of the quadratic form

 $Q_{\rm N}(\theta) = g_{\rm N}(\theta)^{\circ} W_{\rm N} g_{\rm N}(\theta)$ 

with the symmetric, positive definite weighting matrix  $W_{\rm N}$  gives the GMM estimator

 $\hat{\theta} = \arg\min_{\theta} Q_N(\theta)$ 

#### **Quasi-ML Estimator**

The quasi-maximum likelihood estimator

- refers to moment conditions
- does not refer to the entire distribution
- uses the GMM concept
- ML estimator can be interpreted as GMM estimator: first-order conditions

$$s(\hat{\theta}) = \frac{\partial \log L(\theta)}{\partial \theta} \Big|_{\hat{\theta}} = \sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta} \Big|_{\hat{\theta}} = \sum_{i} s_{i}(\theta) \Big|_{\hat{\theta}} = 0$$

correspond to sample averages based on theoretical moment conditions

Starting point is

$$\mathsf{E}\{s_{\mathsf{i}}(\theta)\}=0$$

valid for the K-vector  $\theta$  if the likelihood is correctly specified

### $\mathsf{E}\{s_{i}(\theta)\} = 0$

From  $\int f(y_i | x_i; \theta) dy_i = 1$  follows

$$\int \frac{\partial f(y_i \mid x_i; \theta)}{\partial \theta} dy_i = 0$$

Transformation

$$\frac{\partial f(y_i \mid x_i; \theta)}{\partial \theta} = \frac{\partial \log f(y_i \mid x_i; \theta)}{\partial \theta} f(y_i \mid x_i; \theta) = s_i(\theta) f(y_i \mid x_i; \theta)$$
  
gives  
$$\int s_i(\theta) f(y_i \mid x_i; \theta) \, dy_i = E\{s_i(\theta)\} = 0$$

This theoretical moment for the scores is valid for any density f(.)

#### Quasi-ML Estimator, cont'd

Use of the GMM idea – substitution of moment conditions by sample equivalents – suggests to transform  $E\{s_i(\theta)\} = 0$  into its sample equivalent and solve the first-order conditions

$$\frac{1}{N}\sum_{i}s_{i}(\theta)=0$$

This reproduces the ML estimator

Example: For the linear regression  $y_i = x_i'\beta + \varepsilon_i$ , application of the Quasi-ML concept starts from the sample equivalents of

 $E\{(y_i - x_i'\beta) x_i\} = 0$ 

this corresponds to the moment conditions of the OLS and the first-order condition of the ML estimators

• does not depend of the normality assumption of  $\varepsilon_i!$ 

#### Quasi-ML Estimator, cont'd

- Can be based on a wrong likelihood assumption
- Consistency is due to starting out from  $E{s_i(\theta)} = 0$
- Hence, "quasi-ML" (or "pseudo ML") estimator
- Asymptotic distribution:
- May differ from that of the ML estimator:

 $\sqrt{N}(\hat{\theta} - \theta) \to N(0, V)$ 

• Using the asymptotic distribution of the GMM estimator gives  $\sqrt{N}(\hat{\theta} - \theta) \rightarrow N(0, I(\theta)^{-1}J(\theta)I(\theta)^{-1})$ with  $J(\theta) = \lim_{i \to \infty} (1/N)\Sigma_i E\{s_i(\theta), s_i(\theta)\}$ 

and  $I(\theta) = \lim (1/N)\Sigma_i E\{-\partial s_i(\theta)/\partial \theta'\}$ 

 For linear regression: heteroskedasticity-consistent covariance matrix

#### Your Homework

- Open the Greene sample file "greene7\_8, Gasoline price and consumption", offered within the Gretl system. The variables to be used in the following are: G = total U.S. gasoline consumption, computed as total expenditure divided by price index; Pg = price index for gasoline; Y = per capita disposable income; Pnc = price index for new cars; Puc = price index for used cars; Pop = U.S. total population in millions. Perform the following analyses and interpret the results:
  - a. Produce and interpret the scatter plot of the per capita (p.c.) gasoline consumption (Gpc) over the p.c. disposable income.
  - b. Fit the linear regression for log(Gpc) with regressors log(Y), Pg, Pnc and Puc to the data and give an interpretation of the outcome.

#### Your Homework, cont'd

- c. Test for autocorrelation of the error terms using the LM test statistic  $\xi_{LM} = (T-1) R^2$  with  $R^2$  from the auxiliary regression of the ML residuals on the lagged residuals with appropriately chosen lags.
- d. Test for autocorrelation using  $NR_e^2$  with  $R_e^2$  from the regression of the ML residuals on  $x_t$  and the lagged residuals.
- 2. Assume that the errors  $\varepsilon_t$  of the linear regression  $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$  are NID(0,  $\sigma^2$ ) distributed. (a) Determine the log-likelihood function of the sample for t = 1, ..., T; (b) show that the first-order conditions for the ML estimators have expectations zero for the true parameter values; (c) derive the asymptotic covariance matrix on the basis (i) of the information matrix and (ii) of the score vector; (d) derive the matrix *S* of scores for the omitted variable LM test [cf. eq. (6.38) in Veebeek].