Econometrics 2 - Lecture 1

ML Estimation, Diagnostic Tests

Contents

- $\overline{\mathcal{M}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathbb{R}^n}$
- $\overline{\mathcal{M}}$ Estimation Concepts
- $\overline{\mathcal{A}}$ ML Estimator: Idea and Illustrations
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ ML Estimator: Notation and Properties
- \mathbb{R}^3 ML Estimator: Two Examples
- $\mathcal{L}_{\mathcal{A}}$ Asymptotic Tests
- $\mathcal{C}_{\mathcal{A}}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

The Linear Model

Y: explained variable \mathcal{X} : explanatory or regressor variable The model describes the data-generating process of Yunder the condition \boldsymbol{X}

A simple linear regression model $Y = \alpha + \beta X$ β: coefficient of X α: intercept

A multiple linear regression model $Y = \beta_1 + \beta_2 X_2 +$ … $\ldots + \beta_K X_K$

Fitting a Model to Data

Choice of values $b_1^{},\,b_2^{}$ given the observations $(y_{\mathsf{i}},\, \mathsf{x}_{\mathsf{i}})$, $\mathsf{i} = \mathsf{1}, \dots, \mathsf{N}$ $_{2}$ for model parameters β₁, β₂ ₂ of $Y = \beta_1 + \beta_2 X$,

Fitted values: $\hat{y}_i = b_1 + b_2 x_i$, $i = 1,...,N$

Principle of (Ordinary) Least Squares gives the OLS estimators b_{i} = arg min $_{\mathsf{\beta1},\mathsf{\beta2}}$ S($\mathsf{\beta}_{1}$, $\mathsf{\beta}_{2}$), *i*=1,2

Objective function: sum of the squared deviations $S(\beta_1, \beta_2) = \sum_i [y_i - \hat{y}_i]^2 = \sum_i [y_i - (\beta_1 + \beta_2 x_i)]^2$ - \hat{y}_i]² = Σ_i [y_i - (β_1 + β_2 x_i)]² = Σ_i e_i ²

Deviations between observation and fitted values, residuals: e_i = y_i - $\hat{y}_i = y_i - (\beta_1 + \beta_2 x_i)$

Observations and Fitted Regression Line

Simple linear regression: Fitted line and observation points (Verbeek, Figure 2.1)

Contents

- $\overline{\mathcal{M}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\overline{\mathcal{M}}$ Estimation Concepts
- $\overline{\mathcal{A}}$ ML Estimator: Idea and Illustrations
- \mathbb{R}^3 ML Estimator: Notation and Properties
- \mathbb{R}^3 ML Estimator: Two Examples
- $\mathcal{L}_{\mathcal{A}}$ Asymptotic Tests
- $\mathcal{C}_{\mathcal{A}}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

OLS Estimators

Equating the partial derivatives of S(β_1 , β_2) to zero: normal equations

$$
b_1 + b_2 \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i
$$

$$
b_1 \sum_{i=1}^{N} x_i + b_2 \sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} x_i y_i
$$

OLS estimators $b_1^{}$ und $b_2^{}$ resu $_{\rm 2}$ result in

with mean values $\mathcal X$ and and second moments $1 \bullet$ 1 $(x_i - \overline{x})(y_i - \overline{y})$ $\boldsymbol{\mathcal{X}}$ $\boldsymbol{\mathcal{X}}$ \overline{N} \sum_i $(x_i - x)(y_i - y)$ $S_{xy} = \frac{1}{N} \sum_i (x_i - x)(y_i)$ = $=\frac{1}{N}\sum$ $\sum_i (x_i - x)(y_i \frac{2}{x} = \frac{1}{\lambda} \sum_{i} (x_i - \overline{x})^2$ $\boldsymbol{\mathcal{X}}$ $\boldsymbol{\mathcal{X}}$ $N^{\sum_{l} \sum_{l}^{l}}$ s $N \rightarrow$ \mathcal{X} = $=\frac{1}{N}\sum$ $\sum_i (x_i -$

OLS Estimators: The General **Case**

Model for Y contains $\mathsf{K}\text{-}1$ explanatory variables

 $Y = \beta_1 + \beta_2 X_2 + ... + \beta_K X_K = x^3 \beta$ with $x = (1, X_2, ..., X_K)$ ' and $\beta = (\beta_1, \beta_2, ..., \beta_K)$ ' Observations: [y_i , x_i] = [y_i , (1, x_{i2} , ..., x_{iK})'], i = 1, ..., N OLS-estimates $b = (b_1, b_2, ..., b_K)'$ are obtained by minimizing N β) = $\sum_{i=1}^{N} (y_i - x'_i \beta)^2$ this results in the OLS estimators 2 $1^{V_i} V_i$ $(\beta) = \sum_{i=1}^{N} (y_i - x'_i \beta)^2$ $S(\beta) = \sum_{i=1}^{N} (y_i - x'_i)$ = λ 1

$$
b = \left(\sum_{i=1}^{N} x_i x_i'\right)^{-1} \sum_{i=1}^{N} x_i y_i
$$

Matrix Notation

N observations

$$
(y_1, x_1), \dots, (y_N, x_N)
$$

Model: $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, $i = 1, ..., N$, or
 $y = X\beta + \varepsilon$
with
 $y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{pmatrix}$

OLS estimators

$$
b=(XX)^{-1}X'y
$$

Gauss-Markov Assumptions

Observation y_i ($i = 1, ..., N$) is a linear function

 $y_i = x_i' \beta + \varepsilon_i$

of observations x_{ik} , $k = 1, ..., K$, of the regressor variables and the error term ε_i

$$
x_{i} = (x_{i1}, ..., x_{ik})'; X = (x_{ik})
$$

Normality of Error Terms

A5 $\bm{\varepsilon}_{\mathsf{i}}$ normally distributed for all i

Together with assumptions (A1), (A3), and (A4), (A5) implies

 $\varepsilon_{\mathsf{i}} \thicksim \mathsf{NID}(0,\sigma^2)$ for all i

- i.e., all $\varepsilon_{\text{\tiny{i}}}$ are
- \Box independent drawings
- from the normal distribution N(0, σ^2 \Box **n** from the normal distribution $N(0,\sigma^2)$
- \Box with mean 0
- \Box and variance σ^2

Error terms are "normally and independently distributed" (NID, n.i.d.)

Properties of OLS Estimators

OLS estimator $b = (XX)^{-1}Xy$

- 1. The OLS estimator *b* is unbiased: E{*b*} = β
- 2. The variance of the OLS estimator is given by

 $V{b} = σ²(\Sigma_i x_i x_i['])⁻¹$

- 3. The OLS estimator *b* is a BLUE (best linear unbiased estimator) for β
- 4. The OLS estimator *b* is normally distributed with mean β and covariance matrix V{b} = $\sigma^2(\Sigma_i x_i x_i^{\prime})^{-1}$

Properties

- H. 1., 2., and 3. follow from Gauss-Markov assumptions
- 4. needs in addition the normality assumption (A5)

Distribution of t-statistic

t-statistic

$$
t_k = \frac{b_k}{se(b_k)}
$$

follows

- 1. the *t*-distribution with N-K d.f. if the Gauss-Markov assumptions (A1) - (A4) and the normality assumption (A5) hold
- 2. approximately the *t*-distribution with *N-K* d.f. if the Gauss-Markov assumptions (A1) - (A4) hold but not the normality assumption (A5)
- 3. asymptotically ($N \rightarrow \infty$) the standard normal distribution N(0,1)
- 4. approximately the standard normal distribution $N(0,1)$

The approximation errors decrease with increasing sample size N

OLS Estimators: Consistency

The OLS estimators b are consistent,

 $\mathsf{plim}_{N \, \rightarrow \, \infty}$ $b = \beta$,

if one of the two set of conditions are fulfilled:

- (A2) from the Gauss-Markov assumptions and the assumption (A6), or
- the assumption (A7), weaker than (A2), and the assumption (A6) Assumptions (A6) and (A7):

Assumption (A7) is weaker than assumption (A2)!

Contents

- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\overline{\mathcal{M}}$ Estimation Concepts
- $\overline{\mathcal{A}}$ ML Estimator: Idea and Illustrations
- \mathbb{R}^3 ML Estimator: Notation and Properties
- \mathbb{R}^3 ML Estimator: Two Examples
- $\mathcal{L}_{\mathcal{A}}$ Asymptotic Tests
- $\overline{\mathbb{R}^n}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

Estimation Concepts

OLS estimator: minimization of objective function S(β) gives

- K first-order conditions $\Sigma_i (y_i x_i' b) x_i = \Sigma_i e_i x_i = 0$, the normal Π equations
- **Moment conditions** Π

 $E\{(y_i - x_i' \beta) x_i\} = E\{\varepsilon_i x_i\} = 0$

- **DRUAN EXT COLS estimators are solution of the normal equations**
- IV estimator: Model allows derivation of moment conditions

 $E\{(y_i - x_i' \beta) z_i\} = E\{\varepsilon_i z_i\} = 0$

which are functions of

- H. **observable variables** y_i **,** x_i **, instrument variables** z_i **, and unknown** parameters β
- **Noment conditions are used for deriving IV estimators**
- Π OLS estimators are special case of IV estimators

Estimation Concepts, cont'd

GMM estimator: generalization of the moment conditions

 $\mathsf E\{\mathit f(w_{\mathsf j},\, \mathsf z_{\mathsf j},\, \beta)\}=0$

- **u** with observable variables w_i , instrument variables z_i , and unknown H. parameters β; *f*: multidimensional function with as many components as conditions
- **Allows for non-linear models**
- H. Under weak regularity conditions, the GMM estimators are
	- \Box consistent
	- \Box asymptotically normal

Maximum likelihood estimation

- H. \blacksquare Basis is the distribution of $y_{\mathsf{i}}^{}$ conditional on regressors $x_{\mathsf{i}}^{}$
- Π ■ Depends on unknown parameters $β$
- The estimates of the parameters β are chosen so that the distribution H. corresponds as well as possible to the observations y_{i} and x_{i}

Contents

- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\mathcal{L}^{\mathcal{A}}$ Estimation Concepts
- $\overline{\mathcal{A}}$ ML Estimator: Idea and Illustrations
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Notation and Properties
- \mathbb{R}^3 ML Estimator: Two Examples
- $\mathcal{L}_{\mathcal{A}}$ Asymptotic Tests
- $\overline{\mathbb{R}^n}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

Example: Urn Experiment

Urn experiment:

- The urn contains red and black balls
- п **P**roportion of red balls: p (unknown)
- N random draws
- Random draw *i*: $y_i = 1$ if ball i is red, 0 otherwise; P{ $y_i = 1$ } = p
- Sample: N_1 red balls, N - N_1 black balls
- Probability for this result:

 $P\{N_1 \text{ red balls}, N\text{-}N_1 \text{ black balls}\} = \rho^{\text{N1}}(1-\rho)^{\text{N-N1}}$

 Likelihood function: the probability of the sample result, interpreted as a function of the unknown parameter ρ

Urn Experiment: Likelihood Function

 Likelihood function: the probability of the sample result, interpreted as a function of the unknown parameter ρ

> $L(\rho) = \rho^{\mathsf{N1}}$ (1 $(-\rho)^{\mathsf{N-N1}}$

Maximum likelihood estimator: that value $\hat{p}\:$ of ρ which maximizes $\mathsf{L}(p)$

 \hat{p} = arg max $_L$ $L(p)$ p

Calculation of \hat{p} : maximization algorithms

- As the log-function is monotonous, extremes of $L(p)$ and log $L(p)$ coincide
- Use of log-likelihood function is often more convenient

 $log L(p) = N_1 log p + (N \mathsf{N}_1)$ log $(1-\rho)$

Urn Experiment: Likelihood Function, cont'd

Urn Experiment: ML Estimator

Maximizing $log L(p)$ with respect to p gives the first-order condition

$$
\frac{d \log L(p)}{dp} = \frac{N_1}{p} - \frac{N - N_1}{1 - p} = 0
$$

Solving this equation for p gives the maximum likelihood estimator (ML estimator)

$$
\hat{p} = \frac{N_1}{N}
$$

For N = 100, N₁ = 44, the ML estimator for the proportion of red balls is $\hat{p} = 0.44$ is \hat{p} = 0.44

Maximum Likelihood Estimator: The Idea

- Specify the distribution of the data (of y or y given x) H.
- Π Determine the likelihood of observing the available sample as a function of the unknown parameters
- Π Choose as ML estimates those values for the unknown parameters that give the highest likelihood
- \blacksquare In general, this leads to
	- □ consistent
	- $\,$ asymptotically normal
	- □ efficient estimators

provided the likelihood function is correctly specified, i.e., distributional assumptions are correct

Example: Normal Linear Regression

Model

 $y_i = \beta_1 + \beta$ $2X_i + \varepsilon_i$

with assumptions (A1) – (A5)

From the normal distribution of ε_{i} follows: contribution of $\,$ observation i to the likelihood function:

$$
f(y_i|x_i;\beta,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \frac{(y_i - \beta_1 - \beta_2 x_i)^2}{\sigma^2}\right\}
$$

 due to independent observations, the log-likelihood function is given by

$$
\log L(\beta, \sigma^2) = \log \prod_i f(y_i | x_i; \beta, \sigma^2)
$$

= $-\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_i \frac{(y_i - \beta_1 - \beta_2 x_i)^2}{\sigma^2}$

Normal Linear Regression, cont'd

Maximizing log L with respect to β and σ^2 gives the ML estimators

$$
\hat{\beta}_2 = Cov\{y, x\} / V\{x\}
$$

$$
\hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x}
$$

which coincide with the OLS estimators, and

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_i e_i^2
$$

which is biased and underestimates σ²!

Remarks:

- The results are obtained assuming normally and independently distributed (NID) error terms
- ٠ ML estimators are consistent but not necessarily unbiased; see the properties of ML estimators below

Contents

- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\mathcal{L}^{\mathcal{A}}$ Estimation Concepts
- ML Estimator: Idea and Illustrations
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Notation and Properties
- \mathbb{R}^3 ML Estimator: Two Examples
- $\mathcal{L}_{\mathcal{A}}$ Asymptotic Tests
- $\mathcal{C}^{\mathcal{A}}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

ML Estimator: Notation

Let the density (or probability mass function) of y_{i} , given x_{i} , be given by $f(y_i|x_i,θ)$ with K-dimensional vector θ of unknown parameters Given independent observations, the likelihood function for the sample of size N is

$$
L(\theta | y, X) = \prod_{i} L_{i}(\theta | y_{i}, x_{i}) = \prod_{i} f(y_{i} | x_{i}; \theta)
$$

The ML estimators are the solutions of

max $_\mathrm{\theta}$ or the solutions of the first-order conditions _θ log *L*(θ) = max_θ Σ_i log *L*_i(θ) $\frac{\log L_i(\theta)}{\partial \theta}\big|_{\hat{\theta}} = 0$ $\frac{\log L(\theta)}{2.2}$) ˆ $(\theta) = \frac{\sqrt{3} \cos \theta(\theta)}{2\theta} \Big|_{\hat{\theta}} = \sum_{i} \frac{\sqrt{3} \cos \theta_{i}(\theta)}{2\theta} \Big|_{\hat{\theta}} =$ ∂ =∂ =∑s(θ) = Σ_i s_i(θ), the vector of gradients, also denoted as *score vector* θ θ θ) = $\frac{\cos 2(\theta)}{(\theta)}|_{\theta} = \sum \frac{\cos 2\theta}{(\theta)}$ L $s(\hat{\theta}) = \frac{\partial \log L(\theta)}{\partial \theta}$ $\partial \theta$ ^{0}θ θ ^{i}θ $\partial \theta$ ^{0} Solution of $s(\theta)$ = 0 $^{\circ}$

- \mathbb{R}^n analytically (see examples above) or
- by use of numerical optimization algorithms

Matrix Derivatives

The scalar-valued function

$$
L(\theta \mid y, X) = \prod_i L_i(\theta \mid y_i, x_i) = L(\theta_1, ..., \theta_K \mid y, X)
$$

or – shortly written as log L(θ) – has the *K* arguments θ₁, …, θ_κ
...

 \mathbb{R}^3 K-vector of partial derivatives or gradient vector or gradient

 $\left(\frac{\partial \log L(\theta)}{\partial \log L(\theta)}\right)^{\prime}$ 1 $\frac{\log L(\theta)}{2a} = \left(\frac{\partial \log L(\theta)}{\partial \theta}, \ldots, \frac{\partial \log L(\theta)}{\partial \theta} \right)$ K $\frac{L(\theta)}{L(\theta)} = \left(\frac{\partial \log L(\theta)}{\partial \theta}, \ldots, \frac{\partial \log L(\theta)}{\partial \theta} \right)$ θ ($\partial \theta$ ₁ $\partial \theta$ _k $\frac{\partial \log L(\theta)}{\partial \theta} = \left(\frac{\partial \log L(\theta)}{\partial \theta_1}, \ldots, \frac{\partial \log L(\theta)}{\partial \theta_K}\right)$ $\begin{pmatrix} \partial \theta_1 & \cdots & \partial \theta_K \end{pmatrix}$

 $\overline{\mathbb{R}^n}$ KxK matrix of second derivatives or Hessian matrix

ML Estimator: Properties

The ML estimator

- 1.is consistent
- 2.is asymptotically efficient
- 3.is asymptotically normally distributed:

$$
\sqrt{N}(\hat{\theta} - \theta) \to N(0, V)
$$

 $\sqrt{N(\theta - \theta)} \rightarrow \mathrm{N}(0, V)$ V: asymptotic covariance matrix of $\sqrt{N}\hat{\theta}$

The Information Matrix

Information matrix I(θ)

 $\overline{}$ /(θ) is the limit (for $N \to ∞$) of

$$
\overline{I}_N(\theta) = -\frac{1}{N} E \left\{ \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} \right\} = -\frac{1}{N} \sum_i E \left\{ \frac{\partial^2 \log L_i(\theta)}{\partial \theta \partial \theta'} \right\} = \frac{1}{N} \sum_i I_i(\theta)
$$

- $\mathcal{C}^{\mathcal{A}}$ For the asymptotic covariance matrix V can be shown: $V = I(\theta)^{-1}$
- \blacksquare $I(\theta)$ ⁻¹ is the lower bound of the asymptotic covariance matrix for any consistent, asymptotically normal estimator for θ: Cramèr-Rao lower bound
- Calculation of $I_i(\theta)$ can also be based on the outer product of the score vector

$$
I_i(\theta) = -E\left\{\frac{\partial^2 \log L_i(\theta)}{\partial \theta \partial \theta'}\right\} = E\left\{s_i(\theta)s_i(\theta')\right\} = J_i(\theta)
$$

for a miss-specified likelihood function, $J_{\mathsf{i}}(\Theta)$ can deviate from $I_{\mathsf{i}}(\Theta)$

Covariance Matrix V: Calculation

Two ways to calculate V:

A consistent estimate is based on the information matrix $I(\theta)$:

$$
\hat{V}_H = \left(-\frac{1}{N} \sum_i \frac{\partial^2 \log L_i(\theta)}{\partial \theta \partial \theta'}\Big|_{\hat{\theta}}\right)^{-1} = \overline{I}_N(\hat{\theta})^{-1}
$$

index "H": the estimate of V is based on the Hessian matrix
————————————————————

 $\mathcal{C}^{\mathcal{A}}$ The BHHH (Berndt, Hall, Hall, Hausman) estimator

$$
\hat{V}_G = \left(\frac{1}{N} \sum_i s_i(\hat{\boldsymbol{\theta}}) s_i(\hat{\boldsymbol{\theta}})'\right)^T
$$

with score vector s(θ); index "G": the estimate of V is based on
aradiants gradients

1

a also called: OPG (outer product of gradient) estimator \Box

 \Box $□$ $E\{s_{i}(\theta)\ s_{i}(\theta)'\}$ coincides with $I_{i}(\theta)$ if $f(y_{i}|$ x_i,θ) is correctly specified

Contents

- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\mathcal{L}^{\mathcal{A}}$ Estimation Concepts
- ML Estimator: Idea and Illustrations
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Notation and Properties
- \mathbb{R}^3 ML Estimator: Two Examples
- \mathbb{R}^3 Asymptotic Tests
- $\mathcal{C}^{\mathcal{A}}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

Urn Experiment: Once more

Likelihood contribution of the *i*-th observation $log L_i(p) = y_i log p + (1 - y_i) log (1 - p)$

This gives scores

∂

$$
\frac{\partial \log L_i(p)}{\partial p} = s_i(p) = \frac{y_i}{p} - \frac{1 - y_i}{1 - p}
$$

and

$$
\frac{\partial^2 \log L_i(p)}{\partial p^2} = -\frac{y_i}{p^2} - \frac{1 - y_i}{(1 - p)^2}
$$

With $E{y_i} = p$, the expected value turns out to be i

$$
I_i(p) = E\left\{ -\frac{\partial^2 \log L_i(p)}{\partial p^2} \right\} = \frac{1}{p} + \frac{1}{1 - p} = \frac{1}{p(1 - p)}
$$

The asymptotic variance of the ML estimator $V = I^{-1} = p(1-p)$

Urn Experiment and Binomial Distribution

The asymptotic distribution is

$$
\sqrt{N}(\hat{p}-p) \to N(0, p(1-p))
$$

■ Small sample distribution:

 $\hat{N\hat{p}} \sim B(N, p)$

■ Use of the approximate normal distribution for portions \hat{p} rule of thumb:

N p (1- p) > 9

Test of H₀: $p = p_0$ can be based on test statistic

0 $(\hat{p} - p_{0}) / \textit{se}(\hat{p})$

Example: Normal Linear Regression

Model

 $y_i = x_i' \beta + \varepsilon_i$ with assumptions (A1) – (A5) Log-likelihood function=−−∑−′2 $\,N$ 2 1 $\beta(\sigma^2) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_i (y_i - x'_i \beta)^2$ Score contributions: $\left(\frac{\partial \log L_i(\beta, \sigma^2)}{\partial \beta}\right) \left(\frac{y_i - x'_i \beta}{\beta} x_i \right)$ $\boldsymbol{\mathcal{X}}$ L $\frac{1}{2\sigma^2}\sum_i(y_i-x_i'\beta)$ $\log(2\pi\sigma^2) - \frac{1}{2}$ 2 $\frac{1}{2} \log(2\pi\sigma^2)$ $\log L(\beta, \sigma^2) = -\frac{1}{2}$ σ²) = $\begin{vmatrix} \frac{\partial \beta}{\partial \log L(\beta \sigma^2)} \end{vmatrix}$ = $\begin{vmatrix} 0 & \sigma^2 \\ 1 & 1 \end{vmatrix}$ (β, σ^2) = $\frac{\log L_{i}(\beta, \sigma^{2})}{2} \left| 1 - \frac{1}{2\sigma^{2}} + \frac{1}{2\sigma^{2}} \right|$ $\frac{\partial y_i}{\partial R}$ $\frac{y_i}{\sigma^2} x_i$ i $\frac{1}{2}$ $\frac{1}{2}$ s $\log L$ $\beta^ (\beta, \sigma^2) =$ $\begin{bmatrix} \sigma \rho & \sigma \end{bmatrix} =$ $\begin{bmatrix} \sigma & \sigma \end{bmatrix}$ β,σ $\left| \frac{\partial \log z_i(\rho, \sigma)}{\partial \beta} \right|_{-} \left| \frac{y_i - x_i \rho}{\sigma^2} x_i \right|$ = | Good Allian A
- Holland Allian Al $\left|\frac{\partial \beta}{\partial \log L_i(\beta, \sigma^2)}\right| = \left|\frac{\sigma^2}{-\frac{1}{\sigma^2} + \frac{1}{\sigma^4}(y_i - x_i'\beta)^2}\right|$ $\left[\frac{\rho, \sigma}{2} \right] = \left[-\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4} (y_i - x_i' \beta)^2 \right]$ $\left(-\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4} (y_i - x_i' \beta)^2 \right)$ $\left(\frac{\partial \log L_i(\beta,0)}{\partial \sigma^2}\right) \left(-\frac{1}{2\sigma^2}+\frac{1}{2\sigma^4}(y_i-x'_i\beta)^2\right)$ $\left(\frac{\partial \sigma^2}{\partial \sigma^2}\right)$ $\left(2\sigma^2 \right) 2\sigma^4 \left(\frac{\partial \sigma^2}{\partial \sigma^2}\right)$

The first-order conditions –– setting both components of Σ_i s_i(β,σ²) to zero – give as ML estimators: the OLS estimator for β, the average squared residuals for σ²:

Normal Linear Regression, cont'd

$$
\hat{\beta} = \left(\sum_{i} x_i x_i'\right)^{-1} \sum_{i} x_i y_i, \ \hat{\sigma}^2 = \frac{1}{N} \sum_{i} (y_i - x_i' \hat{\beta})^2
$$

Asymptotic covariance matrix: Contribution of the *i*-th observation $(F(s) - F(s^3) - 0, F(s^2) - \pi^2, F(s^4) - 2\pi^4)$ (E{ε_i} = E{ε_i³} = 0, E{ε_i²} = σ², E{ε_i⁴} = 3σ⁴ β , σ^2) = $E{s_i(\beta, \sigma^2)s_i(\beta, \sigma^2)'}$ = diag $\left(\frac{1}{\sigma^2}x_i x_i', \frac{1}{2\sigma^4}\right)$ $^4)$ gives L^2) = $E\{s \cdot (\beta, \sigma^2)s \cdot (\beta, \sigma^2)$ $(\beta, \sigma^2) = E\{s_i(\beta, \sigma^2)s_i(\beta, \sigma^2)\} = diag\left(\frac{1}{\sigma^2}x_i x_i, \frac{1}{2\sigma^4}\right)$ $I_i(\beta, \sigma^2) = E\{s_i(\beta, \sigma^2)s_i(\beta, \sigma^2)\} = diag\left(\frac{1}{\sigma^2}x_i x_i, \frac{1}{2\sigma^4}\right)$

> $V = I(\beta, \sigma^2)^{-1} = \text{diag } (\sigma^2 \Sigma_{xx}^{-1}, 2\sigma^4)$ ⁴)

with Σ_{xx} = lim (Σ_ix_ix_i')/N

The ML estimate for β and σ² follow asymptotically

$$
\sqrt{N}(\hat{\beta}-\beta) \rightarrow N(0, \sigma^2\Sigma_{xx}^{-1})
$$

 $N(\hat{\sigma}^2 - \sigma^2) \rightarrow N(0, 2\sigma^4)$

Normal Linear Regression, cont'd

For finite samples: covariance matrix of ML estimators for β

1−

$$
\hat{V}(\hat{\beta}) = \hat{\sigma}^2 \left(\sum_i x_i x_i' \right)
$$

similar to OLS results

Contents

- $\overline{\mathbb{R}^n}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\mathcal{L}^{\mathcal{A}}$ Estimation Concepts
- $\overline{\mathcal{A}}$ ML Estimator: Idea and Illustrations
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Two Examples
- \mathbb{R}^3 Asymptotic Tests
- $\mathcal{C}^{\mathcal{A}}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

Diagnostic Tests

Diagnostic (or specification) tests based on ML estimatorsTest situation:

- H. K-dimensional parameter vector θ = (θ₁, …, θ_κ)'
- $J \ge 1$ linear restrictions $(K \ge J)$
- H₀: R θ = *q* with *J*x*K* matrix *R*, full rank; *J*-vector *q*
=

Test principles based on the likelihood function:

- 1. Wald test: Checks whether the restrictions are fulfilled for the unrestricted ML estimator for θ; test statistic ξ $_{\mathsf{W}}$
- 2. Likelihood ratio test: Checks whether the difference between the log-likelihood values with and without the restriction is close to zero; test statistic ξ_{LR}
- 3. Lagrange multiplier test (or score test): Checks whether the first order conditions (of the unrestricted model) are violated by the restricted ML estimators; test statistic $ξ_{LM}$

The Asymptotic Tests

Under ${\sf H}_{0}$, the test statistics of all three tests

- **follow asymptotically, for finite sample size approximately, the Chi-**Π square distribution with J df
- Π ■ The tests are asymptotically (large *N*) equivalent
- H. Finite sample size: the values of the test statistics obey the relation

ξW $_{\mathsf{W}}$ $\geq \xi_{\mathsf{LR}}$ $\geq \xi_{\mathsf{LM}}$

Choice of the test: criterion is computational effort

- 1. Wald test: Requires estimation only of the unrestricted model; e.g., testing for omitted regressors: estimate the full model, test whether the coefficients of potentially omitted regressors are different from zero
- Lagrange multiplier test: Requires estimation only of the restricted 2.model; preferable if restrictions complicate estimation
- 3. Likelihood ratio test: Requires estimation of both the restricted and the unrestricted model

Wald Test

Checks whether the restrictions are fulfilled for the unrestricted ML estimator for θ

Asymptotic distribution of the unrestricted ML estimator:

$$
\sqrt{N}(\hat{\theta} - \theta) \to N(0, V)
$$

under H: $R \theta = a$

Hence, under H_0 : $R \theta = q$, 0

$$
\sqrt{N}(R\hat{\theta} - R\theta) = \sqrt{N}(R\hat{\theta} - q) \rightarrow N(0, RVR')
$$

The test statistic

$$
\xi_W = N(R\hat{\theta} - q)' \Big[R\hat{V}R' \Big]^{-1} (R\hat{\theta} - q)
$$

- □ under H₀, ξ_w is expected to be close to zero \Box
- p -value to be read from the Chi-square distribution with J df \Box

Wald Test,cont'd

Typical application: tests of linear restrictions for regression coefficients

■ Test of H₀: $β_i = 0$

 $\xi_{\rm W}$ = $b_{\rm i}^{2}/[\rm{se}(b_{\rm i})^2]$
follows the Chi s

- S_{W} follows the Chi-square distribution with 1 df
- s_{w} is the square of the *t*-test statistic
 F_{t} of the set the stational state of
- Test of the null-hypothesis that a subset of *J* of the coefficients $β$ are zeros

 ξ_{W} = (e_R'e_R – e'e)/[e'e/(N-K)]
residuals from unrestricted med

- □ e: residuals from unrestricted model
- \Box e_R : residuals from restricted model
- \Box $\zeta_{\rm W}$ follows the Chi-square distribution with J df
- \Box **ξ_W is related to the** *F***-test statistic by ξ_W =** *FJ*

Likelihood Ratio Test

Checks whether the difference between the ML estimates obtained with and without the restriction is close to zero for nested models

- **L** Unrestricted ML estimator θ ˆ
- Restricted ML estimator: θ ; obtained by minimizing the log $\widetilde{\theta}$: obtained by minimizing the loglikelihood subject to $R \theta = q$

Under H₀: $R \theta = q$, the test statistic

$$
\xi_{LR} = 2\Bigl(\log L(\hat{\theta}) - \log L(\widetilde{\theta})\Bigr)
$$

- $\hbox{\tt\char'42}$ is expected to be close to zero
- ρ -value to be read from the Chi-square distribution with J df \Box

Likelihood Ratio Test,cont'd

Test of linear restrictions for regression coefficients

Test of the null-hypothesis that J linear restrictions of the Π coefficients β are valid

 $\xi_{\rm LR}$ = N log($e_{\rm R}$ ' $e_{\rm R}$ / e ' e)

- e: residuals from unrestricted model \Box
- \Box e_R: residuals from restricted model
- ξ_{LR} follows the Chi-square distribution with J df \Box
- \mathbb{R}^n Requires that the restricted model is nested within the unrestricted model

Lagrange Multiplier Test

Checks whether the derivative of the likelihood for the constrained ML estimator is close to zero

Based on the Lagrange constrained maximization method

Lagrangian, given θ = (θ₁', θ₂')' with restriction θ₂ = q, J-vectors θ₂, q $H(\theta, \lambda) = \sum_{i} log L_{i}(\theta)$ λ'(θ $_{\sf i}$ log L $_{\sf i}(\theta)-\lambda^\mathfrak{c}(\theta\text{-}q)$

First-order conditions give the constrained ML estimators $\widetilde{\theta} = (\widetilde{\theta}_\text{l}^\prime, q^\prime)$ and λ $\widetilde{\theta}=(\widetilde{a}% ,\widetilde{b})\in\widetilde{b}$ $\theta = (\theta_1')$ $,q$ ′′~

$$
\sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{1}}|_{\widetilde{\theta}} = \sum_{i} s_{i1}(\widetilde{\theta}) = 0
$$

$$
\widetilde{\lambda} = \sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{2}}|_{\widetilde{\theta}} = \sum_{i} s_{i2}(\widetilde{\theta})
$$

λ measures the extent of violation of the restriction, basis for ξ LM $\bm{{\mathsf{s}}}_{\mathsf{i}}$ are the scores; LM test is also called *score test*

Lagrange Multiplier Test, cont'd

For $\tilde{\lambda}$ can be shown that $N^{-1}\tilde{\lambda}$ follows asymptotically the normal distribution $\mathsf{N}(0,\mathsf{V}_{\lambda})$ with $N^{-1}\tilde{\lambda}$. $\tilde{}$

$$
V_{\lambda} = I_{22}(\theta) - I_{21}(\theta)I_{11}^{-1}(\theta)I_{22}(\theta) = [I^{22}(\theta)]^{-1}
$$

is lower block diagonals of the inverted information

i.e., the lower block diagonal of the inverted information matrix

$$
I(\boldsymbol{\theta})^{-1} = \begin{pmatrix} I_{11}(\boldsymbol{\theta}) & I_{12}(\boldsymbol{\theta}) \\ I_{21}(\boldsymbol{\theta}) & I_{22}(\boldsymbol{\theta}) \end{pmatrix}^{-1} = \begin{pmatrix} I^{11}(\boldsymbol{\theta}) & I^{12}(\boldsymbol{\theta}) \\ I^{21}(\boldsymbol{\theta}) & I^{22}(\boldsymbol{\theta}) \end{pmatrix}
$$

The Lagrange multiplier test statistic

$$
\xi_{LM}=N^{-1}\widetilde{\lambda}'\hat{I}^{22}(\widetilde{\theta})\widetilde{\lambda}
$$

has under H_0 an asymptotic Chi-square distribution with J df $\widetilde{\theta}$) is the block diagonal of the estimated inverted information matrix, based on the constrained estimators for θ $\widehat{I}^{22}(\widetilde{\theta}$

Calculation of the LM Test Statistic

Outer product gradient (OPG) of ξ_{LM}

- **NxK** matrix of first derivatives $S' = [s_1(\widetilde{\theta}), ..., s_N(\widetilde{\theta})]$ $\widetilde{\theta})$, ..., S_N $(\widetilde{\theta})$
- $\hat{\lambda}$ can be calculated as $\tilde{\lambda} = \sum_{S_{\lambda}} (\tilde{\theta}) = \sum_{S_{\lambda}} (\tilde{\theta})$ $\tilde{\mathcal{A}}$ can be calculated as $\tilde{\mathcal{A}}=\sum_{i}s_{i2}(\tilde{\theta})=\sum_{i}s_{i}(\tilde{\theta})\,$ $=$ $\sum_i S_{i2}(\theta) = \sum_i S_i(\theta) =$ ■ λ can be calculated as $\tilde{\lambda} = \sum_i s_{i2}(\tilde{\theta}) = \sum_i s_i(\tilde{\theta})$
■ Information matrix 2 $S_{i} S_{i2} (\theta) = \sum_{i} S_{i} (\theta) = S' i$
- **Information matrix** Π

$$
\hat{I}(\tilde{\theta}) = N^{-1} \sum_{i} s_i(\tilde{\theta}) s_i(\tilde{\theta})' = N^{-1} S' S
$$

H. **Therefore**

$$
\xi_{LM} = \sum_i s_i(\tilde{\theta})' \Big(\sum_i s_i(\tilde{\theta}) s_i(\tilde{\theta})' \Big)^{-1} \sum_i s_i(\tilde{\theta}) = i' S(S'S)^{-1} S'i
$$

Auxiliary regression of a *N*-vector $i = (1, ..., 1)'$ on the scores $s_i(\tilde{\theta})$,

 i.e., on the columns of S; no intercept θ

- **Predicted values from auxiliary regression:** $S(S'S)^{-1}S'$
- Explained sum of squares: $i^sS(S^sS)^{-1}S^sS(S^sS)^{-1}S^{\prime\prime} = i^sS(S^sS)^{-1}S^{\prime\prime}$ Π
- **LM** test statistic $\xi_{LM} = N R^2$ with the uncentered R^2 of the auxiliary regression: of total sum of squares *i*'i $\mathcal{C}^{\mathcal{A}}$ regression; cf. total sum of squares *i'i*

An Illustration

The urn experiment: test of H_0 : $p = p_0$ (J = 1, R = I) The likelihood contribution of the *i*-th observation is $log L_i(p) = y_i log p + (1 - y_i) log (1 - p)$ This gives $s_i(\rho)$ = y_i/ρ – (1 -y $_{\rm i}$)/(1 $p)$ and $I_{\sf i}(p)$ = [$p(1)$ - $\rho)]^{-1}$ $\mathbf{j}(\mathcal{M}) = \mathbf{y} \mathbf{i} \mathbf{k} = (\mathbf{I} - \mathbf{y} \mathbf{j}) \mathbf{k}$ (i.e. $\mathbf{y} = \mathbf{y} \mathbf{k}$) is the set of $\mathbf{y} = \mathbf{y} \mathbf{k}$ i

Wald test:

$$
\xi_W = N(\hat{p} - p_0) [\hat{p}(1 - \hat{p})]^{-1} (\hat{p} - p_0) = N \frac{(\hat{p} - p_0)^2}{\hat{p}(1 - \hat{p})} = N \frac{(N_1 - Np_0)^2}{N(N - N_1)}
$$

Likelihood ratio test:

$$
\xi_{LR} = 2(\log L(\hat{p}) - \log L(\widetilde{p}))
$$

with

$$
\log L(\hat{p}) = N_1 \log(N_1/N) + (N - N_1) \log(1 - N_1/N)
$$

$$
\log L(\tilde{p}) = N_1 \log(p_0) + (N - N_1) \log(1 - p_0)
$$

An Illustration, cont'd

Lagrange multiplier test:

with

$$
\tilde{\lambda} = \sum_{i} s_i(p) \big|_{p_0} = \frac{N_1}{p_0} - \frac{N - N_1}{1 - p_0} = \frac{N_1 - N p_0}{p_0 (1 - p_0)}
$$

and the inverted information matrix $[l(p)]^{-1} = p(1)$ the restricted case, the LM test statistic is ρ), calculated for

$$
\xi_{LM} = N^{-1} \widetilde{\lambda} [p_0 (1 - p_0)] \widetilde{\lambda}
$$

= $N(\hat{p} - p_0) [p_0 (1 - p_0)]^{-1} (\hat{p} - p_0)$

Example

п In a sample of $N = 100$ balls, 44 are red

$$
H_0: p_0 = 0.5
$$

$$
\xi_{\text{W}} = 1.46, \xi_{\text{LR}} = 1.44, \xi_{\text{LM}} = 1.44
$$

H ■ Corresponding *p*-values are 0.227, 0.230, and 0.230

Contents

- $\overline{\mathbb{R}^n}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\mathcal{L}^{\mathcal{A}}$ Estimation Concepts
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Idea and Illustrations
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Two Examples
- $\mathcal{L}_{\mathcal{A}}$ Asymptotic Tests
- $\mathcal{C}^{\mathcal{A}}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

Normal Linear Regression: Scores

Log-likelihood function

$$
\log L(\beta, \sigma^2) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_i (y_i - x_i'\beta)^2
$$

Scores:

$$
s_i(\beta, \sigma^2) = \left(\frac{\partial \log L_i(\beta, \sigma^2)}{\partial \beta}\right) = \left(\frac{y_i - x'_i \beta}{\sigma^2} x_i\right)
$$

$$
= \left(\frac{\partial \log L_i(\beta, \sigma^2)}{\partial \sigma^2}\right) = \left(\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4} (y_i - x'_i \beta)^2\right)
$$

Covariance matrix

$$
V = I(\beta, \sigma^2)^{-1} = \text{diag}(\sigma^2 \Sigma_{xx}^{-1}, 2\sigma^4)
$$

Testing for Omitted Regressors

Model: $y_i = x_i' \beta + z_i' \gamma + \varepsilon_i$, $\varepsilon_i \sim \text{NID}(0, \sigma^2)$

Test whether the J regressors $\boldsymbol{z}_{\mathsf{i}}$ are erroneously omitted:

- H. Fit the restricted model
- П **Apply the LM test to check** $H_0: \gamma = 0$

First-order conditions give the scores

$$
\frac{1}{\tilde{\sigma}^2} \sum_{i} \tilde{\varepsilon}_i x_i = 0, \quad \frac{1}{\tilde{\sigma}^2} \sum_{i} \tilde{\varepsilon}_i z_i, \quad -\frac{N}{2\tilde{\sigma}^2} + \frac{1}{2} \sum_{i} \frac{\tilde{\varepsilon}_i^2}{\tilde{\sigma}^4} = 0
$$

with constrained ML estimators for β and σ^2 ; ML-residuals $\tilde{\varepsilon}_i = y_i - x_i' \beta$

- $\mathcal{L}_{\mathcal{A}}$ Auxiliary regression of *N*-vector $i = (1, ..., 1)$ on the scores $\tilde{\mathcal{E}}_i x_i, \tilde{\mathcal{E}}_i z_i$ aives the uncentered \mathbb{R}^2 gives the uncentered R^{2}
- $\mathcal{C}^{\mathcal{A}}$ **The LM test statistic is** $\xi_{LM} = N R^2$
- An asymptotically equivalent LM test statistic is $N R_e^2$ with R_e^2 H. from the regression of the ML residuals on x_{i} and z_{i}

ˆ

Testing for Heteroskedasticity

Model: $y_i = x_i' \beta + \varepsilon_i$, $\varepsilon_i \sim NID$, $V\{\varepsilon_i\} = \sigma^2 h(z_i' \alpha)$, $h(.) > 0$ but unknown, h(0) = 1, ∂/∂α{h(.)} ≠ 0, J-vector z_i

Test for homoskedasticity: Apply the LM test to check $H_0: \alpha$ = 0 2 First-order conditions with respect to σ^2 and α give the scores

−− $)z$ \sim ') \sim ') \sim \prime $\widetilde{\bm{\mathcal{E}}}_{i}^{\,2}-\widetilde{\bm{\mathcal{O}}}^{\,2}\,,\quad (\widetilde{\bm{\mathcal{E}}}_{i}^{\,2}-\bm{\mathcal{C}})$ $\widetilde{\bm{\mathcal{E}}}_{i}^{\,2}-\widetilde{\bm{\mathcal{O}}}^{\,2}\,,\quad (\widetilde{\bm{\mathcal{E}}}_{i}^{\,2}-\widetilde{\bm{\mathcal{O}}}^{\,2})z_{i}'$

with constrained ML estimators for β and σ^2 ; ML-residuals $\tilde{\mathcal{E}}_{i}$

- \mathcal{L}^{max} **Auxiliary regression of N-vector** $i = (1, ..., 1)$ **on the scores** gives the uncentered R^{2}
- \mathbb{R}^3 **LM test statistic** ξ_{LM} **=** NR^2 **; a version of Breusch-Pagan test**

- An asymptotically equivalent version of the Breusch-Pagan test $\mathcal{L}_{\mathcal{A}}$ is based on $N\!R_{e}^{\;2}$ with $R_{e}^{\;}$ ML residuals on $\boldsymbol{z}_{\mathsf{i}}$ and an intercept R_e^2 with R_e^2 from the regression of the squared ϵ
- H. **Attention: no effect of the functional form of** $h(.)$

Testing for Autocorrelation

Model: $y_t = x_t^{\prime} \beta + \varepsilon_t$, $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$, $v_t \sim \text{NID}(0, \sigma^2)$ LM test of H_0 : $\rho = 0$

First-order conditions give the scores

1 \sim \sim $, \quad \bullet$, $\tilde{}$ ′ $t^{v}t$, $t^{v}t$ $\mathcal{E} \mathcal{X}, \quad \mathcal{E} \mathcal{E}$

with constrained ML estimators for β and σ^2

- $\overline{\mathcal{A}}$ The LM test statistic is $\xi_{LM} = (T-1)R^2$ with R^2 from the
ouviliant regression of the M vector $i = (1, 1, 1)$ and the auxiliary regression of the *N*-vector i = $(1,\ldots,1)^{,}$ on the scores
- $\overline{\mathcal{A}}$ If x_t contains no lagged dependent variables: products with x_t can be dropped from the regressors
- An asymptotically equivalent test is the Breusch-Godfrey test based on NR^{2}_e with R_e residuals on x_{t} and the lagged residuals R_e^2 with R_e^2 from the regression of the ML
see and the largest residents

Contents

- $\overline{\mathbb{R}^n}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\mathcal{L}^{\mathcal{A}}$ Estimation Concepts
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Idea and Illustrations
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Notation and Properties
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Two Examples
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Asymptotic Tests
- $\mathcal{L}^{\mathcal{L}}$ Some Diagnostic Tests
- H. Quasi-maximum Likelihood Estimator

Quasi ML Estimator

The quasi-maximum likelihood estimator

- $\overline{\mathbb{R}^n}$ refers to moment conditions
- $\mathcal{L}^{\mathcal{L}}$ does not refer to the entire distribution
- $\mathcal{C}^{\mathcal{A}}$ uses the GMM concept
- Derivation of the ML estimator as a GMM estimator
- $\mathcal{L}^{\mathcal{A}}$ weaker conditions
- $\overline{}$ consistency applies

Generalized Method of Moments (GMM)

The model is characterized by R moment conditions

 $E\{f(w_{i}, z_{i}, \theta)\}=0$

- □ *f*(.): *R*-vector function
- \Box w_i: vector of observable variables, z_i: vector of instrument variables

 \Box θ: K-vector of unknown parameters

Substitution of the moment conditions by sample equivalents:

 $g^{}_{\rm N}(\theta)$ = (1/N) $\Sigma^{}_{\rm i}$ f(w $_{\rm i}$, $z^{}_{\rm i}$, $\theta)$ = 0

Minimization wrt θ of the quadratic form

 $Q^{}_{\rm N}(\theta) \equiv g^{}_{\rm N}(\theta)'$ $W^{}_{\rm N}$ $g^{}_{\rm N}(\theta)$

with the symmetric, positive definite weighting matrix \mathcal{W}_N gives the GMM estimator

 $\hat{\theta} = \argmin_{\theta} Q_N(\theta)$

Quasi-ML Estimator

The quasi-maximum likelihood estimator

- F refers to moment conditions
- k. does not refer to the entire distribution
- $\mathcal{C}^{\mathcal{A}}$ uses the GMM concept
- ML estimator can be interpreted as GMM estimator: first-order conditions

$$
s(\hat{\theta}) = \frac{\partial \log L(\theta)}{\partial \theta} \big|_{\hat{\theta}} = \sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta} \big|_{\hat{\theta}} = \sum_{i} s_{i}(\theta) \big|_{\hat{\theta}} = 0
$$

 correspond to sample averages based on theoretical moment conditions

Starting point is

$$
E\{s_i(\theta)\}=0
$$

valid for the K-vector $θ$ if the likelihood is correctly specified

$E\{S_i(\theta)\}=0$

From \int f(y_i|x_i;θ) dy_i = 1 follows

$$
\int \frac{\partial f(y_i \mid x_i; \theta)}{\partial \theta} dy_i = 0
$$

Transformation

$$
\frac{\partial f(y_i \mid x_i; \theta)}{\partial \theta} = \frac{\partial \log f(y_i \mid x_i; \theta)}{\partial \theta} f(y_i \mid x_i; \theta) = s_i(\theta) f(y_i \mid x_i; \theta)
$$

gives

$$
\int s_i(\theta) f(y_i \mid x_i; \theta) dy_i = E\{s_i(\theta)\} = 0
$$

This theoretical moment for the scores is valid for any density $f(.)$

Quasi-ML Estimator, cont'd

Use of the GMM idea – substitution of moment conditions by sample equivalents – suggests to transform $E\{s_i(\theta)\}=0$ into its sample equivalent and solve the first-order conditions

$$
\frac{1}{N}\sum_i s_i(\theta) = 0
$$

This reproduces the ML estimator

Example: For the linear regression $y_i = x_i' \beta + \varepsilon_i$, application of the Quasi-ML concept starts from the sample equivalents of

 $E\{(y_i - x_i B) x_i\} = 0$

this corresponds to the moment conditions of the OLS and the first-order condition of the ML estimators

 \Box does not depend of the normality assumption of ε_i !

Quasi-ML Estimator, cont'd

- $\overline{\mathbb{R}^n}$ Can be based on a wrong likelihood assumption
- F Consistency is due to starting out from $E\{s_i(\theta)\}=0$
- k. Hence, "quasi-ML" (or "pseudo ML") estimator
- Asymptotic distribution:
- k. May differ from that of the ML estimator:

 $(\hat{\theta} - \theta) \rightarrow N(0, V)$ $N(\theta - \theta) \rightarrow N(0, V)$ n the asymptotic dist

 $\overline{}$ Using the asymptotic distribution of the GMM estimator gives($(\hat{\theta} - \theta) \rightarrow N \big(0, I(\theta)^{-1} J(\theta) I(\theta)^{-1} \big)$ $N(\theta - \theta) \rightarrow N(0, I(\theta)^{-1} J(\theta) I(\theta)^{-1}$
 $N(\theta) = \lim_{\theta \to 0} (4/N) \sum_{\theta \in [0, I(\theta)^{-1}]} (6N)^{\theta}$ with $J(\theta)$ = lim $(1/N)\Sigma_{i}E\{s_{i}(\theta) s_{i}(\theta)^{\prime}\}$

and $I(\theta) = \lim_{\epsilon \to 0} (1/N) \sum_{i} E\{-\partial s_i(\theta)/\partial \theta'\}$

 $\overline{}$ For linear regression: heteroskedasticity-consistent covariance matrix

Your Homework

- 1. Open the Greene sample file "greene7_8, Gasoline price and consumption", offered within the Gretl system. The variables to be used in the following are: $G =$ total U.S. gasoline consumption, computed as total expenditure divided by price index; Pg = price index for gasoline; Y = per capita disposable income; Pnc = price index for new cars; Puc = price index for used cars; Pop = U.S. total population in millions. Perform the following analyses and interpret the results:
	- a. Produce and interpret the scatter plot of the per capita (p.c.) gasoline consumption (Gpc) over the p.c. disposable income.
	- b. Fit the linear regression for log(Gpc) with regressors log(Y), Pg, Pncand Puc to the data and give an interpretation of the outcome.

Your Homework,cont'd

- $\mathbf c. \quad$ Test for autocorrelation of the error terms using the LM test statistic ξ_{LM} = (T-1) R^2 with R^2 from the auxiliary regression of the ML
residuals an the legged residuals with appropriately shoose Is residuals on the lagged residuals with appropriately chosen lags.
- d.. Test for autocorrelation using $N R_e^2$ with R_e^2 from the regression of the ML residuals on x_{t} and the lagged residuals.
- 2. Assume that the errors $ε_t$ of the linear regression $y_t = β_1 + β$ $_{2}x_{t}$ + ε_t are NID(0, σ²) distributed. (a) Determine the log-likelihood function of the sample for t = 1, ..., T ; (b) show that the first-order conditions for the ML estimators have expectations zero for the true parameter values; (c) derive the asymptotic covariance matrix on the basis (i) of the information matrix and (ii) of the score vector; (d) derive the matrix S of scores for the omitted variable LM test [cf. eq. (6.38) in Veebeek].