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Cases of Limited Dependent Cases of Limited Dependent 
VariableVariable
Typical situations: functions of explanatory variables are to be 

explained

� Dichotomous dependent variable, e.g., ownership of a car 
(yes/no), employment status (employed/unemployed), etc.

Ordered response, e.g., qualitative assessment � Ordered response, e.g., qualitative assessment 
(good/average/bad), working status (full-time/part-time/not 
working), etc. xworking), etc.

� Multinomial response, e.g., trading destinations 
(Europe/Asia/Africa), transportation means (train/bus/car), etc.

x

(Europe/Asia/Africa), transportation means (train/bus/car), etc.

� Count data, e.g., number of orders a company receives in a 
week, number of patents granted to a company in a year

� Censored data, e.g., expenditures for durable goods, duration of 
study with drop outs
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Example: Car Ownership and Example: Car Ownership and 
IncomeIncome

What is the probability that a randomly chosen household owns a 
car?car?

� Sample of N=32 households 
� Proportion of car owning households:19/32 = 0.59� Proportion of car owning households:19/32 = 0.59

� Estimated probability for owning a car: 0.59

� But: the probability will differ for rich and poor!� But: the probability will differ for rich and poor!

� The sample data contains income information:
� Yearly income: average EUR 20.524, minimum EUR 12.000, � Yearly income: average EUR 20.524, minimum EUR 12.000, 

maximum EUR 32.517 

� Proportion of car owning households among the 16 households with 
less than EUR 20.000 income: 9/16 = 0.56less than EUR 20.000 income: 9/16 = 0.56

� Proportion of car owning households among the 16 households with 
more than EUR 20.000 income: 10/16 = 0.63
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Car Ownership and Income, cont’dCar Ownership and Income, cont’d

How can probability – or prediction – of car ownership take the 
income of a household into account? income of a household into account? 

Notation: N households 
� dummy yi for car ownership; yi =1: household i has car� dummy yi for car ownership; yi =1: household i has car

� income xi2
For predicting yi – or of P{yi =1} – , a model is needed that takes the For predicting yi – or of P{yi =1} – , a model is needed that takes the 

income into account
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Modelling Car OwnershipModelling Car Ownership

How is car ownership related to the income of a household? 
1. Linear regression y = x ’β + ε = β + β x + ε1. Linear regression yi = xi’β + εi = β1+ β2xi2 + εi
� With E{εi|xi} = 0, the model yi = xi’β + εi gives 

P{yi =1|xi} = xi’βP{yi =1|xi} = xi’β
due to E{yi|xi} = 1*P{yi =1|xi} + 0*P{yi =0|xi} = P{yi =1|xi} 

� Model yi = xi’β + εi: xi’β can be interpreted as P{yi =1|xi}!� Model yi = xi’β + εi: xi’β can be interpreted as P{yi =1|xi}!
� Problems:

� xi’β not necessarily in [0,1]
Error terms: for a given x� Error terms: for a given xi
� εi has only two values, viz. 1- xi’β and xi’β
� V{εi |xi} = xi’β(1- xi’β), heteroskedastic, dependent upon β� V{εi |xi} = xi’β(1- xi’β), heteroskedastic, dependent upon β

� Model for y actually is specifying the probability that y = 1 as a 
function of x
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Modelling Car Ownership, cont’dModelling Car Ownership, cont’d

2. Use of a function G(xi,β) with values in the interval [0,1] 
P{yi =1|xi} = E{yi|xi} = G(xi,β)P{yi =1|xi} = E{yi|xi} = G(xi,β)

� The probability that yi =1, i.e., the household owns a car, depends 
on the income (and other characteristics, e.g., family size)on the income (and other characteristics, e.g., family size)

� Use for G(xi,β) the standard logistic distribution function 
1
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by β2 or by 100β2%; cf. the notion semi-elasticity
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Car Ownership and Income, cont’dCar Ownership and Income, cont’d

E.g., P{yi =1|xi} = 1/(1+exp(-zi)) with z = -0.5 + 1.1*x, the income in 
EUR 1000 per monthEUR 1000 per month

� Increasing income is associated with an increasing probability of 
owning a car: z goes up by 1.1 for every additional EUR 1000 owning a car: z goes up by 1.1 for every additional EUR 1000 

� For a person with an income of EUR 1000, z = 0.6 and the 
probability of owning a car is 1/(1+exp(-0.6)) = 0.65probability of owning a car is 1/(1+exp(-0.6)) = 0.65

The standard logistic distribution function, with z on the horizontal 
and F(z) on the vertical axis

x z P{y =1|x}

1000 0.6 0.6461000 0.6 0.646

2000 1.7 0.846

3000 2.8 0.943
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OddsOdds

The odds in favour of an event is the ratio of a pair of numbers, the 
first (the second) representing the relative likelihood that the first (the second) representing the relative likelihood that the 
event will happen (will not happen)

� If p is the probability in favour of the event, the probability against � If p is the probability in favour of the event, the probability against 
the event therefore being 1-p, the odds of the event are the 
quotient 

1

p

p−
� Odds are read as “1 to p/(1-p)” or “1:p/(1-p)” 

1 p−

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

odds 1:9 1:4 1:2.3 1:1.5 1:1 1:0.67 1:0.43 1:0.25 1:0.11

p/(1-p) 0.11 0.25 0.43 0.67 1 1.5 2.33 4 9

� The logarithm of the odds of the probability p is called the logit of p

p/(1-p) 0.11 0.25 0.43 0.67 1 1.5 2.33 4 9
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Odds: ExampleOdds: Example

� Example: the odds that a randomly chosen day of the week is a 
Sunday are 1:6 (say “one to six”) because p = P{Sunday} = 1/7 = Sunday are 1:6 (say “one to six”) because p = P{Sunday} = 1/7 = 
0.143, p/(1-p) = (1/7)/(6/7) = 1/6; the odds are 1:6

� In bookmakers language: odds are not in favour but against � In bookmakers language: odds are not in favour but against 

� The bookmaker would say
� The odds that a randomly chosen day of the week is a Sunday are 6:1� The odds that a randomly chosen day of the week is a Sunday are 6:1

� The odds that Czech Republic men's national ice hockey team wins 
the World Championship is 2:1; i.e., the probability is considered to be 
0.3330.333
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Binary Choice ModelsBinary Choice Models

Model for probability P{yi =1|xi}, function of K (numerical or categori-
cal) explanatory variables x and unknown parameters β, such ascal) explanatory variables xi and unknown parameters β, such as

E{yi|xi} = P{yi =1|xi} = G(xi,β)

Typical functions G(x ,β): distribution functions (cdf’s) F(x ’β) Typical functions G(xi,β): distribution functions (cdf’s) F(xi’β) 

� Probit model: standard normal distribution function; V{z} = 1 

dttzzF
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� Logit model: standard logistic distribution function; V{z}=π2/3=1.812
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Linear Probability Model (LPM)Linear Probability Model (LPM)

Assumes that 

P{y =1|x } = x ’β for  0 ≤ x ’β ≤ 1P{yi =1|xi} = xi’β for  0 ≤ xi’β ≤ 1

but sets 

P{y =1|x } = 0  for  x ’β < 0P{yi =1|xi} = 0  for  xi’β < 0

P{yi =1|xi} = 1  for  xi’β > 1

� Typically, the model is estimated by OLS, ignoring the probability � Typically, the model is estimated by OLS, ignoring the probability 
restrictions 

� Standard errors should be adjusted using heteroskedasticity-� Standard errors should be adjusted using heteroskedasticity-
consistent (White) standard errors
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Probit Model: StandardizationProbit Model: Standardization

E{yi|xi} = P{yi =1|xi} = G(xi,β): assume G(.) to be the distribution 
function of N(0, σ2)function of N(0, σ2)

{ } '
1 i

i i

x
P y x

β
σ

 = = Φ  
 

� Given xi, the ratio β/σ2 determines P{yi =1|xi} 

� Standardization restriction σ2 = 1: allows unique estimates for β

σ 

� Standardization restriction σ2 = 1: allows unique estimates for β
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Probit vs Logit ModelProbit vs Logit Model

� Differences between the probit and the logit model: 
Shape of distribution is slightly different, particularly in the tails.� Shape of distribution is slightly different, particularly in the tails.

� Scaling of the distribution is different: The implicit variance for εi in the 
logit model is π2/3 = (1.81)2, while 1 for the probit modellogit model is π /3 = (1.81) , while 1 for the probit model

� Probit model is relatively easy to extend to multivariate cases using  
the multivariate normal or conditional normal distribution

In practice, the probit and logit model produce quite similar results� In practice, the probit and logit model produce quite similar results
� The scaling difference makes the values of β not directly comparable 

across the two models, while the signs are typically the sameacross the two models, while the signs are typically the same

� The estimates in the logit model are roughly a factor π/√3 ≈1.81 larger 
than those in the probit model
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Interpretation of CoefficientsInterpretation of Coefficients

For assessing the effect of changing xk the 

Coefficient β� Coefficient βk
is of interest, but also related characteristics such as

Sign of β� Sign of βk
� Slope, i.e., the “average” marginal effect ∂F(xi’β)/∂xik
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Binary Choice Models: Marginal Binary Choice Models: Marginal 
EffectsEffects

Linear regression models: βk is the marginal effect of a change in xk
For E{y |x } = F(x ’β):For E{yi|xi} = F(xi’β):

{ | }
( ' )i i
i k

E y x
f x

x
β β∂ =

∂
with density function f(.)

� The effect of changing the regressor xk depends upon xi’β, the 

i k

kx∂

� The effect of changing the regressor xk depends upon xi’β, the 
shape of F, and βk

� The marginal effect of changing xk
ϕ ϕ

� The marginal effect of changing xk
� Probit model: ϕ(xi’β) βk, with standard normal density function ϕ

� Logit model: L(xi’β)[1 - L(xi’β)] βk

ϕ ϕ

� Linear probability model
'

, ' [0,1]i
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x
if x

x

β β β∂ = ∈
∂
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Binary Choice Models: SlopesBinary Choice Models: Slopes

Interpretation of the effect of a change in xk
“Slope”, i.e., the gradient of E{y |x } at the sample means of the � “Slope”, i.e., the gradient of E{yi|xi} at the sample means of the 
regressors 

( ' )
( ) iF x

slope x
β∂=

� For a dummy variable D: marginal effect is calculated as the 
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� For a dummy variable D: marginal effect is calculated as the 
difference of probabilities P{yi =1|x(d),D=1} – P{yi =1|x(d),D=0}; x(d) 
stands for the sample means of all regressors except D

For the logit model: � For the logit model: 
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The coefficient βk is the relative change of the odds when 

increasing xk by 1 unit

1
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increasing xk by 1 unit
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Binary Choice Models: Binary Choice Models: 
EstimationEstimation

Typically, binary choice models are estimated by maximum likelihood

Likelihood function, given N observations (y , x ) Likelihood function, given N observations (yi, xi) 

L(β) = Πi=1
N P{yi =1|xi;β}yi P{yi =0|xi;β}1-yi

= Π F(x ’β)yi (1- F(x ’β))1-yi= Πi F(xi’β)yi (1- F(xi’β))1-yi

� Maximization via the log-likelihood function 

ℓ(β) = log L(β) = Σ y log F(x ’β) + Σ (1-y ) log (1-F(x ’β)) ℓ(β) = log L(β) = Σi yi log F(xi’β) + Σi (1-yi) log (1-F(xi’β)) 

� First-order conditions of the maximization problem
( ' )( ) y F x ββ β

 −∂ = = =∑ ∑
l

� ei: generalized residuals

( ' )( )
( ' ) 0

( ' )(1 ( ' ))

i i
i i i ii i

i i

y F x
f x x e x

F x F x

ββ β
β β β
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∑ ∑

l

� ei: generalized residuals
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Generalized ResidualsGeneralized Residuals

The first-order conditions allow to define generalized residuals

From From 
( ' )( )

( ' ) 0
( ' )(1 ( ' ))

i i
i i i ii i

y F x
f x x e x

F x F x

ββ β
β β β

 −∂ = = = ∂ − 
∑ ∑

l

� follows that the generalized residuals ei can assume two values:
� e = f(x ’b)/F(x ’b) if y =1

( ' )(1 ( ' ))
i i i ii i

i iF x F xβ β β ∂ − 
∑ ∑

� ei = f(xi’b)/F(xi’b) if yi =1

� ei = - f(xi’b)/(1-F(xi’b)) if yi =0

b are the estimates of βb are the estimates of β

� Generalized residuals are orthogonal to each regressor; cf. the 
first-order conditions of OLS estimation
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Estimation of Logit Model Estimation of Logit Model 

� First-order condition of the maximization problem
exp( ' )( ) x ββ  ∂ = − =∑

l

gives [due to P{yi =1|xi} = L(xi,β)] 
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gives [due to P{yi =1|xi} = L(xi,β)] 
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� From Σi xi = Σiyixi follows – given one regressor is an intercept –:   

� The sum of estimated probabilities Σi equals the observed frequency 

1 exp( ' )ix b+
ˆ
ip

ˆ
ipThe sum of estimated probabilities Σi equals the observed frequency 

Σiyi

� Similar results for the probit model, due to similarity of logit and 
probit functions

i

probit functions
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Properties of ML EstimatorsProperties of ML Estimators

� Consistent

Asymptotically efficient � Asymptotically efficient 

� Asymptotically normally distributed

These properties require that the assumed distribution is correctThese properties require that the assumed distribution is correct

� Correct shape 

� No autocorrelation and/or heteroskedasticity� No autocorrelation and/or heteroskedasticity

� No dependence between errors and regressors

� No omitted regressors � No omitted regressors 
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Goodness-of-Fit MeasuresGoodness-of-Fit Measures

Concepts

Comparison of the maximum likelihood of the model with that of � Comparison of the maximum likelihood of the model with that of 
the naïve model, i.e., a model with only an intercept, no 
regressorsregressors
� Pseudo-R2

� McFadden R2

� Index based on proportion of correctly predicted observations
� Hit rate
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McFadden R2McFadden R

Based on log-likelihood function 
� ℓ(b) = ℓ1: maximum log-likelihood of the model to be assessed� ℓ(b) = ℓ1: maximum log-likelihood of the model to be assessed
� ℓ0: maximum log-likelihood of the naïve model, i.e., a model with 

only an intercept; ℓ0 ≤ ℓ1 and ℓ0, ℓ1 < 0
The larger ℓ - ℓ , the more contribute the regressors� The larger ℓ1 - ℓ0, the more contribute the regressors

� ℓ1 = ℓ0, if all slope coefficients are zero
� ℓ1 = 0, if yi is exactly predicted for all i1 i

� Pseudo-R2: a number in [0,1), defined by
2 1
1
1 2( ) /

pseudo R
N

− = −
+ −l l

� McFadden R2: a number in [0,1], defined by
1 01 2( ) / N+ −l l

2

1 01 /McFaddenR = − l l

� Both are 0 if ℓ1 = ℓ0, i.e., all slope coefficients are zero
� McFadden R2 attains the upper limit if ℓ1 = 0

1 01 /McFaddenR = − l l
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Naïve Model: Calculation of ℓ
0

Naïve Model: Calculation of ℓ
0

Maximum log-likelihood function of the naïve model, i.e., a model with 
only an intercept: ℓ0only an intercept: ℓ0

� Log-likelihood function (cf. urn experiment)
log L(p) = N1 log(p) + (N – N1) log (1-p)log L(p) = N1 log(p) + (N – N1) log (1-p)

with N1 = Σiyi, i.e., the observed frequency
� Maximum likelihood estimator for p is N1/N
� Maximum log-likelihood of the naïve model

ℓ0 = N1 log(N1/N) + (N – N1) log (1 – N1/N)
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Hit RateHit Rate

Comparison of correct and incorrect predictions 
� Predicted outcome� Predicted outcome

ŷi = 1 if xi’b > 0
= 0 if xi’b ≤ 0i

� Cross-tabulation of actual and predicted outcome
� Proportion of incorrect predictions

wr1 = (n01+n10)/N
ŷ = 0 ŷ = 1 Σ

wr1 = (n01+n10)/N
� Hit rate: 1 - wr1

proportion of correct predictions 

y = 0 n00 n01 N0

y = 1 n10 n11 N1

� Comparison with naive model:
� Predicted outcome of naïve model

ŷi = 1 if    = N1/N > 0.5, ŷi = 0 if     ≤ 0.5 (for all i)

Σ n0 n1 N

p̂ p̂ŷi = 1 if    = N1/N > 0.5, ŷi = 0 if     ≤ 0.5 (for all i)
� Rp

2= 1 – wr1/wr0
with wr0 = 1 - if      > 0.5, wr0 =     if      ≤ 0.5 in order to avoid Rp

2 < 0

p̂ p̂

p̂ p̂ p̂p̂
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Example: Effect of Teaching Example: Effect of Teaching 
MethodMethod

Study by Spector & Mazzeo (1980); see Greene (2003), Chpt.21
Personalized System of Instruction: new teaching method in Personalized System of Instruction: new teaching method in 

economics; has it an effect on student performance in later 
courses?

� Data: � Data: 
� GRADE (0/1): indicator whether grade was higher than in principal 

course
� PSI (0/1): participation in program with new teaching method � PSI (0/1): participation in program with new teaching method 
� GPA: grade point average
� TUCE: score on a pretest, entering knowledge
32 observations� 32 observations

March 1, 2013 Hackl, Econometrics 2, Lecture 2 29



Effect of Teaching Method, cont’dEffect of Teaching Method, cont’d

Logit model for GRADE, GRETL output

Model 1: Logit, using observations 1-32
Dependent variable: GRADE

Coefficient Std. Error z-stat Slope*

const -13.0213 4.93132 -2.6405const -13.0213 4.93132 -2.6405
GPA 2.82611 1.26294 2.2377 0.533859
TUCE 0.0951577 0.141554 0.6722 0.0179755
PSI 2.37869 1.06456 2.2344 0.456498

Mean dependent var 0.343750 S.D. dependent var 0.188902Mean dependent var 0.343750 S.D. dependent var 0.188902
McFadden R-squared 0.374038 Adjusted R-squared 0.179786
Log-likelihood -12.88963 Akaike criterion 33.77927
Schwarz criterion 39.64221 Hannan-Quinn 35.72267

*Number of cases 'correctly predicted' = 26 (81.3%)*Number of cases 'correctly predicted' = 26 (81.3%)
f(beta'x) at mean of independent vars = 0.189
Likelihood ratio test: Chi-square(3) = 15.4042 [0.0015]

Predicted
0    10    1

Actual 0  18    3
1    3    8
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Effect of Teaching Method, cont’dEffect of Teaching Method, cont’d

Logit model for GRADE, actual and fitted values of 32 observations
Actual and fitted GRADE

 0.8

 1
fitted

actual

 0.6
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 0.4

 0.6
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 0

 5  10  15  20  25  30
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Effect of Teaching Method, cont’dEffect of Teaching Method, cont’d

Comparison of the LPM, logit, and probit model for GRADE
� Estimated models: coefficients and their standard errors � Estimated models: coefficients and their standard errors 

LPM Logit Probit

coeff s.e. coeff s.e. coeff s.e.coeff s.e. coeff s.e. coeff s.e.

const -1.498 0.524 -13.02 4.931 -7.452 2.542

GPA 0.464 0.162 2.826 1.263 1.626 0.694GPA 0.464 0.162 2.826 1.263 1.626 0.694

TUCE 0.010 0.019 0.095 0.142 0.052 0.084

PSI 0.379 0.139 2.379 1.065 1.426 0.595

� Coefficients of logit model: due to larger variance, larger by factor 
√(π2/3)=1.81 than that of the probit model√(π /3)=1.81 than that of the probit model
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Effect of Teaching Method, cont’dEffect of Teaching Method, cont’d

Goodness of fit measures for the logit model

With N = 11 and N = 32  � With N1 = 11 and N = 32  

ℓ0 = 11 log(11/32) + 21 log(21/32) = - 20.59

As     = N /N = 0.34 < 0.5: the proportion wr of incorrect predictions p̂� As     = N1/N = 0.34 < 0.5: the proportion wr0 of incorrect predictions 
with the naïve model is 

wr0 =      = 11/32 = 0.34

p̂

p̂wr0 =      = 11/32 = 0.34

� From the GRETL output: ℓ0 = -12.89, wr1 = 6/32 

Goodness of fit measures

p̂

Goodness of fit measures

� Rp
2 = 1 – wr1/wr0 = 1 – 6/11 = 0.45

� McFadden R2 = 1 – (-12.89)/(-20.59) = 0.374� McFadden R = 1 – (-12.89)/(-20.59) = 0.374
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Example: Utility of Car OwningExample: Utility of Car Owning

Latent variable yi*: utility difference between owning and not owning a 
car; unobservable (latent)

� Decision on owning a car
� yi* > 0: in favor of car owning

y * ≤ 0: against car owning� yi* ≤ 0: against car owning

� yi* depends upon observed characteristics (like income) and 
unobserved characteristics εiunobserved characteristics εi

yi* = xi’β + εi
� Observation yi = 1 (i.e., owning car) if yi* > 0� Observation yi = 1 (i.e., owning car) if yi* > 0

P{yi =1} = P{yi* > 0} = P{xi’β + εi > 0} = 1 – F(-xi’β) = F(xi’β) 

last step requires a symmetric distribution function F(.)last step requires a symmetric distribution function F(.)

Latent variable model: based on a latent variable that represents 
underlying behavior 
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Latent Variable ModelLatent Variable Model

Model for the latent variable yi*

yi* = xi’β + εiyi* = xi’β + εi
yi*: not necessarily a utility difference 

� εi‘s are independent of xi’si i

� εi has standardized distribution
� Probit model if εi has standard normal distribution 

� Logit model if εi has standard logistic distribution 

� Observations 
y = 1 if y * > 0 � yi = 1 if yi* > 0 

� yi = 0 if yi* ≤ 0

� ML estimation� ML estimation
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Binary Choice Models in GRETLBinary Choice Models in GRETL

Model > Nonlinear Models > Logit > Binary

� Estimates the specified model using error terms with standard � Estimates the specified model using error terms with standard 
logistic distribution

Model > Nonlinear Models > Probit > Binary

� Estimates the specified model using error terms with standard 
normal distribution
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Multiresponse ModelsMultiresponse Models

Model for explaining the choice between discrete outcomes 

� Examples: � Examples: 

a. Working status (full-time/part-time/not working), qualitative assessment 
(good/average/bad), etc.

b. Trading destinations (Europe/Asia/Africa), transportation means 
(train/bus/car), etc.

� Multiresponse models describe the probability of each of these � Multiresponse models describe the probability of each of these 
outcomes, as a function of variables like

� person-specific characteristics� person-specific characteristics

� alternative-specific characteristics

� Types of multiresponse models (cf. above examples)Types of multiresponse models (cf. above examples)

� Ordered response models: outcomes have a natural ordering

� Multinomial (unordered) models: ordering of outcomes is arbitrary
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Example: Credit RatingExample: Credit Rating

Credit rating: numbers, indicating experts’ opinion about (a firm’s) 
capacity to satisfy financial obligations, e.g., credit-worthiness

� Standard & Poor's rating scale: AAA, AA+, AA, AA-, A+, A, A-, 
BBB+, BBB, BBB-, BB+, BB, BB-, B+, B, B-, CCC+, CCC, CCC-, 
CC, C, DCC, C, D

� Verbeek‘s data set CREDIT

� Categories “1“, …,“7“ (highest) � Categories “1“, …,“7“ (highest) 

� Investment grade with alternatives “1” (better than category 3) and “0” 
(category 3 or less, also called “speculative grade“)(category 3 or less, also called “speculative grade“)

� Explanatory variables, e.g., 

� Firm sales

� Ebit, i.e., earnings before interest and taxes 

� Ratio of working capital to total assets 
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Ordered Response ModelOrdered Response Model

Choice between M alternatives

Observed alternative for sample unit i: yiObserved alternative for sample unit i: yi
� Latent variable model

yi* = xi’β + εii i i

with K-vector of explanatory variables xi
yi = j if γj-1 < yi* ≤ γj for j = 0,…,M

� M+1 boundaries γj, j = 0,…,M, with γ0 = -∞, …, γM = ∞

� εi‘s are independent of xi’s

ε typically follow the � εi typically follow the 
� standard normal distribution: ordered probit model

� standard logistic distribution: ordered logit model� standard logistic distribution: ordered logit model

March 1, 2013 Hackl, Econometrics 2, Lecture 2 41



Example: Willingness to WorkExample: Willingness to Work

„How much would you like to work?“

Potential answers of individual i: yi = 1 (not working), yi = 2 (part time), Potential answers of individual i: yi = 1 (not working), yi = 2 (part time), 
yi = 3 (full time)

� Measure of the desired labour supply

� Dependent upon factors like age, education level, husband‘s income

Ordered response model with M = 3

y * = x ’β + εyi* = xi’β + εi
with

y = 1  if y * ≤ 0yi = 1  if yi* ≤ 0

yi = 2  if 0 < yi* ≤ γ

yi = 3  if yi* > γyi = 3  if yi* > γ

� εi‘s with distribution function F(.)

� yi* stands for “willingness to work” or “desired hours of work”� yi* stands for “willingness to work” or “desired hours of work”
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Willingness to Work, cont’dWillingness to Work, cont’d

In terms of observed quantities:

P{yi = 1 |xi} = P{yi* ≤ 0 |xi} = F(- xi’β)P{yi = 1 |xi} = P{yi* ≤ 0 |xi} = F(- xi’β)

P{yi = 3 |xi} = P{yi* > γ |xi} = 1 - F(γ - xi’β)

P{yi = 2 |xi} = F(γ - xi’β) – F(- xi’β)i i i i

� Unknown parameters: γ and β

� Standardization: wrt location (γ = 0) and scale (V{εi} = 1)i

� ML estimation

Interpretation of parameters β

� Wrt yi*: willingness to work increases with larger xk for positive βk
� Wrt probabilities P{yi = j |xi}, e.g., P{yi = 3 |xi} increases and P{yi = 1

|x } decreases with larger x for positive β|xi} decreases with larger xk for positive βk

March 1, 2013 Hackl, Econometrics 2, Lecture 2 43



Example: Credit RatingExample: Credit Rating

Verbeek‘s data set CREDIT: 921 observations for US firms' credit 
ratings in 2005, including firm characteristics 

Rating models:

1. Ordered logit model for assignment of categories “1“, …,“7“ 
(highest)(highest)

2. Binary logit model for assignment of “investment grade” with 
alternatives “1” (better than category 3) and “0” (category 3 or less, alternatives “1” (better than category 3) and “0” (category 3 or less, 
also called “speculative grade“)
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Credit Rating, cont’dCredit Rating, cont’d

Verbeek‘s data set CREDIT

Ratings and characteristics for 921 firms: summary statisticsRatings and characteristics for 921 firms: summary statistics

__________________________________________
Book leverage: ratio of debts to assets
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Credit Rating, cont’dCredit Rating, cont’d

Verbeek, Table 7.5.
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Ordered Response Model: Ordered Response Model: 
EstimationEstimation
Latent variable model

yi* = xi’β + εiyi* = xi’β + εi
with explanatory variables xi

yi = j if γj-1 < yi* ≤ γj for j = 0,…,Mi j-1 i j

ML estimation of β1, …, βK and γ1, …, γM-1
� Log-likelihood function in terms of probabilities

� Numerical optimization

� ML estimators are
Consistent � Consistent 

� Asymptotically efficient 

� Asymptotically normally distributed� Asymptotically normally distributed
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Multinomial ModelsMultinomial Models

Choice between M alternatives without natural order 

Observed alternative for sample unit i: yiObserved alternative for sample unit i: yi
“Random utility” framework: Individual i

� attaches utility levels Uij to each of the alternatives, j = 1,…, M,ij

� chooses the alternative with the highest utility level

Utility levels Uij, j = 1,…, M, as a function of characteristics xijij ij

Uij = xij’β + εij
� error terms εij follow the Type I extreme value distribution:

β

for j = 1, …, M

{ }
1

exp{ ' }

exp{ ' } ... exp{ ' }

ij

i

i iM

x
P y j

x x

β
β β

= =
+ +

for j = 1, …, M

� and Σj P{yi = j} = 1
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Variants of the Logit ModelVariants of the Logit Model

For setting the location: constraint xi1’β = 0 or exp{xi1’β} = 1
Conditional logit model: for j = 1, …, MConditional logit model: for j = 1, …, M

{ }
2

exp{ ' }

1 exp{ ' } ... exp{ ' }

ij

i

i iM

x
P y j

x x

β
β β

= =
+ + +

� Alternative-specific characteristics xij
� E.g., mode of transportation is affected by travel costs, travel 

duration, etc.

21 exp{ ' } ... exp{ ' }i iMx xβ β+ + +

duration, etc.

Multinomial logit model: for j = 1, …, M

}'exp{x β

Person-specific characteristics x
}'exp{...}'exp{1

}'exp{
}{

2 Mii

ji

i
xx

x
jyP

ββ
β
+++

==

� Person-specific characteristics xi
� E.g., mode of transportation is affected by income, gender, etc.
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Multinomial Logit ModelMultinomial Logit Model

The term “multinomial logit model” is also used for both the 

� the conditional logit model� the conditional logit model

� the multinomial logit model (see above)

� and also the mixed logit model: combines 
� Alternative-specific characteristics and

� Person-specific characteristics 
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Independence of ErrorsIndependence of Errors

Independence of the error terms εij implies independent utility levels of 
alternatives 

� Independence assumption may be restrictive 

� Example: High utility of alternative „travel with red bus“ implies high 
utility of „travel with blue bus“ utility of „travel with blue bus“ 

� Implies that the odds ratio of two alternatives does not depend upon 
the number of alternatives: “independence of irrelevant alternatives” the number of alternatives: “independence of irrelevant alternatives” 
(IIA)
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Multiresponse Models in GRETLMultiresponse Models in GRETL

Model > Nonlinear Models > Logit > Ordered...

� Estimates the specified model using error terms with standard � Estimates the specified model using error terms with standard 
logistic distribution, assuming ordered alternatives for responses

Model > Nonlinear Models > Logit > Multinomial...

� Estimates the specified model using error terms with standard 
logistic distribution, assuming alternatives without order

Model > Nonlinear Models > Probit > Ordered...Model > Nonlinear Models > Probit > Ordered...

� Estimates the specified model using error terms with standard 
normal distribution, assuming ordered alternativesnormal distribution, assuming ordered alternatives
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Models  for Count DataModels  for Count Data

Describe the number of times an event occurs, depending upon certain 
characteristics 

Examples:

� Number of visits in the library per week

� Number of misspellings in an email 

� Number of applications of a firm for a patent, as a function of 
Firm size� Firm size

� R&D expenditures 

� Industrial sector� Industrial sector

� Country, etc. 

See Verbeek‘s data set PATENTSee Verbeek‘s data set PATENT
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Poisson Regression ModelPoisson Regression Model

Observed variable for sample unit i: 

yi: number of possible outcomes 0, 1, …, y, …yi: number of possible outcomes 0, 1, …, y, …

Aim: to explain E{yi | xi }, based on characteristics xi 
E{yi | xi } = exp{xi’β}i i i

Poisson regression model

{ } exp{ }, 0,1,...
y

i
i i iP y y x y

λ λ= = =

with λi = E{yi | xi } = exp{xi’β} 

{ } exp{ }, 0,1,...
!

i i iP y y x y
y

λ= = =

y! = 1x2x…xy, 0! = 1
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Poisson DistributionPoisson Distribution

kλ λ= = ={ } exp{ }, 0,1,...
!

k

P X k k
k

λ λ= = =
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Poisson Regression Model: The Poisson Regression Model: The 
PracticePractice
Unknown parameters: coefficients β
Fitting the model to data: ML estimators areFitting the model to data: ML estimators are
� Consistent
� Asymptotically efficient
� Asymptotically normally distributed

Equidispersion condition
Poisson distributed X obeys� Poisson distributed X obeys

E{X} = V{X} = λ 
In many situations not realistic� In many situations not realistic

� Overdispersion
Remedies: Alternative distributions, e.g., negative Binomial, and Remedies: Alternative distributions, e.g., negative Binomial, and 

alternative estimation procedures, e.g., Quasi-ML, robust standard 
errorserrors
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Count Data Models in GRETLCount Data Models in GRETL

Model > Nonlinear Models > Count data…

� Estimates the specified model using Poisson or the negative � Estimates the specified model using Poisson or the negative 
binomial distribution
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Tobit ModelsTobit Models

Tobit models are regression models where the range of the 
(continuous) dependent variable is constrained, i.e., censored from 
belowbelow

Examples:

Expenditures on durable goods as a function of income, age, etc.: a � Expenditures on durable goods as a function of income, age, etc.: a 
part of units does not spend any money on durable goods 

� Hours of work as a function of qualification, age, etc. � Hours of work as a function of qualification, age, etc. 

� Expenditures on alcoholic beverages and tobacco  

Tobit modelsTobit models

� Standard Tobit model or Tobit I model; James Tobin (1958) on 
expenditures on durable goods expenditures on durable goods 

� Generalizations: Tobit II to V
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Example: Expenditures on Example: Expenditures on 
TobaccoTobacco
Verbeek‘s data set TOBACCO: expenditures on tobacco in 2724 

Belgian households, Belgian household budget survey of 1995/96

Model: 

yi
* = xi’β + εi

� yi
*: optimal expenditures on tobacco in household i

� xi: characteristics of the i-th household 

ε : unobserved heterogeneity (or measurement error or optimization � εi: unobserved heterogeneity (or measurement error or optimization 
error)

Actual expenditures yActual expenditures yi
yi = yi* if yi* > 0

=  0 if y * ≤ 0=  0 if yi* ≤ 0
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The Standard Tobit ModelThe Standard Tobit Model

The latent variable yi* depends upon characteristics xi
yi
* = xi’β + εIyi = xi’β + εI

with error terms (or unobserved heterogeneity)

εi ~ NID(0, σ2), independent of xiεi σ i

Actual outcome of the observable variable yi
yi = yi* if yi* > 0i i i

=  0 if yi* ≤ 0

� Standard Tobit model or censored regression model

� Censoring: all negative values are substituted by zero

� Censoring in general 
Censoring from below (above): all values left (right) from a lower (an � Censoring from below (above): all values left (right) from a lower (an 
upper) bound are substituted by the lower (upper) bound 

� OLS produces inconsistent estimators for β� OLS produces inconsistent estimators for β
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The Standard Tobit Model, cont’dThe Standard Tobit Model, cont’d

Standard Tobit model describes

1. The probability P{yi = 0} as a function of xi1. The probability P{yi = 0} as a function of xi
P{yi = 0} = P{εi ≤ - xi’β } = 1 - Φ(xi’β/σ) 

2. The distribution of yi given that it is positive, i.e., the truncated i

normal distribution with expectation

E{yi | yi > 0} = xi’β + E{εi | εi > - xi’β} = xi’β + σ λ(xi’β/σ)
with λ(x ’β/σ) = φ(x ’β/σ) / Φ(x ’β/σ) ≥ 0with λ(xi’β/σ) = φ(xi’β/σ) / Φ(xi’β/σ) ≥ 0

Attention! A single set β of parameters characterizes both expressions
The effect of a characteristic� The effect of a characteristic
� on the probability of non-zero observation and 

� on the value of the observation � on the value of the observation 

have the same sign!
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The Standard Tobit Model: The Standard Tobit Model: 
InterpretationInterpretation
From 

P{yi = 0} = 1 - Φ(xi’β/σ)P{yi = 0} = 1 - Φ(xi’β/σ)
E{yi | yi > 0} = xi’β + σ λ(xi’β/σ)

follows:

� A positive coefficient βk means that an increase in the explanatory 
variable xik increases the probability of having a positive yi
The marginal effect of x upon E{y | y > 0} is different from β� The marginal effect of xik upon E{yi | yi > 0} is different from βk

� The marginal effect of xik upon E{yi} is βkP{yi > 0}
It is close to β if P{y > 0} is close to 1, i.e, little censoring� It is close to βk if P{yi > 0} is close to 1, i.e, little censoring

� The marginal effect of xik upon E{yi*} is βk
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The Standard Tobit Model: The Standard Tobit Model: 
EstimationEstimation
OLS produces inconsistent estimators for β
1. ML estimation based on the log-likelihood 

ϵ ϵ

1. ML estimation based on the log-likelihood 

log L1(β, σ2) = ℓ1(β, σ2) = ΣiϵI0 log P{yi = 0} + ΣiϵI1 log f(yi)

with appropriate expressions for P{.} and f(.), I0 the set of censored 
ϵ ϵ

0

observations, I1 the set of uncensored observations

For the correctly specified model: estimates are

Consistent� Consistent

� Asymptotically efficient 

Asymptotically normally distributed � Asymptotically normally distributed 

2. Truncated regression model: ML estimation based on observations 
with y > 0 only:

ϵ

with yi > 0 only:

ℓ2(β, σ2) = ΣiϵI1[ log f(yi) - log P{yi > 0}]

� Estimates based on ℓ1 are more efficient than those based on ℓ2

ϵ

� Estimates based on ℓ1 are more efficient than those based on ℓ2
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Example: Model for Budget Example: Model for Budget 
Share for TobaccoShare for Tobacco

Verbeek‘s data set TOBACCO: Belgian household budget survey of 
1995/96 1995/96 

Budget share wi* for expenditures on tobacco corresponding to 
maximal utility: wi* = xi’β + εImaximal utility: wi* = xi’β + εI
xi: log of total expenditures (LNX) and various characteristics like
� number of children ≤ 2 years old (NKIDS2)� number of children ≤ 2 years old (NKIDS2)
� number of adults in household (NADULTS)

� Age (AGE)

Actual budget share for expenditures on tobacco 

wi = wi* if wi* > 0, 

= 0  otherwise = 0  otherwise 

� 2724 households
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Model for Budget Share for Model for Budget Share for 
TobaccoTobacco
Tobit model, 
GRETL output Model 2: Tobit, using observations 1-2724

Dependent variable: SHARE1 (Tobacco)Dependent variable: SHARE1 (Tobacco)

coefficient    std. error         t-ratio        p-value 
----------------------------------------------------------
const      -0,170417        0,0441114       -3,863      0,0001   ***
AGE            0,0152120      0,0106351        1,430       0,1526  
NADULTS   0,0280418       0,0188201       1,490       0,1362  
NKIDS        -0,00295209    0,000794286   -3,717      0,0002   ***NKIDS        -0,00295209    0,000794286   -3,717      0,0002   ***
NKIDS2      -0,00411756    0,00320953     -1,283      0,1995  
LNX            0,0134388        0,00326703     4,113      3,90e-05 ***
AGELNX    -0,000944668   0,000787573   -1,199     0,2303  
NADLNX     -0,00218017    0,00136622     -1,596     0,1105  NADLNX     -0,00218017    0,00136622     -1,596     0,1105  
WALLOON  0,00417202     0,000980745    4,254     2,10e-05 ***

Mean dependent var 0,017828   S.D. dependent var 0,021658Mean dependent var 0,017828   S.D. dependent var 0,021658
Censored obs 466   sigma                0,024344
Log-likelihood       4764,153   Akaike criterion    -9508,306
Schwarz criterion   -9449,208  Hannan-Quinn        -9486,944
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Model for Budget Share for Model for Budget Share for 
Tobacco, cont’dTobacco,
Truncated regres-
sion model, 
GRETL output

Model 7: Tobit, using observations 1-2724 (n = 2258)
Missing or incomplete observations dropped: 466

GRETL output
Missing or incomplete observations dropped: 466
Dependent variable: W1 (Tobacco)

coefficient             std. error    t-ratio   p-value
------------------------------------------------------------------------------------------------------------------

const       0,0433570         0,0458419        0,9458   0,3443 
AGE            0,00880553       0,0110819       0,7946    0,4269 
NADULTS   -0,0129409        0,0185585      -0,6973   0,4856 
NKIDS         -0,00222254     0,000826380   -2,689     0,0072  ***NKIDS         -0,00222254     0,000826380   -2,689     0,0072  ***
NKIDS2       -0,00261220      0,00335067    -0,7796   0,4356 
LNX             -0,00167130      0,00337817    -0,4947   0,6208 
AGELNX     -0,000490197    0,000815571  -0,6010    0,5478 AGELNX     -0,000490197    0,000815571  -0,6010    0,5478 
NADLNX      0,000806801     0,00134731    0,5988    0,5493 
WALLOON  0,00261490       0,000922432   2,835      0,0046  ***

Mean dependent var 0,021507   S.D. dependent var 0,022062Mean dependent var 0,021507   S.D. dependent var 0,022062
Censored obs 0   sigma                0,021450
Log-likelihood       5471,304   Akaike criterion    -10922,61
Schwarz criterion   -10865,39   Hannan-Quinn        -10901,73
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Two Models for Budget Share Two Models for Budget Share 
for Tobacco, Comparisonfor Tobacco, Comparison
Estimates (coeff.) and standard errors (s.e.) for some coefficients 

of the Tobit (2724 observations, 644 censored) and the truncated of the Tobit (2724 observations, 644 censored) and the truncated 
regression model (2258 uncensored observations)

constant NKIDS LNX WALLconstant NKIDS LNX WALL

Tobit 

model

coeff. -0,1704 -0,0030 0,0134 0,0042

s.e. 0,0441 0,0008 0,0033 0,0010s.e. 0,0441 0,0008 0,0033 0,0010

Truncated

regression

coeff. 0,0433 -0,0022 -0,0017 0,0026

s.e. 0,0458 0,0008 0,0034 0,0009s.e. 0,0458 0,0008 0,0034 0,0009
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Specification TestsSpecification Tests

Various tests based on 

� generalized residuals� generalized residuals

λ(- xi’β/σ) if yi = 0
ei/σ if yi > 0 (standardized residuals)i σ i 

with λ(-xi’β/σ) = - φ(xi’β/σ) / Φ(-xi’β/σ), evaluated for estimates of β, σ
� and “second order” generalized residuals corresponding the 

estimation of σ2estimation of σ2

Tests 

for normality� for normality

� for omitted variables

Test for normality is standard test in GRETL‘s Tobit procedure: Test for normality is standard test in GRETL‘s Tobit procedure: 
consistency requires normality
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An Example: Modeling WagesAn Example: Modeling Wages

Wage observations: available only for the working population

Model that explains wages as a function of characteristics, e.g., the Model that explains wages as a function of characteristics, e.g., the 
person‘s age

� Tobit model: for a positive coefficient of age, an increase of age
� increases wage

� increases the probability that the person is working 

� Not always realistic! � Not always realistic! 

� Tobit II model: allows two separate equations 
� for labor force participation and � for labor force participation and 

� for the wage of a person

� Tobit II model is also called “sample selection model”� Tobit II model is also called “sample selection model”
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Tobit II Model for WagesTobit II Model for Wages

� Wage equation describes the wage of person i

wi* = x1i’β1 + ε1iwi* = x1i’β1 + ε1i
with exogenous characteristics (age, education, …)

� Selection equation or labor force participation

hi* = x2i’β2 + ε2i
� Observation rule: wi actual wage of person ii

wi = wi*, hi = 1 if hi* > 0 

wi not observed, hi = 0 if hi* ≤ 0 
hi: indicator for working 

� Distributional assumption for ε1i, ε2i
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Tobit II Model for Wages, cont’dTobit II Model for Wages, cont’d

Selection equation: a binary choice model; probit model needs 
standardization (σ2

2 = 1)2

� Characteristics x1i and x2i may be different; however,
� If the selection depends upon wi

*: x2i is expected to include x1i 
Because the model describes the joint distribution of w and h given one � Because the model describes the joint distribution of wi and hi given one 
set of conditioning variables: x2i is expected to include x1i 

� Sign and value of coefficients of the same variables in x1i and x2i can be � Sign and value of coefficients of the same variables in x1i and x2i can be 
different

� Special cases
� If σ12 = 0, sample selection is exogenous 

� If x1i’β1 = x2i’β2 and ε1i = ε2i, the Tobit II model coincides with the Tobit I 
model model 
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Tobit II Model for Wages: Tobit II Model for Wages: 
Wage EquationWage Equation
Expected value of wi, given sample selection:

E{wi | hi =1} = x1i’β1 + σ12 λ(x2i’β2)E{wi | hi =1} = x1i’β1 + σ12 λ(x2i’β2)
with the inverse Mill’s ratio or Heckman’s lambda 

λ(x2i’β2) = φ(x2i’β2) / Φ(x2i’β2)λ 2i β2 φ 2i β2 Φ 2i β2
� Heckman’s lambda 

� Positive and decreasing in its argument

� The smaller the probability that a person is working, the larger the value 
of the correction term λ

� Expected value of wi only equals x1i’β1 if σ12 = 0: “no sample � Expected value of wi only equals x1i’β1 if σ12 = 0: “no sample 
selection” error
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Tobit II Model: Log-likelihood Tobit II Model: Log-likelihood 
FunctionFunction
Log-likelihood 

ℓ3(β1,β2,σ1
2,σ12) = ΣiϵI0log P{hi=0} + ΣiϵI1 [log f(yi|hi=1)+log P{hi=1}]

ϵ ϵ

ℓ3(β1,β2,σ1 ,σ12) = ΣiϵI0log P{hi=0} + ΣiϵI1 [log f(yi|hi=1)+log P{hi=1}]

= ΣiϵI0 log P{hi=0} + ΣiϵI1 [log f(yi) + log P{hi=1|yi}]

with 
ϵ ϵ

P{hi=0} = 1 - Φ(x2i’β2)
2
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Tobit II Model: EstimationTobit II Model: Estimation

� Maximum likelihood estimation, based on the log-likelihood 

ℓ3(β1,β2,σ1
2,σ12) = ΣiϵI0 log P{hi=0}+ΣiϵI1 [log f(yi|hi=1)+log P{hi=1}] ℓ3(β1,β2,σ1 ,σ12) = ΣiϵI0 log P{hi=0}+ΣiϵI1 [log f(yi|hi=1)+log P{hi=1}] 

� Two step approach (Heckman, 1979)
1. Estimate the coefficients β2 of the selection equation by standard probit 

maximum likelihood: b
2

maximum likelihood: b2
2. Compute estimates of Heckman’s lambdas: λi = λ(x2i’b2) = φ(x2i’b2) / 

Φ(x2i’ b2) for i = 1, …, NΦ(x2i’ b2) for i = 1, …, N

3. Estimate the coefficients β1 and σ12 using OLS

wi = x1i’β1 + σ12 λi + ηii 1i 1 12 i i

� GRETL: procedure „Heckit“ allows both the ML and the two step 
estimation
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Tobit II Model for Budget Tobit II Model for Budget 
Share for TobaccoShare for Tobacco
Heckit  ML
estimation, 
GRETL output

Model 7: ML Heckit, using observations 1-2724
Dependent variable: SHARE1
Selection variable: D1GRETL output Selection variable: D1

coefficient        std. error           t-ratio        p-value 
-------------------------------------------------------------

const          0,0444178       0,0492440       0,9020      0,3671   const          0,0444178       0,0492440       0,9020      0,3671   
AGE           0,00874370     0,0110272       0,7929      0,4278   
NADULTS  -0,0130898      0,0165677       -0,7901    0,4295   
NKIDS        -0,00221765    0,000585669   -3,787      0,0002    ***
NKIDS2      -0,00260186    0,00228812     -1,137      0,2555   NKIDS2      -0,00260186    0,00228812     -1,137      0,2555   
LNX            -0,00174557    0,00357283     -0,4886    0,6251   
AGELNX    -0,000485866  0,000807854    -0,6014   0,5476   
NADLNX     0,000817826   0,00119574     0,6839     0,4940   
WALLOON  0,00260557    0,000958504    2,718       0,0066    ***WALLOON  0,00260557    0,000958504    2,718       0,0066    ***
lambda        -0,00013773   0,00291516     -0,04725   0,9623 

Mean dependent var 0,021507    S.D. dependent var 0,022062Mean dependent var 0,021507    S.D. dependent var 0,022062
sigma                0,021451   rho                 -0,006431
Log-likelihood       4316,615   Akaike criterion    -8613,231
Schwarz criterion   -8556,008  Hannan-Quinn        -8592,349
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Tobit II Model for Budget Tobit II Model for Budget 
Share for Tabacco, cont’dShare for Tabacco,
Heckit  ML
estimation, 
GRETL output

Model 7: ML Heckit, using observations 1-2724
Dependent variable: SHARE1GRETL output Dependent variable: SHARE1
Selection variable: D1

Selection equationSelection equation
coefficient        std. error           t-ratio        p-value 

-------------------------------------------------------------
const      -16,2535        2,58561         -6,286        3,25e-010 ***
AGE            0,753353       0,653820       1,152         0,2492   AGE            0,753353       0,653820       1,152         0,2492   
NADULTS   2,13037         1,03368          2,061        0,0393    **
NKIDS         -0,0936353    0,0376590     -2,486       0,0129    **
NKIDS2       -0,188864      0,141231       -1,337       0,1811   NKIDS2       -0,188864      0,141231       -1,337       0,1811   
LNX             1,25834          0,192074       6,551        5,70e-011 ***
AGELNX     -0,0510698    0,0486730      -1,049       0,2941   
NADLNX     -0,160399       0,0748929     -2,142       0,0322    **
BLUECOL   -0,0352022    0,0983073      -0,3581    0,7203   BLUECOL   -0,0352022    0,0983073      -0,3581    0,7203   
WHITECOL  0,0801599    0,0852980      0,9398     0,3473   
WALLOON   0,201073      0,0628750      3,198        0,0014    ***
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Models for Budget Share for Models for Budget Share for 
TabaccoTabacco

Estimates and standard errors for some coefficients of the 

const. NKIDS LNX WALL

Estimates and standard errors for some coefficients of the 
standard Tobit, the truncated regression and the Tobit II model 

const. NKIDS LNX WALL

Tobit model
coeff. -0,1704 -0,0030 0,0134 0,0042

s.e. 0,0441 0,0008 0,0033 0,0010s.e. 0,0441 0,0008 0,0033 0,0010

Truncated

regression

coeff. 0,0433 -0,0022 -0,0017 0,0026

s.e. 0,0458 0,0008 0,0034 0,0009s.e. 0,0458 0,0008 0,0034 0,0009

Tobit II 

model

coeff. 0,0444 -0,0022 -0,0017 0,0026

s.e. 0,0492 0,0006 0,0036 0,0010

Tobit II

selection

coeff. -16,2535 -0,0936 1,2583 0,2011

s.e. 2,5856 0,0377 0,1921 0,0629
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Test for Sampling Selection Test for Sampling Selection 
BiasBias
Error terms of the Tobit II model with σ12 ≠ 0: standard errors and test 

may result in misleading inferences

� Test of H0: σ12 = 0 in the second step of Heckit, i.e., fitting the 
regression wi = x1i’β1 + σ12 λi + ηi
t-test on the coefficient for Heckman’s lambda � t-test on the coefficient for Heckman’s lambda 

� Test results are sensitive to exclusion restrictions on x1i
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Tobit Models in GRETLTobit Models in GRETL

Model > Nonlinear Models > Tobit

� Estimates the Tobit model; censored  dependent variable� Estimates the Tobit model; censored  dependent variable
Model > Nonlinear Models > Heckit

� Estimates in addition the selection equation (Tobit II), optionally by 
ML- and by two-step estimation
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Your HomeworkYour Homework

1. Verbeek‘s data set CREDIT contains credit ratings of 921 US 
firms, as well as characteristics of the firm; the variable rating has 
categories “1“, …,“7“ (highest) . Generate the variable GF (good categories “1“, …,“7“ (highest) . Generate the variable GF (good 
firm) with value 1 if rating > 4 and 0 otherwise, and the more 
detailed variable CR (credit rating) with CR = 1 if rating < 3, CR = detailed variable CR (credit rating) with CR = 1 if rating < 3, CR = 
2 if rating = 3, CR = 3 if rating = 4, and CR = 4 otherwise. 
a. Estimate a binary logit model for the assignment of the GF ratings, 

and an ordered logit model for assignment CR. and an ordered logit model for assignment CR. 

b. Compare the effects of the regressors in the models, based on 
coefficients and slopes. coefficients and slopes. 

c. Compare the hit rates of the models based on GF and on CR?

2. People buy for yi* of an investment fund, with yi* = xi’β + εi with εI2. People buy for yi* of an investment fund, with yi* = xi’β + εi with εI
~ N(0,1); xi consists of an intercept and the variables age and  
income. The dummy di = 1 if yi* > 0 and di = 0 otherwise.
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Your Homework, cont’dYour Homework, cont’d

a. Derive the probability for di = 1 as function of xi.
b. Derive the log-likelihood function of the probit model for di.

3. Verbeek‘s data set TOBACCO contains expenditures on alcohol 3. Verbeek‘s data set TOBACCO contains expenditures on alcohol 
in 2724 Belgian households, taken from the Belgian household 
budget survey of 1995/96, as well as other characteristics of the 
households; for the expenditures on alcohol, the dummy D1=1 if households; for the expenditures on alcohol, the dummy D1=1 if 
the budget share for alcohol SHARE1 differs from 0, and D1=0 
otherwise. otherwise. 
a. Model the budget share for alcohol, using (i) a Tobit model, (ii) a 

truncated regression, and (iii) a Tobit II model, using the household 
characteristics AGE, LNX, NKIDS, and the dummy FLANDERS.characteristics AGE, LNX, NKIDS, and the dummy FLANDERS.

b. Compare the effects of the regressors in the models, based on 
coefficients and slopes.

c. Compare the results for FLANDERS with that for the WALLOON.c. Compare the results for FLANDERS with that for the WALLOON.
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