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The Lüdeke Model for GermanyThe Lüdeke Model for Germany

1. Consumption function

Ct = α1 + α2Yt + α3Ct-1 + ε1tt 1 2 t 3 t-1 1t

2. Investment function

It = β1 + β2Yt + β3Pt-1 + ε2t

3. Import function3. Import function

Mt = γ1 + γ2Yt + γ3 Mt-1 + ε3t

4. Identity relation4. Identity relation

Yt = Ct + It - Mt-1 + Gt

with C: private consumption, Y: GDP, I: investments, P: profits, M: 

imports, G: governmental spendingimports, G: governmental spending

Variables:

� Endogenous: C, Y, I, M� Endogenous: C, Y, I, M
� Exogenous, predetermined: G, P-1,C-1, M-1
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Econometric ModelsEconometric Models

Basis is the multiple linear regression model

Model extensions

� Dynamic models, i.e., contain lagged variables

� Systems of regression relations, i.e., models describe more than 
one dependent variableone dependent variable

Example: Lüdeke Model 

� four dynamic equations (with lagged variables P-1,C-1, M-1)� four dynamic equations (with lagged variables P-1,C-1, M-1)

� for the four dependent variables C, Y, I, M
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Dynamic Models: ExamplesDynamic Models: Examples

Demand model: describes the quantity Q demanded of a product as a 
function of its price P and the income Y of households

Demand is determined byDemand is determined by

� Current price and current income (static model): 

Q = β + β P + β Y + εQt = β1 + β2Pt + β3Yt + εt

� Current price and income of the previous period (dynamic model): 

Qt = β1 + β2Pt + β3Yt-1 + εtQt = β1 + β2Pt + β3Yt-1 + εt

� Current price and demand of the previous period (dynamic 
autoregressive model): 

Q = β + β P + β Q + εQt = β1 + β2Pt + β3Qt-1 + εt 
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The Dynamic of ProcessesThe Dynamic of Processes

Static processes: immediate reaction to changes in regressors, the 

adjustment of the dependent variables to the realizations of the 

independent variables will be completed within the current period, independent variables will be completed within the current period, 

the process seems to be always in equilibrium

Static models are often inappropriateStatic models are often inappropriate

� Some processes are determined by the past, e.g., energy 

consumption depends on past investments into energy-consuming consumption depends on past investments into energy-consuming 

systems and equipment 

� Actors in economic processes may respond delayed, e.g., time for 

decision-making and procurement processes exceeds the 

observation period

Expectations: e.g., consumption depends not only on current � Expectations: e.g., consumption depends not only on current 

income but also on the income expectations; modeling the 

expectation may be based on past development
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Elements of Dynamic ModelsElements of Dynamic Models

� Lag structures, distributed lags: linear combinations of current 

and past values of a variable

� Models for expectations: based on lag structures, e.g., adaptive 

expectation model, partial adjustment model

Autoregressive distributed lag (ADL) model: a simple but widely � Autoregressive distributed lag (ADL) model: a simple but widely 

applicable model consisting of an autoregressive part and of a 

finite lag structure of the independent variablesfinite lag structure of the independent variables
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Example: Demand FunctionsExample: Demand Functions

� Demand for durable consumer goods: demand Q depends on 

the price P and on the income Y of the current and two previous 

periods:periods:

Qt = α + β0Yt + β1Yt-1 + β2Yt-2 + γPt + εt

Demand for energy:� Demand for energy:

Qt = α + βPt + γKt + ut

with P: price of energy, K: energy-related capital stockwith P: price of energy, K: energy-related capital stock

Kt = θ0 + θ1Pt-1 + θ2Pt-2 + … + δYt + vt

with Y: income; substitution of K results in with Y: income; substitution of K results in 

Qt = α0 + α1Yt + β0Pt + β1Pt-1 + β2Pt-1 + … + εt

with ε = u + γv , α = α + γθ , α = γδ, β = β, β = γθ , i = 1, 2, …with εt = ut + γvt, α0 = α + γθ0, α1 = γδ, β0 = β, βi = γθi, i = 1, 2, …
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Models with Lag StructuresModels with Lag Structures

Distributed lag model: describes the delayed effect of one or more 
regressors on the dependent variable; e.g., 

DL(s) model� DL(s) model

Yt = δ + Σs
i=0 φiXt-i + εt

distributed lag of order s modeldistributed lag of order s model

Topics of interest

� Estimation of coefficients� Estimation of coefficients

� Interpretation of parameters
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Example: Consumption Example: Consumption 
FunctionFunction
Data for Austria (1990:1 – 2009:2), logarithmic differences (relative 

changes): 

Ĉ = 0.009 + 0.621Y 

with t(Y) = 2.288, R2 = 0.335

DL(2) model, same data:

Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2

with t(Y) = 3.79, t(Y ) = – 0.18, t(Y ) = 2.11, R2 = 0.370 with t(Y) = 3.79, t(Y-1) = – 0.18, t(Y-2) = 2.11, R2 = 0.370 

Effect of income on consumption:

Short term effect, i.e., effect in the current period: � Short term effect, i.e., effect in the current period: 

∆C = 0.504, given a change in income ∆Y = 1

Overall effect, i.e., cumulative current and future effects� Overall effect, i.e., cumulative current and future effects

∆C = 0.504 – 0.026 + 0.274 = 0.752, given a change ∆Y = 1
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Multiplier Multiplier 

Describes the effect of a change in explanatory variable Xt by ∆X = 1 on 

current and future values of the dependent variable Y

DL(s) model: Yt = δ + φ0Xt + φ1Xt-1 + … + φsXt-s + εt

� Short run or impact multiplier 

Y∂

effect of the change in the same period, immediate effect of ∆X = 1 

0
t

t

Y

X
ϕ∂ =

∂
effect of the change in the same period, immediate effect of ∆X = 1 

on Y: ∆Y = φ0

� Long run multiplier � Long run multiplier 

Effect of ∆X = 1 after 1, …, s periods: 

1 , ...,t t s
Y Yϕ ϕ+ +∂ ∂= =

Cumulated effect of ∆X = 1 at t over all future on Y: ∆Y = φ0 + … + φs

1
1, ...,

t t s

s

t t
X X

ϕ ϕ+ += =
∂ ∂
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Equilibrium Multiplier Equilibrium Multiplier 

If after a change ∆X an equilibrium occurs within a finite time: Long run 

multiplier is called equilibrium multiplier 

� DL(s) model 

Yt = δ + φ0Xt + φ1Xt-1 + … + φsXt-s + εt 

equilibrium after s periods

� No equilibrium for models with an infinite lag structure 
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Average Lag TimeAverage Lag Time

Characteristics of lag structure φ0Xt + φ1Xt-1 + … + φsXt-s

� Portion of equilibrium effect in the adaptation process� Portion of equilibrium effect in the adaptation process

� At the end of the period t:

w0 = φ0/(φ0 + φ1 + … + φs)

� At the end of the period t +1:

w0 + w1 = (φ0 + φ1)/(φ0 + φ1 + … + φs)

Etc.� Etc.

With weights wi = φi/(φ0 + φ1 + … + φs)

� Average lag time: Σ i w� Average lag time: Σi i wi

� Median lag time: time till 50% of the equilibrium effect is reached, i.e., 

minimal s* with minimal s* with 

w0 + … ws* ≥ 0.5
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Consumption FunctionConsumption Function

For ∆Y = 1, the function 

Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2

gives 

� Short run effect: 0.504

� Overall effect: 0.752

� Equilibrium effect : 0.752

� Average lag time: 0.694 quarters, i.e., ~ 2.3 months

� Median lag time: s* = 0; cumulative sums of weights are 0.671, 0.636, 

1.000 1.000 
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Lag Structures: EstimationLag Structures: Estimation

DL(s) model: problems with OLS estimation

� Loss of observations: for a sample size N, only N-s observations are � Loss of observations: for a sample size N, only N-s observations are 

available for estimation; infinite lag structure!

� Multicollinearity

� Order s (mostly) not known

Consequences: 

Misspecification� Misspecification

� Large standard errors of estimates

Low power of tests � Low power of tests 

Issues:

Choice of s� Choice of s

� Models for the lag structure with smaller number of parameters, e.g., 

polynomial structure 
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Consumption FunctionConsumption Function

Fitted function 

Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2Ĉ = 0.006 + 0.504Y – 0.026Y-1 + 0.274Y-2

with p-value for coefficient ofY-2: 0.039, adj.R2 = 0.342, AIC = -5.204

s AIC p-Wert adj.R2s AIC p-Wert adj.R2

1 -5.179 0.333 0.316

2 -5.204 0.039 0.342

Models for s ≤ 7

2 -5.204 0.039 0.342

3 -5.190 0.231 0.344

4 -5.303 0.271 0.3704 -5.303 0.271 0.370

5 -5.264 0.476 0.364

6 -5.241 0.536 0.3566 -5.241 0.536 0.356

7 -5.205 0.884 0.342
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Koyck’s Lag StructureKoyck’s Lag Structure

Specifies the lag structure of the DL(s) model

Yt = δ + Σs
i=0 φiXt-i + εtt i=0 i t-i t

as an infinite, geometric series (geometric lag structure)

φi = λ0(1 - λ)λi

For 0 < λ < 1  � For 0 < λ < 1  

Σs
i=0 φi = λ0

� Short run multiplier: λ0(1 - λ) � Short run multiplier: λ0(1 - λ) 

� Equilibrium effect: λ0

� Average lag time: λ/(1 - λ) 

λ 0.1 0.3 0.5 0.7

λ/(1-λ) 0.10 0.43 1.00 2.33
� Average lag time: λ/(1 - λ) 

� Stability condition 0 < λ < 1 

for λ > 1, the φi and the contributions to the multiplier are 
exponentially growingexponentially growing
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The Koyck ModelThe Koyck Model

� The DL (distributed lag) or MA (moving average) form of the Koyck
model

Y = δ + λ (1 – λ) Σ λiX + εYt = δ + λ0(1 – λ) Σi λ
iXt-i + εt

� AR (autoregressive) form

Y = δ(1 – λ) + λY + λ (1 – λ)X + uYt = δ(1 – λ) + λYt-1 + λ0(1 – λ)Xt + ut

with ut = εt – λεt-1
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Consumption FunctionConsumption Function

Model with smallest AIC:

Ĉ = 0.003 + 0.595Y – 0.016Y-1 + 0.107Y-2 + 0.003Y-3Ĉ = 0.003 + 0.595Y – 0.016Y-1 + 0.107Y-2 + 0.003Y-3

+ 0.148Y-4

with adj.R2 = 0.370, AIC = -5.303, DW = 1.41

Koyck model in AR form

Ĉ = 0.004 + 0.286 C-1 + 0.556Y-1

with adj.R2 = 0.388, AIC = -5.290, DW = 1.91 
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Koyck Model: Estimation Koyck Model: Estimation 
ProblemsProblems
Parameters to be estimated: δ, λ0, and λ; problems are

� DL form (Yt = δ + λ0(1 – λ) Σi λ
iXt-i + εt)t 0 i t-i t

� Historical values X0, X-1, … are unknown

� Non-linear estimation problem

AR form (Y = δ(1 – λ) + λY + λ (1 – λ)X + u )� AR form (Yt = δ(1 – λ) + λYt-1 + λ0(1 – λ)Xt + ut)

� Non-linear estimation problem 

� Lagged, endogenous variable used as regressor � Lagged, endogenous variable used as regressor 

� Correlated error terms 
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The ADL(1,1) ModelThe ADL(1,1) Model

� The autoregressive distributed lag (ADL) model: autoregressive 
model with lag structure, e.g., the ADL(1,1) model

Y = δ + θY + φ X + φ X + εYt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt

� The error correction model:

∆Y = – (1 – θ)(Y – α – βX ) + φ ∆X + ε∆Yt = – (1 – θ)(Yt-1 – α – βXt-1) + φ0 ∆Xt + εt

obtained from the ADL(1,1) model with 

α = δ/(1 – θ)α = δ/(1 – θ)

β = (φ0+φ1)/(1 – θ)

Example: 

� Sales St are determined

� by advertising At and At-1, but also

� by S :� by St-1:

St = µ + θSt-1 + β0At + β1At-1 + εt

∆St = – (1 – θ)[St-1 – µ/(1 – θ) – (β0+β01)/(1 – θ)At-1] + β0∆At + εt
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MultiplierMultiplier

ADL(1,1) model: Yt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt

Effect of a change ∆X = 1 at time tEffect of a change ∆X = 1 at time t

� Impact multiplier: ∆Y = φ0; see the DL(s) model 

� Long run multiplierLong run multiplier

� Effect after one period 

1
1 0 1

t t
Y Y

X X
θ ϕ θϕ ϕ+∂ ∂= + = +

∂ ∂
� Effect after two periods 

1 0 1

t t
X X

θ ϕ θϕ ϕ= + = +
∂ ∂

( )Y Yθ θ θϕ ϕ+ +∂ ∂= = +

� Cumulated effect over all future on Y

( )2 1
0 1

t t

t t

Y Y

X X
θ θ θϕ ϕ+ +∂ ∂= = +

∂ ∂
� Cumulated effect over all future on Y

φ0 + (θφ0 + φ1) + θ(θφ0 + φ1) + … = (φ0 + φ1)/(1 – θ)

decreasing effects requires |θ|<1, stability condition
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ADL(1,1) Model: EquilibriumADL(1,1) Model: Equilibrium

Equilibrium relation of the ADL(1,1) model: 

� Equilibrium at time t means: E{Yt} = E{Yt-1}, E{Xt } = E{Xt-1} � Equilibrium at time t means: E{Yt} = E{Yt-1}, E{Xt } = E{Xt-1} 

E{Yt} = δ + θ E{Yt} + φ0 E{Xt} + φ1 E{Xt}

or, given the stability condition |θ|<1, 
ϕ ϕδ +

� Equilibrium relation: 

{ } { }0 1

1 1
t t

E Y E X
ϕ ϕδ

θ θ
+= +

− −
� Equilibrium relation: 

E{Yt} = α + β E{Xt} 

with α = δ/(1 – θ), β = (φ + φ )/(1 – θ)with α = δ/(1 – θ), β = (φ0 + φ1)/(1 – θ)

� Long run multiplier: change ∆X = 1 of the equilibrium value of X
increases the equilibrium value of Y by (φ0 + φ1)/(1 – θ)increases the equilibrium value of Y by (φ0 + φ1)/(1 – θ)
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The Error Correction ModelThe Error Correction Model

ADL(1,1) model, written as error correction model

∆Yt = φ0 ∆Xt – (1 – θ)(Yt-1 – α – βXt-1) + εt∆Yt = φ0 ∆Xt – (1 – θ)(Yt-1 – α – βXt-1) + εt

� Effects on ∆Y
� due to changes ∆X

� due to equilibrium error, i.e., Yt-1 – α – βXt-1

� Negative adjustment: Yt-1 < E{Yt-1} = α + βXt-1, i.e., a negative 

equilibrium error, increases Y by – (1 – θ)(Y – α – βX )equilibrium error, increases Yt by – (1 – θ)(Yt-1 – α – βXt-1)

� Adjustment parameter: (1 – θ)

� Determines speed of adjustment� Determines speed of adjustment
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The ADL(p,q) ModelThe ADL(p,q) Model

ADL(p,q): generalizes the ADL(1,1) model

θ(L)Yt = δ + Φ(L)Xt + εtθ(L)Yt = δ + Φ(L)Xt + εt

with lag polynomials 

θ(L) = 1 - θ1L - … - θpLp , Φ(L) = φ0 + φ1L + … + φqLq
1 p 0 1 q

Given invertibility of θ(L), i.e., θ1 + … + θp < 1,

Yt = θ(1)-1δ + θ(L)-1Φ(L)Xt + θ(L)-1εtt t t

The coefficients of θ(L)-1Φ(L) describe the dynamic effects of X on 

current and future values of Y

equilibrium multiplier� equilibrium multiplier

q

θθ
ϕϕ

φθ
−−−

++
=−

...1

...
)1()1(

01

ADL(0,q): coincides with the DL(q) model; θ(L) = 1

pθθ −−− ...1 1
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ADL Model: EstimationADL Model: Estimation

ADL(p,q) model 

� error terms εt: white noise, independent of  Xt, …, Xt-q and Yt-1, …, Xt-p� error terms εt: white noise, independent of  Xt, …, Xt-q and Yt-1, …, Xt-p

OLS estimators are consistent 
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Expectations in Economic Expectations in Economic 
ProcessesProcesses
Expectations play important role in economic processes

Examples: Examples: 

� Consumption depends not only on current income but also on the 

income expectations; modeling the expectation may be based on 

past developmentpast development

� Investments depend upon expected profits

Interest rates depend upon expected development of the financial � Interest rates depend upon expected development of the financial 

market

� Etc.� Etc.

Expectations

� cannot be observed, but� cannot be observed, but

� can be modeled using assumptions on the mechanism of adapting 

expectations

Hackl, Econometrics 2, Lecture 4 31

expectations

April 5, 2013



Models for Adapting Models for Adapting 
ExpectationsExpectations
� Naive model of adapting expectations: the (for the next period) 

expected value equals the actual value

� Model of adaptive expectation

� Partial adjustment model

The latter two models are based on Koyck’s lag structure
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Adaptive Expectation: ConceptAdaptive Expectation: Concept

Models of adaptive expectation: describe the actual value Yt as function 

of the value Xe
t+1 of the regressor X that is expected for the next 

period
t+1

period

Yt = α + βXe
t+1 + εt

Example: Investments are a function of the expected profitsExample: Investments are a function of the expected profits

Concepts for Xe
t+1:

Naive expectation: Xe = X� Naive expectation: Xe
t+1 = Xt 

� More realistic is a weighted sum of in the past realized profits

Xe = β X + β X + …Xe
t+1 = β0Xt + β1Xt-1 + …

� Geometrically decreasing weights βi

βi = (1-λ) λiβi = (1-λ) λ

with 0 < λ < 1
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Adaptive Mechanism for the Adaptive Mechanism for the 
ExpectationExpectation
With βi = (1- λ) λi, the expected value Xe

t+1 = β0Xt + β1Xt-1 + … results in 

Xe
t+1 = λXe

t + (1 – λ)Xt X t+1 = λX t + (1 – λ)Xt 

or 

Xe
t+1 - Xe

t = (1 – λ)(Xt - Xe
t) t+1 t t t

Interpretation: the change of expectation between t and t+1 is 

proportional to the actual „error in expectation”, i.e., the deviation 

between the actual expectation and the actually realized value between the actual expectation and the actually realized value 

� Extent of the change (adaptation): 100(1 – λ)% of the error

� λ: adaptation parameter� λ: adaptation parameter
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Models of Adaptive ExpectationModels of Adaptive Expectation

� Adaptive expectation model (AR form)

Yt = α(1 – λ) + λYt-1 + β(1 – λ)Xt + vtt t-1 t t

with vt = εt – λεt-1; an ADL(1,0) model

� DL form

Y = α + β(1 – λ)X + β(1 – λ) λ X + … + εYt = α + β(1 – λ)Xt + β(1 – λ) λ Xt-1 + … + εt

Example: Investments (I) as function of the expected profits Pe
t+1 and 

interest rate (r)interest rate (r)

It = α + βPe
t+1 + γrt + εt 

� Assumption of adapted expectation for the profits Pe
t+1:� Assumption of adapted expectation for the profits P t+1:

Pe
t+1 = λPe

t + (1 – λ)Pt

with adaptation parameter λ (0 < λ < 1) with adaptation parameter λ (0 < λ < 1) 

� AR form of the investment function (vt = εt – λεt-1):

It = α(1 – λ) + λIt-1 + β(1 – λ)Pt + γrt – λγrt-1 + vt
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Consumption FunctionConsumption Function

Consumption as function of the expected income 

Ct = α + βYe
t+1 + εtt t+1 t

expected income derived under the assumption of adapted 
expectation 

Ye = λYe + (1 – λ)YYe
t+1 = λYe

t + (1 – λ)Yt

� AR form is

Ct = α(1 – λ) + λCt-1 + β(1 – λ)Yt + vtCt = α(1 – λ) + λCt-1 + β(1 – λ)Yt + vt

with vt = εt – λεt-1 

Example: the estimated model is Example: the estimated model is 

Ĉ = 0.004 + 0.286C-1 + 0.556Y

� adj.R2 = 0.388, AIC = -5.29, DW = 1.91 adj.R = 0.388, AIC = -5.29, DW = 1.91 
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Partial Adjustment ModelPartial Adjustment Model

Describes the process of adapting to a desired or planned value Y*t as a 

function of regressor Xtt

Y*t = α + βXt + ηt

� (Partial) adjustment of the actual Yt according to

Yt – Yt-1 =  (1 - θ)(Y*t – Yt-1) 

adaptation parameter θ with 0 < θ < 1

Actual Y : weighted average of Y* and Y� Actual Yt: weighted average of Y*t and Yt-1

Yt = (1 - θ)Y*t + θYt-1

AR form of the model� AR form of the model

Yt = (1 - θ)α  + θYt-1 + (1 - θ)βXt + (1 – θ)ηt

= δ + θY + φ X + ε= δ + θYt-1 + φ0Xt + εt

which is an ADL(1,0) model
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Example: Desired Stock LevelExample: Desired Stock Level

Stock level K and revenues S

� The desired (optimal) stock level K* depends of the revenues S� The desired (optimal) stock level K* depends of the revenues S

K*t = α + βSt + ηt

� Actual stock level Kt-1 in period t-1: deviates from K*t: K*t – Kt-1t-1 t t t-1

� (Partial) adjustment strategy according to

Kt – Kt-1 =  (1 – θ)(K*t – Kt-1) t t-1 t t-1

adaptation parameter θ with 0 < θ < 1

� Substitution for K*t gives the AR form of the model

Kt = Kt-1 + (1 – θ)α  + (1 – θ)βSt – (1 – θ)Kt-1 + (1 – θ)ηt

= δ + θKt-1 + φ0St + εt

δ = (1 – θ)α, φ = (1 – θ)β, ε = (1 – θ)ηδ = (1 – θ)α, φ0 = (1 – θ)β, εt = (1 – θ)ηt

� Model for Kt is an ADL(1,0) model
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Models in AR FormModels in AR Form

Models in ADL(1,0) form 

1. Koyck’s model1. Koyck’s model

Yt = α (1 – λ) + λYt-1 + β(1 – λ)Xt + vt

with vt = εt – λεt-1t t t-1

2. Model of adaptive expectation

Yt = α(1 – λ) + λYt-1 + β(1 – λ)Xt + vt

with v = ε – λεwith vt = εt – λεt-1

3. Partial adjustment model

Y = (1 - θ)α  + θY + (1 - θ)βX + εYt = (1 - θ)α  + θYt-1 + (1 - θ)βXt + εt

Error terms are 

� White noise for partial adjustment model� White noise for partial adjustment model

� Autocorrelated  for the other two models
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Regression and Time Series Regression and Time Series 

Stationarity of variables is a crucial prerequisite for 

� estimation methods

� testing procedures

applied to regression models

Specifying a relation between non-stationary variables may result in a 

nonsense or spurious regression
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An IllustrationAn Illustration

Independent random walks: Yt = Yt-1 + εyt, Xt = Xt-1 + εxt

εyt, εxt: independent white noises with variances σy² = 2, σx² = 1

Fitting the model
 35

Fitting the model

Yt = α + βXt + εt

gives 
 25

 30

 35
yy

xx

gives 

Ŷt = - 8.18 + 0.68Xt

t-statistic for X: t = 17.1
 15

 20

 25

t-statistic for X: t = 17.1

p-value = 1.2 E-40

R2 = 0.50, DW = 0.11
 5

 10

R2 = 0.50, DW = 0.11

-5

 0

-15

-10

 0  50  100  150  200
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Models in Non-stationary Time Models in Non-stationary Time 
Series Series 
Given that Xt ~ I(1), Yt ~ I(1) and the model

Yt = α + βXt + εtYt = α + βXt + εt

it follows in general that εt ~ I(1), i.e., the error terms are non-

stationary 

Consequences for OLS estimation of α and β 

� (Asymptotic) distributions of t- and F -statistics are different from 

those under stationaritythose under stationarity

� R2 indicates explanatory potential 

� Highly autocorrelated residuals, DW statistic converges for growing N� Highly autocorrelated residuals, DW statistic converges for growing N
to zero

Nonsense or spurious regression (Granger & Newbold, 1974)Nonsense or spurious regression (Granger & Newbold, 1974)

� Non-stationary time series are trended; causes an apparent 
relationship
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Avoiding Spurious RegressionAvoiding Spurious Regression

� Identification of non-stationarity: unit-root tests

� Models for non-stationary variables� Models for non-stationary variables

� Elimination of stochastic trends: specifying the model for differences

� Inclusion of lagged variables may result in stationary error terms

� Explained and explanatory variables may have a common stochastic 

trend, are cointegrated: equilibrium relation, error-correction models
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An Example: ADL(1,1) ModelAn Example: ADL(1,1) Model

ADL(1,1) model with Yt ~ I(1), Xt ~ I(1) 

Yt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εtYt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt

� The error terms are stationary if θ =1, φ0 = φ1 = 0 

εt = Yt – (δ + θYt-1 + φ0Xt + φ1Xt-1) ~ I(0)t t t-1 0 t 1 t-1

� Common trend implies an equilibrium relation, i.e.,

Yt-1 – βXt-1 ~ I(0) 

error-correction form of the ADL(1,1) modelerror-correction form of the ADL(1,1) model

∆Yt = φ0∆Xt – (1 – θ)(Yt-1 – α – βXt-1) + εt
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The Drunk and her DogThe Drunk and her Dog
Obrázek nelze zobrazit. V počítači pravděpodobně není k dispozici dostatek paměti pro otevření obrázku nebo byl obrázek poškozen. Restartujte počítač a otevřete příslušný soubor znovu. Pokud se opět zobrazí červený křížek, bude nutné obrázek odstranit a v ložit jej znovu.

M. P. Murray, A drunk 

and her dog: An 

illustration of illustration of 

cointegration and 

error correction. error correction. 

The American 
Statistician, 48
(1997), 37-39(1997), 37-39

drunk: xt – xt-1 = ut

dog: y – y = wdog: yt – yt-1 = wt

Cointegration: 

x –x = u +c(y –x )xt–xt-1 = ut+c(yt-1–xt-1)

yt–yt-1 = wt+d(xt-1–yt-1)
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Cointegrated VariablesCointegrated Variables

Non-stationary variables X, Y:

Xt ~ I(1), Yt ~ I(1)Xt ~ I(1), Yt ~ I(1)

if a β exists such that 

Zt = Yt - βXt ~ I(0)t t t 

� Xt and Yt have a common stochastic trend 

� Xt and Yt are called “cointegrated”t t

� β: cointegration parameter 

� (1, - β)’: cointegration vector

Cointegration implies a long-run equilibrium; cf. Granger’s 

Representation Theorem 
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Error-correction ModelError-correction Model

Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 

variables is cointegrated, then an error-correction (EC) relation of the 

variables existsvariables exists

non-stationary processes Yt ~ I(1), Xt ~ I(1) with cointegrating vector 

(1, -β)’: error-correction representation (1, -β)’: error-correction representation 

θ(L)∆Yt = δ + Φ(L)∆Xt-1 - γ(Yt-1 – βXt-1) + α(L)εt

with white noise ε , lag polynomials θ(L) (with θ =1), Φ(L), and α(L)with white noise εt, lag polynomials θ(L) (with θ0=1), Φ(L), and α(L)

� Error-correction model: describes

� the short-run behaviour � the short-run behaviour 

� consistently with the long-run equilibrium

� Long-run equilibrium: Yt = βXt, deviations from equilibrium: Yt – βXtLong-run equilibrium: Yt = βXt, deviations from equilibrium: Yt – βXt

� Converse statement: if Yt ~ I(1), Xt ~ I(1) have an error-correction 

representation, then they are cointegrated
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Long-run EquilibriumLong-run Equilibrium

Equilibrium defined by 

Yt = α + βXtYt = α + βXt

Equilibrium error: zt = Yt - βXt - α = Zt - α 

Two cases:

1. zt ~ I(0): equilibrium error stationary, fluctuating around zero

� Yt, βXt cointegrated

� Yt = α + βXt describes an equilibrium

2. zt ~ I(1), Yt, βXt not integrated 

z ~ I(1) non-stationary process� zt ~ I(1) non-stationary process

� Yt = α + βXt does not describe an equilibrium, spurious regression

Cointegration, i.e., existence of an equilibrium vector, implies a long-run Cointegration, i.e., existence of an equilibrium vector, implies a long-run 

equilibrium relation
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Example: Purchasing Power Example: Purchasing Power 
Parity (PPP)Parity (PPP)
Verbeek’s dataset PPP: price indices and exchange rates for France 

and Italy, monthly, T = 186 (1/1981-6/1996)

� Variables: LNIT (log price index Italy), LNFR (log price index France), 

LNX (log exchange rate France/Italy) 

LNIT, LNFR, LNX non-stationary (DF-test)� LNIT, LNFR, LNX non-stationary (DF-test)

� LNPt = LNITt – LNFRt, i.e., log of price index ratio, non-stationary

Purchasing power parity (PPP): exchange rate between the currencies Purchasing power parity (PPP): exchange rate between the currencies 

(Franc, Lira) equals the ratio of price levels of the countries 

� Relative PPP: equality fulfilled only in the long run; equilibrium or � Relative PPP: equality fulfilled only in the long run; equilibrium or 

cointegrating relation

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt
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PPP: The VariablesPPP: The Variables

Test for unit roots (non-

stationarity) of

LNX (log exchange rate 
 5.8

 5.9

 0.15

 0.2
LNP (right)

LNX (left)

� LNX (log exchange rate 

France/Italy) 

� LNP = LNIT – LNFR, i.e.,  5.6

 5.7

 0

 0.05

 0.1

� LNP = LNIT – LNFR, i.e., 

the log of the price 

index ratio France/Italy
 5.4

 5.5

-0.15

-0.1

-0.05

Results from DF tests:

const. +trend

 5.3

 5.4

-0.25

-0.2

-0.15

const. +trend

LNP DF stat -0.99 -2.96

p-value 0.76 0.14
DF test indicates:

 5.2

 1982  1984  1986  1988  1990  1992  1994  1996

-0.3

LNX DF stat -0.33 -1.90

p-value 0.92 0.65

DF test indicates:

LNX ~ I(1), LNP ~ I(1)
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PPP: Equilibrium RelationsPPP: Equilibrium Relations

As discussed by Verbeek:

1. If PPP holds in long run, real exchange rate is stationary  

LNXt – (LNITt – LNFRt) = εt

2. Change of relative prices corresponds to the change of exchange 
rate, i.e., short run deviations are stationary rate, i.e., short run deviations are stationary 

LNXt – β (LNITt – LNFRt) = εt

3. Generalization of case 2:

LNX = α + β LNIT – β LNFR + εLNXt = α + β1 LNITt – β2 LNFRt + εt

with εt ~ I(0) 

April 5, 2013 Hackl, Econometrics 2, Lecture 4 53



PPP: Equilibrium Relation 2PPP: Equilibrium Relation 2

OLS estimation of 

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt

Model 2: OLS, using observations 1981:01-1996:06 (T = 186)

Dependent variable: LNX

coefficient   std. error   t-ratio    p-value 

---------------------------------------------------------

const       5,48720      0,00677678   809,7     0,0000    ***

LNP         0,982213     0,0513277     19,14    1,24e-045 ***LNP         0,982213     0,0513277     19,14    1,24e-045 ***

Mean dependent var 5,439818   S.D. dependent var 0,148368

Sum squared resid 1,361936   S.E. of regression   0,086034

R-squared            0,665570   Adjusted R-squared   0,663753

F(1, 184)            366,1905   P-value(F)           1,24e-45F(1, 184)            366,1905   P-value(F)           1,24e-45

Log-likelihood       193,3435   Akaike criterion    -382,6870

Schwarz criterion   -376,2355   Hannan-Quinn        -380,0726

rho                  0,967239   Durbin-Watson        0,055469
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Estimation of Cointegration Estimation of Cointegration 
Parameter Parameter 
Cointegrating relation, Xt ~ I(1), Yt ~ I(1), εt ~ I(0)

Yt = βXt + εt Yt = βXt + εt 

OLS estimate b of β 

� Estimate b is super consistent

� Converges faster to β than standard asymptotic theory says

� Converges to β in spite of omission of relevant regressors (short-term 

dynamics) dynamics) 

� For b ≠ β: non-stationary OLS residuals with much larger variance than 

for b close to βfor b close to β

� Bias of b may be substantial!

� Non-standard theory 

� Asymptotic distribution of √T(b- β) degenerate, not normal (cf. standard 

theory)

� t-statistic may be misleading
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Estimation of Spurious Estimation of Spurious 
Regression ParameterRegression Parameter
Non-stationary processes Xt ~ I(1), Yt ~ I(1)

Yt = βXt + εt Yt = βXt + εt 

Spurious regression, εt ~ I(1) 

OLS estimate b of β 

� Non-standard  distribution

� Large values of R2, t-statistic

� Highly autocorrelated residuals

� DW statistic close to zero

Remedy: add lagged regressors, e.g., Yt-1

� For Yt = δ + θYt-1 + φ0Xt + φ1Xt-1 + εt, parameter values can be found such 

that ε ~ I(0) that εt ~ I(0) 

� Consistent estimates
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Identification of Cointegration Identification of Cointegration 

Information about cointegration

� Economic theory� Economic theory

� Visual inspection of data

� Statistical tests
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Testing for Cointegration Testing for Cointegration 

Non-stationary variables Xt ~ I(1), Yt ~ I(1)

Yt = α + βXt + εtYt = α + βXt + εt

� Xt and Yt are cointegrated: εt ~ I(0)

� Xt and Yt are not cointegrated: εt ~ I(1)t t t

Tests for cointegration: 

� If β is known, unit root test based on differences Yt - βXtt t

� Test procedures

� Unit root test (DF or ADF) based on residuals et

Cointegrating regression Durbin-Watson (CRDW) test: DW statistic� Cointegrating regression Durbin-Watson (CRDW) test: DW statistic

� Johansen technique: extends the cointegration technique to the 

multivariate casemultivariate case
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DF Test for Cointegration DF Test for Cointegration 

Non-stationary variables Xt ~ I(1), Yt ~ I(1)

Yt = α + βXt + εtYt = α + βXt + εt

� Xt and Yt are cointegrated: εt ~ I(0)

� Residuals et show pattern similar to εt, et ~ I(0), residuals are t t t

stationary

Tests for cointegration based on residuals et

∆e = γ + γ e + u∆et = γ0 + γ1et-1 + ut

� H0: γ1 = 0, i.e., residuals have a unit root, et ~ I(1) 

H implies � H0 implies 

� Xt and Yt are not cointegrated 

� Rejection of H suggests that X and Y are cointegrated� Rejection of H0 suggests that Xt and Yt are cointegrated
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DF Test for Cointegration, cont’dDF Test for Cointegration, cont’d

Critical values of DF test for residuals 

� are smaller than those of DF test for observations � are smaller than those of DF test for observations 

� depend upon (see Verbeek, Tab. 9.2)

� number of elements of cointegrating vector (including left-hand side), K

� number of observations T

� significance level

some asymptotic 

critical values for the DF- 1% 5%critical values for the DF-

test with constant term

1% 5%

Observations -3.43 -2.86

Residuals, K=2 -3.90 -3.34Residuals, K=2 -3.90 -3.34
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Cointegrating Regression Cointegrating Regression 
Durbin-Watson (CRDW) TestDurbin-Watson (CRDW) Test
Non-stationary variables Xt ~ I(1), Yt ~ I(1)

Yt = α + βXt + εtYt = α + βXt + εt

Cointegrating regression Durbin-Watson (CRDW) test: DW statistic from 

OLS-fitting Yt = α + βXt + εt

� H0: residuals et have a unit root, i.e., et ~ I(1), i.e., Xt and Yt are not 

cointegrated 

DW statistic converges with growing T to zero for not cointegrated � DW statistic converges with growing T to zero for not cointegrated 

variables 
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CRDW Test, cont’dCRDW Test, cont’d

� Rule of thumb 

� If CRDW < R2, cointegration likely to be false; do not reject H00

� If CRDW > R2, cointegration may occur; reject H0

� Critical values from Monte Carlo simulations, which depend upon 

(see Verbeek, Tab. 9.3)(see Verbeek, Tab. 9.3)

� Number of regressors plus 1 (dependent variable)

� Number of observations T� Number of observations T

� Significance level

K+1 T = 50 T = 100
some 5% critical values 

for the CRDW- test 

K+1 T = 50 T = 100

2 0.72 0.38

3 0.89 0.483 0.89 0.48

4 1.05 0.58
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PPP: Equilibrium Relation 2PPP: Equilibrium Relation 2

OLS estimation of 

LNXt = α + β LNPt + εtLNXt = α + β LNPt + εt

Model 2: OLS, using observations 1981:01-1996:06 (T = 186)

Dependent variable: LNX

coefficient   std. error   t-ratio    p-value 

---------------------------------------------------------

const       5,48720      0,00677678   809,7     0,0000    ***

LNP         0,982213     0,0513277     19,14    1,24e-045 ***LNP         0,982213     0,0513277     19,14    1,24e-045 ***

Mean dependent var 5,439818   S.D. dependent var 0,148368

Sum squared resid 1,361936   S.E. of regression   0,086034

R-squared            0,665570   Adjusted R-squared   0,663753

F(1, 184)            366,1905   P-value(F)           1,24e-45F(1, 184)            366,1905   P-value(F)           1,24e-45

Log-likelihood       193,3435   Akaike criterion    -382,6870

Schwarz criterion   -376,2355   Hannan-Quinn        -380,0726

rho                  0,967239   Durbin-Watson        0,055469

DF test statistic for residuals (constant): -1.90, p-value: 0.33 

H0 cannot be rejected: no evidence for cointegration
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Testing for Cointegration, cont’dTesting for Cointegration, cont’d

Residuals from LNXt = α + β LNPt + εt: 

� Tests for cointegration, H0: residuals have unit root, no cointegration� Tests for cointegration, H0: residuals have unit root, no cointegration

� DF test statistic (with constant): -1.90, 5% critical value: -3.37 

� CRDW test: DW statistic: 0.055 < 0.20, the 5% critical value for two 

variables, 200 observations variables, 200 observations 

� DF test, rule of thump: 0.055 < 0.665 = R2

� Both tests suggest: H0 cannot be rejected, no evidence for � Both tests suggest: H0 cannot be rejected, no evidence for 
cointegration

� Time series plot indicates non-stationary residuals (see next slide)

Same result for equilibrium relations 1 and 3; reasons could be:Same result for equilibrium relations 1 and 3; reasons could be:

� Time series too short

� No PPP between France and ItalyNo PPP between France and Italy

Attention: equilibrium relation 3 has three variables; two cointegration 
relations are possible
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Testing for CointegrationTesting for Cointegration

Residuals from LNXt = α + β LNPt + εt: 

� Time series plot indicates non-stationarity of residuals� Time series plot indicates non-stationarity of residuals

Time series plot 
 0.2

 0.25

Time series plot 

of residuals
 0.1

 0.15

u
h
a
t
2

-0.05

 0

 0.05
u
h
a
t
2

-0.15

-0.1

 1982  1984  1986  1988  1990  1992  1994  1996
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Cointegration Test in GRETLCointegration Test in GRETL

� Model > Time series > Cointegration tests > Engle-
Granger

Performs the Performs the 

� DL test for each of the variables

� Estimation of the cointegrating regression� Estimation of the cointegrating regression

� DF test for the residuals of the cointegrating regression

� Model > Time series > Cointegration tests > � Model > Time series > Cointegration tests > 
Johansen

See next lecture
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Error-correction ModelError-correction Model

Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 

variables is cointegrated, then an error-correction relation of the 

variables existsvariables exists

non-stationary processes Yt ~ I(1), Xt ~ I(1) with cointegrating 

vector (1, -β)’: error-correction representation vector (1, -β)’: error-correction representation 

θ(L)∆Yt = δ + Φ(L)∆Xt-1 - γ(Yt-1 – βXt-1) + α(L)εt

with lag polynomials θ(L) (with θ =1), Φ(L), and α(L)with lag polynomials θ(L) (with θ0=1), Φ(L), and α(L)

E.g., ∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt

Error-correction model: describesError-correction model: describes

� the short-run behavior

� consistently with the long-run equilibrium� consistently with the long-run equilibrium

Converse statement: if Yt ~ I(1), Xt ~ I(1) have an error-correction 

representation, then they are cointegrated
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EC Model and Equilibrium EC Model and Equilibrium 
RelationRelation
The EC model

∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt

is a special case of 

θ(L)∆Yt = δ + Φ(L)∆Xt-1 - γ(Yt-1 – βXt-1) + α(L)εtθ(L) Yt = δ + Φ(L) Xt-1 - γ(Yt-1 – βXt-1) + α(L)εt

with θ(L) = 1, Φ(L) = φ1L, and α(L) = 1

� “No change” steady state equilibrium: for ∆Yt = ∆Xt-1 = 0t t-1

Yt – βXt = δ/γ or Yt = α + βXt if α = δ/γ 

the EC model can be written as

∆ ∆∆Yt = φ1∆Xt-1 – γ(Yt-1 – α – βXt-1) + εt

� Steady state growth: If α = δ/γ + λ, λ ≠ 0, 

∆Y = λ + φ ∆X – γ(Y – α – βX ) + ε∆Yt = λ + φ1∆Xt-1 – γ(Yt-1 – α – βXt-1) + εt

deterministic trends for Yt and Xt, long run equilibrium corresponding 

to growth paths ∆Y = ∆X = λ/(1 - φ )
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Analysis of EC Models Analysis of EC Models 

Model specification 

� Unit-root  testing� Unit-root  testing

� Testing for cointegration

� Specification of EC-model: choice of orders of lag polynomials, 

specification analysis

Estimation of model parameters 
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EC Model: EstimationEC Model: Estimation

Model for cointegrated variables Xt, Yt

∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt (A)∆Yt = δ + φ1∆Xt-1 - γ(Yt-1 – βXt-1) + εt (A)

with cointegrating relation 

Yt-1 = βXt-1 + ut (B)t-1 t-1 t

� Cointegration vector (1, - β)’ known: OLS estimation of δ, φ1, and γ 

from (A), standard properties

Unknown cointegration vector (1, –β)’: � Unknown cointegration vector (1, –β)’: 

� Parameter β from (B) super consistently estimated by OLS

OLS estimation of δ, φ , and γ from (A) is not affected by use of the � OLS estimation of δ, φ1, and γ from (A) is not affected by use of the 

estimate for β 
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Your HomeworkYour Homework

1. Use Verbeek’s data set INCOME containing quarterly data INCOME 

(total disposable income) and CONSUM (consumer expenditures) for 

1/1971 to 2/1985 in the UK. 1/1971 to 2/1985 in the UK. 

a. For sd_CONSUM (seasonal difference of CONSUM), specify a DL(s) 
model in sd_INCOME and choose an appropriate s (< 8), using (i) R2 and model in sd_INCOME and choose an appropriate s (< 8), using (i) R and 

(ii) BIC.

b. Assuming that DL(4) is an appropriate lag structure, calculate (i) the short 

run and (ii) the long run multiplier as well as (iii) the average and (iv) the run and (ii) the long run multiplier as well as (iii) the average and (iv) the 

median lag time.

c. Specify a consumption function with the actual expected income as 

explanatory variable; estimate the AR form of the model under the 

assumption of adaptive expectation for the income.

d. Test (i) whether CONSUM and INCOME are I(1); (ii) estimate the simple d. Test (i) whether CONSUM and INCOME are I(1); (ii) estimate the simple 

linear regression of CONSUM on INCOME and test (iii) whether this is an 

equilibrium relation; show (iv) the corresponding time series plots. 
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Your Homework, cont’dYour Homework, cont’d

2. Generate 500 random numbers (a) from a random walk with trend: xt

= 0.1 +xt-1 + εt; and (b) from an AR(1) process: yt = 0.2 + 0.7yt-1 + ηt; 

for ε and η use Monte Carlo random numbers from N(0,1). Estimate for εt and ηt use Monte Carlo random numbers from N(0,1). Estimate 

regressions of xt and yt on t; report the values for R2. 
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