v1=5:3:15 v1 = 5 8 11 14 v2=linspace(5,15,20) v2 = Columns 1 through 6 5.0000 5.5263 6.0526 6.5789 7.1053 7.6316 Columns 7 through 12 8.1579 8.6842 9.2105 9.7368 10.2632 10.7895 Columns 13 through 18 11.3158 11.8421 12.3684 12.8947 13.4211 13.9474 Columns 19 through 20 14.4737 15.0000 v=1:5; help round round Round towards nearest integer. round(X) rounds the elements of X to the nearest integers. See also floor, ceil, fix. Overloaded methods: codistributed/round gpuArray/round Reference page in Help browser doc round v=[1.8 -1.8 2.5 -2.5 1.1 -1.1] v = 1.8000 -1.8000 2.5000 -2.5000 1.1000 -1.1000 round(v) ans = 2 -2 3 -3 1 -1 floor(v) ans = 1 -2 2 -3 1 -2 ceil(v) ans = 2 -1 3 -2 2 -1 v v = 1.8000 -1.8000 2.5000 -2.5000 1.1000 -1.1000 fix(v) ans = 1 -1 2 -2 1 -1 v=1:5; 5+8 ans = 13 5*v ans = 5 10 15 20 25 v*5 ans = 5 10 15 20 25 v+5 ans = 6 7 8 9 10 v-5 ans = -4 -3 -2 -1 0 v/5 ans = 0.2000 0.4000 0.6000 0.8000 1.0000 v\5 ans = 0 0 0 0 1 v^2 {Error using ^ Inputs must be a scalar and a square matrix. To compute elementwise POWER, use POWER (.^) instead. } v.^2 ans = 1 4 9 16 25 v*v {Error using * Inner matrix dimensions must agree. } v*v' ans = 55 v'*v ans = 1 2 3 4 5 2 4 6 8 10 3 6 9 12 15 4 8 12 16 20 5 10 15 20 25 v+v1 {Error using + Matrix dimensions must agree. } v+v ans = 2 4 6 8 10 v-v ans = 0 0 0 0 0 v/v ans = 1.0000 v./v ans = 1 1 1 1 1 a=1:4; M=[a;a+4;a+8] M = 1 2 3 4 5 6 7 8 9 10 11 12 b=[1 2 3 5:9 -1] b = 1 2 3 5 6 7 8 9 -1 M M = 1 2 3 4 5 6 7 8 9 10 11 12 M+4 ans = 5 6 7 8 9 10 11 12 13 14 15 16 M-4 ans = -3 -2 -1 0 1 2 3 4 5 6 7 8 M*4 ans = 4 8 12 16 20 24 28 32 36 40 44 48 M/4 ans = 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500 2.5000 2.7500 3.0000 M.+M M.+M | {Error: Unexpected MATLAB operator. } M.*M ans = 1 4 9 16 25 36 49 64 81 100 121 144 M*a' ans = 30 70 110 M*a {Error using * Inner matrix dimensions must agree. } M/a ans = 1.0000 2.3333 3.6667 9/3 ans = 3 M\a {Error using \ Matrix dimensions must agree. } M*M' ans = 30 70 110 70 174 278 110 278 446 M'*M ans = 107 122 137 152 122 140 158 176 137 158 179 200 152 176 200 224 M1=[M (1:3)'] M1 = 1 2 3 4 1 5 6 7 8 2 9 10 11 12 3 M1=[M 1;2;3] {Error using horzcat Dimensions of matrices being concatenated are not consistent. } M1=[M (1:3)'] M1 = 1 2 3 4 1 5 6 7 8 2 9 10 11 12 3 M1=[M [1;2;3]] M1 = 1 2 3 4 1 5 6 7 8 2 9 10 11 12 3 M+M ans = 2 4 6 8 10 12 14 16 18 20 22 24 M+M1 {Error using + Matrix dimensions must agree. } M-M ans = 0 0 0 0 0 0 0 0 0 0 0 0 M'*M1 ans = 107 122 137 152 38 122 140 158 176 44 137 158 179 200 50 152 176 200 224 56 M'.*M1 {Error using .* Matrix dimensions must agree. } M/M [Warning: Rank deficient, rank = 2, tol = 9.378592e-15.] ans = 1.0000 0 0 0.5000 0 0.5000 0 0 1.0000 a(1) ans = 1 a=5:10; a(1) ans = 5 a a = 5 6 7 8 9 10 a(4/2) ans = 6 a(4/3) {Subscript indices must either be real positive integers or logicals. } a(1:2) ans = 5 6 a([2 3]) ans = 6 7 a=10:18; a([2 3]) ans = 11 12 a=11:18; a([2 3]) ans = 12 13 a([3 2]) ans = 13 12 a([3 2 2 2]) ans = 13 12 12 12 a([3 2 2 2 12]) {Index exceeds matrix dimensions. } a(2:4) ans = 12 13 14 a([2:4]) ans = 12 13 14 a([2:4 1]) ans = 12 13 14 11 a([2:2:8]) ans = 12 14 16 18 a([4 1 9/3]) ans = 14 11 13 a([2:4 1:3 7]) ans = 12 13 14 11 12 13 17 a(:) ans = 11 12 13 14 15 16 17 18 a(end) ans = 18 a(end-1) ans = 17 a(3:end) ans = 13 14 15 16 17 18 a(end:-1:1) ans = 18 17 16 15 14 13 12 11 M M = 1 2 3 4 5 6 7 8 9 10 11 12 M(3) ans = 9 M(5) ans = 6 M(10) ans = 4 M M = 1 2 3 4 5 6 7 8 9 10 11 12 M(:) ans = 1 5 9 2 6 10 3 7 11 4 8 12 M M = 1 2 3 4 5 6 7 8 9 10 11 12 M(2,2) ans = 6 M(2,2:4) ans = 6 7 8 M([1:2 1],2:3) ans = 2 3 6 7 2 3 M M = 1 2 3 4 5 6 7 8 9 10 11 12 M(1,:) ans = 1 2 3 4 M([1 end],:) ans = 1 2 3 4 9 10 11 12 M(:,2:3) ans = 2 3 6 7 10 11 M(1:2,3:4) ans = 3 4 7 8 M M = 1 2 3 4 5 6 7 8 9 10 11 12 M(:,:) ans = 1 2 3 4 5 6 7 8 9 10 11 12 v v = 1 2 3 4 5 v(2)=10 v = 1 10 3 4 5 v(2)=[10 20] {In an assignment A(I) = B, the number of elements in B and I must be the same. } v(2:3)=[10 20] v = 1 10 20 4 5 v(:)=-5 v = -5 -5 -5 -5 -5 v=1:6; v(2:3)=0 v = 1 0 0 4 5 6 v(1:2)=v(3:4) v = 0 4 0 4 5 6 v=1:6; v(1:2)=v([5 4]) v = 5 4 3 4 5 6 M M = 1 2 3 4 5 6 7 8 9 10 11 12 M(3)=100 M = 1 2 3 4 5 6 7 8 100 10 11 12 M(3,:)=-5 M = 1 2 3 4 5 6 7 8 -5 -5 -5 -5 M(3,:)=[-5 5] {Subscripted assignment dimension mismatch. } M(3,:)=[-5 5 8 9] M = 1 2 3 4 5 6 7 8 -5 5 8 9 M(3,:)=a(1:4) M = 1 2 3 4 5 6 7 8 11 12 13 14 M(:,1)=a(1:3) M = 11 2 3 4 12 6 7 8 13 12 13 14 M1=M; M(:)=-4 M = -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 M=M1; M(1,:)=M(3,:) M = 13 12 13 14 12 6 7 8 13 12 13 14 M(1,:)=M(3,:)*10 M = 130 120 130 140 12 6 7 8 13 12 13 14 M(1:2,3:4) ans = 130 140 7 8 M M = 130 120 130 140 12 6 7 8 13 12 13 14 M(1:2,3:4)=[10 20;30 40] M = 130 120 10 20 12 6 30 40 13 12 13 14 diary off