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Time SeriesTime Series

Time-ordered sequence of observations of a random variable

Examples:
� Annual values of private consumption 

Yearly changes in expenditures on private consumption� Yearly changes in expenditures on private consumption
� Quarterly values of personal disposable income 
� Monthly values of imports� Monthly values of imports

Notation:Notation:
� Random variable Y
� Sequence of observations Y1, Y2, ... , YT

Deviations from the mean: y = Y – E{Y } = Y – µ� Deviations from the mean: yt = Yt – E{Yt} = Yt – µ
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Components of a Time SeriesComponents of a Time Series

Components or characteristics of a time series are
� Trend
� Seasonality
� Irregular fluctuations
Time series model: represents the characteristics as well as possible Time series model: represents the characteristics as well as possible 

interactions
Purpose of modelingPurpose of modeling
� Description of the time series 
� Forecasting the future

Example: Quarterly observations of the disposable income
Yt = βt + ΣiγiDit + εtYt = βt + ΣiγiDit + εt

with Dit = 1 if t corresponds to i-th quarter, Dit = 0 otherwise 
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Stochastic ProcessStochastic Process

Time series: realization of a stochastic process

Stochastic process is a sequence of random variables Yt, e.g.,Stochastic process is a sequence of random variables Yt, e.g.,

{Yt, t = 1, ..., n}

{Yt, t = -∞, ..., ∞} t

Joint distribution of the Y1, ... , Yn: 

p(y1, …., yn)1 n

Of special interest

� Evolution of the expectation µt = E{Yt} over time

� Dependence structure over time

Example: Extrapolation of a time series as a tool for forecasting Example: Extrapolation of a time series as a tool for forecasting 
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White NoiseWhite Noise

White noise process {Yt, t = -∞, ..., ∞}

� E{Yt} = 0 � E{Yt} = 0 

� V{Yt} = σ² 

� Cov{Yt,Yt-s} = 0 for all (positive or negative) integers st t-s

i.e., a mean zero, serially uncorrelated, homoskedastic process
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AR(1)-ProcessAR(1)-Process

States the dependence structure between consecutive observations as

Yt = δ + θYt-1 + εt,   |θ| < 1Yt = δ + θYt-1 + εt,   |θ| < 1

with εt: white noise, i.e., V{εt} = σ² (see next slide)  

� Autoregressive process of order 1

From Yt = δ + θYt-1 + εt = δ + θδ + θ²δ +… +εt + θεt-1 + θ²εt-2 +… follows

E{Yt} = µ = δ(1-θ)-1t

� |θ| < 1 needed for convergence! Invertibility condition 

In deviations from µ, yt = Yt – µ: 
y = θy + yt = θyt-1 + εt
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AR(1)-Process, cont’dAR(1)-Process, cont’d

Autocovariances γk = Cov{Yt,Yt-k}

� k=0: γ0 = V{Yt} = θ²V{Yt-1} + V{εt} = … = Σi θ2i σ² = σ²(1-θ²)-1� k=0: γ0 = V{Yt} = θ²V{Yt-1} + V{εt} = … = Σi θ σ² = σ²(1-θ²)

� k=1: γ1 = Cov{Yt,Yt-1} = E{ytyt-1} = E{(θyt-1+εt)yt-1} = θV{yt-1} 

= θσ²(1-θ²)-1

� In general: 

γk = Cov{Yt,Yt-k} = θkσ²(1-θ²)-1, k = 0, ±1, … k t t-k

depends upon k, not upon t!
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MA(1)-ProcessMA(1)-Process

States the dependence structure between consecutive observations as

Yt = µ + εt + αεt-1Yt = µ + εt + αεt-1
with εt: white noise, V{εt} = σ²

Moving average process of order 1

E{Yt} = µ

Autocovariances γk = Cov{Yt,Yt-k}k t t-k

� k=0: γ0 = V{Yt} = σ²(1+α²)

� k=1: γ1 = Cov{Yt,Yt-1} = ασ²

� γk = 0 for k = 2, 3, …

� Depends upon k, not upon t!
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AR-Representation of MA-AR-Representation of MA-
ProcessProcess
The AR(1) can be represented as MA-process of infinite order

yt = θyt-1 + εt = Σ∞
i=0 θi εt-iyt = θyt-1 + εt = Σ i=0 θ εt-i

given that |θ| < 1

Similarly: the AR representation of the MA(1) process

yt = αyt-1 – α²yt-2 ± … + εt = Σ∞
i=0 (-1)i αi+1yt-i-1 + εt

given that |α| < 1
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Stationary ProcessesStationary Processes

Refers to the joint distribution of Yt’s, in particular to second moments

(Weak) stationary or covariance stationary process: the first two 
moments are finite and not affected by a shift of timemoments are finite and not affected by a shift of time

E{Yt} = µ for all t

Cov{Y , Y } = γ , k = 0, ±1, … for all t and all kCov{Yt, Yt+k} = γk, k = 0, ±1, … for all t and all k

Cov{Yt, Yt+k}, k = 0, ±1,…: covariance function; γt,k = γt,-k
A process is called strictly stationary if its stochastic properties are A process is called strictly stationary if its stochastic properties are 

unaffected by a change of the time origin

� The joint probability distribution at any set of times is not affected by � The joint probability distribution at any set of times is not affected by 
an arbitrary shift along the time axis
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AC and PAC FunctionAC and PAC Function

Autocorrelation function (AC function, ACF)Autocorrelation function (AC function, ACF)
Independent of the scale of Y
� For a stationary process: � For a stationary process: 

ρk = Corr{Yt,Yt-k} = γk/γ0, k = 0, ±1,…
� Properties: � Properties: 

� |ρk| ≤ 1
� ρk = ρ-k 

ρ = 1 � ρ0 = 1 

� Correlogram: graphical presentation of the AC function
Partial autocorrelation function (PAC function, PACF):  Partial autocorrelation function (PAC function, PACF):  

θkk = Corr{Yt, Yt-k|Yt-1,...,Yt-k+1}, k = 0, ±1, …
� θkk is obtained from Yt = θk0 + θk1Yt-1 + ... + θkkYt-k� θkk is obtained from Yt = θk0 + θk1Yt-1 + ... + θkkYt-k

� Partial correlogram: graphical representation of the PAC function
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ExamplesExamples

for the AC and PAC functions:

� White noise

ρ = θ = 1ρ0 = θ00 = 1

ρk = θkk = 0, if k ≠ 0

white noise is stationarywhite noise is stationary

� AR(1) process, Yt = δ + θYt-1 + εt
ρ = θk, k = 0, ±1,…ρk = θk, k = 0, ±1,…

θ00 = 1, θ11 = θ, θkk = 0 for k > 1

� MA(1) process, Y = µ + ε + αε� MA(1) process, Yt = µ + εt + αεt-1
ρ0 = 1, ρ1 = α/(1 + α2), ρk = 0 for k > 1 

PAC function: damped exponential if α > 0, alternating and damped PAC function: damped exponential if α > 0, alternating and damped 
exponential if α < 0
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Stationarity of MA- and AR-Stationarity of MA- and AR-
ProcessesProcesses
MA processes are stationary 

� Weighted sum of white noises 

E.g., MA(1) process: Y = µ + ε + αε� E.g., MA(1) process: Yt = µ + εt + αεt-1
ρ0 = 1, ρ1 = α/(1 + α2), ρk = 0 for k > 1 

An AR process is stationary if it is invertible An AR process is stationary if it is invertible 

� AR(1) process, Yt = θYt-1 + εt = Σ∞
i=0 θi εt-i if |θ| < 1 (invertibility 

condition)condition)

ρk = θk, k = 0, ±1,…
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AC and PAC Function: AC and PAC Function: 
EstimatesEstimates
� Estimator for the AC function ρk:
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� Estimator for the PAC function θkk: coefficient of Yt-k in the regression 
of Y on Y , …, Y
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of Yt on Yt-1, …, Yt-k
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AR(1) Processes, Verbeek, Fig. 8.1AR(1) Processes, Verbeek, Fig. 8.1
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MA(1) Processes, Verbeek, Fig. 8.2MA(1) Processes, Verbeek, Fig. 8.2
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The ARMA(p,q) ProcessThe ARMA(p,q) Process

Generalization of the AR and MA processes: ARMA(p,q) process

yt = θ1yt-1 + … + θpyt-p + εt + α1εt-1 + … + αqεt-q
with white noise εwith white noise εt

Lag (or shift) operator L (Lyt = yt-1, L0yt = Iyt = yt, Lpyt = yt-p)

ARMA(p,q) process in operator notationARMA(p,q) process in operator notation

θ(L)yt = α(L)εt
with operator polynomials θ(L) and α(L)with operator polynomials θ(L) and α(L)

θ(L) = I - θ1L - … - θpLp

α(L) = I + α L + … + α Lqα(L) = I + α1L + … + αqLq
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Lag OperatorLag Operator

Lag (or shift) operator L

� Lyt = yt-1, L0yt = Iyt = yt, Lpyt = yt-p
Algebra of polynomials in L like algebra of variables� Algebra of polynomials in L like algebra of variables

Examples: 

(I - ϕ L)(I - ϕ L) = I – (ϕ + ϕ )L + ϕ ϕ L2� (I - ϕ1L)(I - ϕ2L) = I – (ϕ1+ ϕ2)L + ϕ1ϕ2L
2

� (I - θL)-1 = Σ∞
i=0θi Li

MA(∞) representation of the AR(1) process

ϕ ϕ ϕ ϕ ϕ ϕ

� MA(∞) representation of the AR(1) process

yt = (I - θL)-1εt
the infinite sum defined only (e.g., finite variance) if |θ| < 1the infinite sum defined only (e.g., finite variance) if |θ| < 1

� MA(∞) representation of the ARMA(p,q) process

y = [θ (L)]-1α(L)εyt = [θ (L)]-1α(L)εt
similarly the AR(∞) representations; invertibility condition: restrictions 
on parameters
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Invertibility of Lag PolynomialsInvertibility of Lag Polynomials

Invertibility condition for lag polynomial θ(L) = I - θL: |θ| < 1

Invertibility condition for lag polynomial of order 2, θ(L) = I - θ1L - θ2L2

θ(L) = I - θ L - θ L2 = (I - ϕ L)(I - ϕ L) with ϕ +ϕ = θ and -ϕ ϕ = θ

ϕ ϕ ϕ

� θ(L) = I - θ1L - θ2L2 = (I - ϕ1L)(I - ϕ2L) with ϕ1+ϕ2 = θ1 and -ϕ1ϕ2 = θ2
� Invertibility conditions: both (I – ϕ1L) and (I – ϕ2L) invertible; |ϕ1| < 

1, |ϕ | < 1

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

1, |ϕ2| < 1

Invertibility in terms of the characteristic equation 

θ(z) = (1- ϕ z) (1- ϕ z) = 0 

ϕ ϕ

θ(z) = (1- ϕ1z) (1- ϕ2z) = 0 

� Characteristic roots: solutions z1, z2 from (1- ϕ1z) (1- ϕ2z) = 0

z1 = ϕ1
-1, z2 = ϕ2

-1

ϕ ϕ

ϕ ϕ

z1 = ϕ1
-1, z2 = ϕ2

-1

� Invertibility conditions: |z1| = |ϕ1
-1| > 1, |z2| = |ϕ2

-1| > 1

Polynomial θ(L) is not invertible if any solution zi fulfills |zi| ≤ 1

ϕ ϕ

Polynomial θ(L) is not invertible if any solution zi fulfills |zi| ≤ 1

Can be generalized to lag polynomials of higher order
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Unit Root and InvertibilityUnit Root and Invertibility

Lag polynomial of order 1: θ(z) = (1- θz) = 0,

� Unit root: characteristic root z = 1; implies θ = 1

Invertibility condition |θ| < 1 is violated, AR process Y = θY + ε is � Invertibility condition |θ| < 1 is violated, AR process Yt = θYt-1 + εt is 
non-stationary 

Lag polynomial of order 2

ϕ ϕ

Lag polynomial of order 2

� Characteristic equation θ(z) = (1- ϕ1z) (1- ϕ2z) = 0 

� Characteristic roots z = 1/ϕ , i = 1, 2

ϕ ϕ

ϕ ϕ

� Characteristic roots zi = 1/ϕi, i = 1, 2

� Unit root: a characteristic root zi of value 1; violates the invertibility 
condition |z1| = |ϕ1

-1| > 1, |z2| = |ϕ2
-1| > 1condition |z1| = |ϕ1 | > 1, |z2| = |ϕ2 | > 1

� AR(2) process Yt is non-stationary

AR(p) process: polynomial θ(z) = 1 - θ1z - … - θpLp, evaluated at z = 1, is AR(p) process: polynomial θ(z) = 1 - θ1z - … - θpL , evaluated at z = 1, is 
zero, given Σiθi = 1: Σiθi = 1 indicates a unit root

Tests for unit roots are important tools for identifying stationarity 
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Types of TrendTypes of Trend

Trend: The development of the expected value of a process over time; 
typically an increasing (or decreasing) pattern

Deterministic trend: a function f(t) of the time, describing the � Deterministic trend: a function f(t) of the time, describing the 
evolution of E{Yt} over time

Yt = f(t) + εt, εt: white noise Yt = f(t) + εt, εt: white noise 

Example: Yt = α + βt + εt describes a linear trend of Y; an increasing 
trend corresponds to β > 0trend corresponds to β > 0

� Stochastic trend: Yt = δ + Yt-1 + εt or 

∆Yt = Yt – Yt-1 = δ + εt, εt: white noise∆Yt = Yt – Yt-1 = δ + εt, εt: white noise
� describes an irregular or random fluctuation of the differences ∆Yt around 

the expected value δ

AR(1) – or AR(p) – process with unit root� AR(1) – or AR(p) – process with unit root

� “random walk with trend”
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Example: Private ConsumptionExample: Private Consumption

Private consumption, AWM database; level values (PCR) and first 
differences (PCR_D)

800000

900000

10000

15000

600000

700000

0

5000

400000

500000

-10000

-5000

300000
1970 1975 1980 1985 1990 1995 2000

PCR

-15000
1970 1975 1980 1985 1990 1995 2000

PCR_D

Mean of PCD_D: 3740

PCR PCR_D

Hackl, Econometrics 2, Lecture 3 30April 1, 2016



Trends: Random Walk and AR Trends: Random Walk and AR 
ProcessProcess
Random walk: Yt = Yt-1 + εt; random walk with trend: Yt = 0.1 +Yt-1 + εt; 

AR(1) process: Yt = 0.2 + 0.7Yt-1 + εt; εt simulated from N(0,1) 
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Random Walk with TrendRandom Walk with Trend

The random walk with trend Yt = δ + Yt-1 + εt can be written as

Yt = Y0 + δt + Σi≤t εi
δ: trend parameter δ: trend parameter 

Components of the process

Deterministic growth path Y + δt� Deterministic growth path Y0 + δt

� Cumulative errors Σi≤t εi
Properties: Properties: 

� Expectation Y0 + δt is depending on Y0, i.e., on the origin (t=0)!

� V{Y } = σ²t becomes arbitrarily large!� V{Yt} = σ²t becomes arbitrarily large!

� Corr{Yt,Yt-k} = √(1-k/t)

� Random walk with trend is non-stationary!� Random walk with trend is non-stationary!

Hackl, Econometrics 2, Lecture 3 32April 1, 2016



Random Walk with Trend, cont’dRandom Walk with Trend, cont’d

From Corr{Yt,Yt-k} = √(1-k/t) follows

� For fixed k,Yt and Yt-k are the stronger correlated, the larger t

With increasing k, correlation tends to zero, but the slower the larger t� With increasing k, correlation tends to zero, but the slower the larger t
(long memory property)

Comparison of random walk with the AR(1) process Y = δ + θY + εComparison of random walk with the AR(1) process Yt = δ + θYt-1 + εt
� AR(1) process: εt-i has the lesser weight, the larger i

� AR(1) process similar to random walk when θ is close to one� AR(1) process similar to random walk when θ is close to one
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Non-Stationarity: Consequences Non-Stationarity: Consequences 

AR(1) process Yt = θYt-1 + εt
� OLS estimator for θ:

∑ yy

∑

∑ −=
t t

t tt

y

yy
2

1θ̂

� For |θ| < 1: the estimator is
� consistent� consistent

� asymptotically normally distributed

� For θ = 1 (unit root)� For θ = 1 (unit root)
� θ is underestimated

� estimator not normally distributed

� spurious regression problem
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Integrated ProcessesIntegrated Processes

In order to cope with non-stationarity

� Trend-stationary process: the process can be transformed in a 
stationary process by subtracting the deterministic trend stationary process by subtracting the deterministic trend 
� E.g., Yt = f(t) + εt with white noise εt: Yt–f(t) = εt is stationary

� Difference-stationary process, or integrated process: stationary � Difference-stationary process, or integrated process: stationary 
process can be derived by differencing
� E.g.,Yt = δ + Yt-1 + εt, E.g., Yt–Yt-1 = δ + εt is stationary� E.g.,Yt = δ + Yt-1 + εt, E.g., Yt–Yt-1 = δ + εt is stationary

Integrated process: stochastic process Y is called

� integrated of order one if the first difference yield a stationary 
process: Y ~ I(1)

� integrated of order d, if the d-fold differences yield a stationary 
process: Y ~ I(d)process: Y ~ I(d)
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I(0)- vs. I(1)-ProcessesI(0)- vs. I(1)-Processes

I(0) process, e.g.,Yt = δ + εt
� Fluctuates around the process mean with constant variance 

Mean-reverting� Mean-reverting

� Limited memory 

I(1) process e.g.,Y = δ + Y + εI(1) process e.g.,Yt = δ + Yt-1 + εt
� Fluctuates widely

� Infinitely long memory� Infinitely long memory

� Persistent effect of shocks
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Integrated Stochastic Integrated Stochastic 
ProcessesProcesses
Many economic time series show stochastic trends

From the AWM Database

Variable d

YER GDP,  real 1YER GDP,  real 1

PCR Consumption, real 1-2

PYR Household's Disposable Income, real 1-2

ARIMA(p,d,q) process: d-th differences follow an ARMA(p,q) process

PYR Household's Disposable Income, real 1-2

PCD Consumption Deflator 2

ARIMA(p,d,q) process: d-th differences follow an ARMA(p,q) process
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Example: Model for a Example: Model for a 
Stochastic TrendStochastic Trend
Data generation: random walk (without trend): Yt = Yt-1 + εt, εt: white 

noise 

Realization of Y : is a non-stationary process, stochastic trend� Realization of Yt: is a non-stationary process, stochastic trend
� V{Yt}: a multiple of t
Specified model: Yt = α + βt + εtSpecified model: Yt = α + βt + εt
� Deterministic trend
� Constant variance� Constant variance
� Miss-specified model!
Consequences for OLS estimator for β

t- and F-statistics: wrong critical limits, rejection probability too large� t- and F-statistics: wrong critical limits, rejection probability too large
� R2 indicates explanatory potential although Yt random walk without 

trendtrend
� “spurious regression” or “nonsense regression”
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White Noise and Random WalkWhite Noise and Random Walk

Computer-generated random numbers

� eps: white noise, i.e., N(0,1)-distributed

Y: random walk  � Y: random walk  

Yt = Yt-1 + epst
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Random Walk Random Walk 
and Deterministic Trendand Deterministic Trend
Fitting the deterministic trend model Yt = α + βt + εt to the random walk 

data results in -0.92 +0.096 t with t-statistic 19.77 for b, R2 = 0.66, 
and Durbin Watson statistic 0.066and Durbin Watson statistic 0.066
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How to Model Trends? How to Model Trends? 

Specification of

� Deterministic trend, e.g., Yt = α + βt + εt: risk of spurious regression, 
wrong decisionswrong decisions

� Stochastic trend: analysis of differences ∆Yt if a random walk, i.e., a 
unit root, is suspectedunit root, is suspected

Consequences of spurious regression are more serious 
Consequences of modeling differences ∆Yt: t
� Autocorrelated errors
� Consistent estimators 

Asymptotically normally distributed estimators � Asymptotically normally distributed estimators 
� HAC correction of standard errors, i.e., heteroskedasticity and 

autocorrelation consistent estimates of standard errorsautocorrelation consistent estimates of standard errors
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Elimination of TrendElimination of Trend

Random walk Yt = δ + Yt-1 + εt with white noise εt
∆Yt = Yt – Yt-1 = δ + εt

∆Y is a stationary process� ∆Yt is a stationary process

� A random walk is a difference-stationary or I(1) process

Linear trend Y = α + βt + εLinear trend Yt = α + βt + εt
� Subtracting the trend component α + βt provides a stationary 

process process 

� Yt is a trend-stationary process
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� Time Series
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Unit Root TestsUnit Root Tests

AR(1) process Yt = δ + θYt-1 + εt with white noise εt
� Dickey-Fuller or DF test (Dickey & Fuller, 1979)

Test of H : θ = 1 against H : θ < 1, i.e., H states Y ~ I(1), Y is non-Test of H0: θ = 1 against H1: θ < 1, i.e., H0 states Y ~ I(1), Y is non-
stationary

� KPSS test (Kwiatkowski, Phillips, Schmidt & Shin, 1992) � KPSS test (Kwiatkowski, Phillips, Schmidt & Shin, 1992) 

Test of H0: θ < 1 against H1: θ = 1, i.e., H0 states Y ~ I(0), Y is 
stationarystationary

� Augmented Dickey-Fuller or ADF test

extension of DF testextension of DF test

� Various modifications like Phillips-Perron test, Dickey-Fuller GLS test, 
etc.
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Dickey-Fuller‘s Unit Root TestDickey-Fuller‘s Unit Root Test

AR(1) process Yt = δ + θYt-1 + εt with white noise εt
OLS Estimator for θ:

∑ yy

∑

∑ −=
t t

t tt

y

yy
2

1θ̂

Test statistic
ˆ θθ

DF
−=

Distribution of DF
)ˆ(θ

θθ
se

DF
−=

Distribution of DF

� If |θ| < 1: approximately t(T-1)

� If θ = 1: Dickey & Fuller critical values 

DF test for testing H0: θ = 1 against H1: θ < 1 

� θ = 1: characteristic equation 1 – θz = 0 has unit root
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Dickey-Fuller Critical ValuesDickey-Fuller Critical Values

Monte Carlo estimates of critical values for

DF0: Dickey-Fuller test without intercept; Yt = θYt-1 + εt
DF: Dickey-Fuller test with intercept; Y = δ + θY + εDF: Dickey-Fuller test with intercept; Yt = δ + θYt-1 + εt
DFτ: Dickey-Fuller test with time trend; Yt = δ + γt + θYt-1 + εt

T p = 0.01 p = 0.05 p = 0.10

25 DF0 -2.66 -1.95 -1.60

DF -3.75 -3.00 -2.63

DFτ -4.38 -3.60 -3.24

100 DF0 -2.60 -1.95 -1.61

DF -3.51 -2.89 -2.58

DFτ -4.04 -3.45 -3.15

N(0,1) -2.33 -1.65 -1.28
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Unit Root Test: The PracticeUnit Root Test: The Practice

AR(1) process Yt = δ + θYt-1 + εt with white noise εt
can be written with π = θ -1 as 

∆Y = δ + πY + ε∆Yt = δ + πYt-1 + εt
DF tests H0: π = 0 against H1: π < 0 

test statistic for testing π = θ -1 = 0 identical with DF statistictest statistic for testing π = θ -1 = 0 identical with DF statistic

)ˆ(

ˆ

)ˆ(

1ˆ

θ
π

θ
θ

sese
DF =−=

Two steps:

1. Regression of ∆Y on Y : OLS-estimator for π  = θ - 1

)ˆ()ˆ( θθ sese

1. Regression of ∆Yt on Yt-1: OLS-estimator for π  = θ - 1

2. Test of H0: π = 0 against H1: π < 0 based on DF; critical values of 
Dickey & Fuller Dickey & Fuller 
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Example: Price/Earnings RatioExample: Price/Earnings Ratio

Verbeek’s data set PE: annual time series data on composite stock price 
and earnings indices of the S&P500, 1871-2002

PE: price/earnings ratio� PE: price/earnings ratio
� Mean 14.6

� Min 6.1

4.0

� Min 6.1

� Max 36.7

� St.Dev. 5.1 3.2

3.6

St.Dev. 5.1

� log(PE)
� Mean 2.63

2.4

2.8

� Min 1.81

� Max 3.60

� St.Dev. 0.33

2.0

2.4

� St.Dev. 0.33 1.6
80 90 00 10 20 30 40 50 60 70 80 90 00

log(PE)
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Price/Earnings Ratio, cont’dPrice/Earnings Ratio, cont’d

Fitting an AR(1) process to the log(PE) data gives: 

∆Yt = 0.335 – 0.125Yt-1

with t-statistic -2.569 (for Y ) and p-value 0.1021with t-statistic -2.569 (for Yt-1) and p-value 0.1021

� p-value of the DF statistic (-2.569): 0.102 
1% critical value: -3.48� 1% critical value: -3.48

� 5% critical value: -2.88

� 10% critical value: -2.58� 10% critical value: -2.58

� H0: θ = 1 (non-stationarity) cannot be rejected for the log(PE)

Unit root test for first differences: ∆∆Yt = 0.008 – 0.9935∆Yt-1, DF Unit root test for first differences: ∆∆Yt = 0.008 – 0.9935∆Yt-1, DF 
statistic -10.59, p-value 0.000 (1% critical value: -3.48)

� log(PE) is I(1)

However: for sample 1871-1990: DF statistic -3.65, p-value 0.006; within 
the period 1871-1990, the log(PE) is stationary
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Unit Root Test: ExtensionsUnit Root Test: Extensions

DF test so far for a model with intercept: ∆Yt = δ + πYt-1 + εt
Tests for alternative or extended models

DF test for model without intercept: ∆Y = πY + ε� DF test for model without intercept: ∆Yt = πYt-1 + εt
� DF test for model with intercept and trend: ∆Yt = δ + γt + πYt-1 + εt
DF tests in all cases H : π = 0 against H : π < 0 DF tests in all cases H0: π = 0 against H1: π < 0 

Test statistic in all cases 

1θ̂ −

Critical values depend on cases; cf. Table on slide 47
)ˆ(

1ˆ

θ
θ
se

DF
−=

Critical values depend on cases; cf. Table on slide 47
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KPSS TestKPSS Test

Process Yt = βt + (rt + α) + εt, with deterministic time trend βt, a random 
walk rt = rt-1 + ut with white noise ut with variance σu

2, r0 = α serving 
as intercept, and white noise error term εas intercept, and white noise error term εt

� Test of H0: σu
2 = 0, i.e., (Yt is trend stationary, or Yt-βt is stationary), 

against H1: σu
2 > 0against H1: σu > 0

� H0 implies a unit moving average root in the ARMA representation of 
∆Ytt

� KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test statistic
2

1

T

tt
S

KPSS == ∑

with St = Σt
i=1 ei and the variance estimate s2 of the residuals et from 

the regression Y = δ + βt + ε

1

2 2

ttKPSS
T s

== ∑

the regression Yt = δ + βt + εt
� Reject H0 for large values of KPSS

� Critical values from Monte Carlo simulations
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ADF TestADF Test

Extended model according to an AR(p) process: 

∆Yt = δ + πYt-1 + β1∆Yt-1 + … + βp∆Yt-p+1 + εt
Example: AR(2) process Y = δ + θ Y + θ Y + ε can be written asExample: AR(2) process Yt = δ + θ1Yt-1 + θ2Yt-2 + εt can be written as

∆Yt = δ + (θ1+ θ2 - 1)Yt-1 – θ2∆Yt-1 + εt
the characteristic equation (1 - ϕ L)(1 - ϕ L) = 0 has roots θ = ϕ + 
ϕ ϕ ϕ

the characteristic equation (1 - ϕ1L)(1 - ϕ2L) = 0 has roots θ1 = ϕ1 + 
ϕ2 and θ2 = - ϕ1ϕ2

a unit root implies ϕ = θ + θ =1: 

ϕ ϕ ϕ

ϕ ϕ ϕ

a unit root implies ϕ1 = θ1+ θ2 =1: 

Augmented DF (ADF) test

� Test of H0: π = 0 , i.e., Y ~ I(1), against H1: π < 0� Test of H0: π = 0 , i.e., Y ~ I(1), against H1: π < 0

� Critical values from simulations

� Extensions (intercept, trend) similar to the DF-test� Extensions (intercept, trend) similar to the DF-test

� Phillips-Perron test: alternative method; uses HAC-corrected 
standard errors
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Price/Earnings Ratio, cont’dPrice/Earnings Ratio, cont’d

Extended model according to an AR(2) process gives: 

∆Yt = 0.366 – 0.136Yt-1 + 0.152∆Yt-1 - 0.093∆Yt-2

with t-statistics -2.487 (Y ), 1.667 (∆Y ) and -1.007 (∆Y ) and with t-statistics -2.487 (Yt-1), 1.667 (∆Yt-1) and -1.007 (∆Yt-2) and 

p-values 0.119, 0.098 and 0.316

p-value of the DF statistic 0.121 � p-value of the DF statistic 0.121 
� 1% critical value: -3.48

� 5% critical value: -2.88� 5% critical value: -2.88

� 10% critical value: -2.58

� Non-stationarity cannot be rejected for the log(PE)� Non-stationarity cannot be rejected for the log(PE)

Unit root test for first differences: DF statistic -7.31, p-value 0.000 (1% 
critical value: -3.48)

� log(PE) is I(1)

However: for sample 1871-1990: DF statistic -3.52, p-value 0.009
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Unit Root Tests in GRETLUnit Root Tests in GRETL

For marked variable:
� Variable > Unit root tests > Augmented Dickey-

Fuller testFuller test

Performs the 
� DF test (choose zero for “lag order for ADF test”) or the � DF test (choose zero for “lag order for ADF test”) or the 

� ADL test 

� with or without constant, trend, squared trendwith or without constant, trend, squared trend

� Variable > Unit root tests > ADF-GLS test

Performs the 
� DF test (choose zero for “lag order for ADF test”) or the 

� ADL test 

with or without a trend, which are estimated by GLS � with or without a trend, which are estimated by GLS 

� Variable > Unit root tests > KPSS test

Performs the KPSS test with or without a trend
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ARMA Models: ApplicationARMA Models: Application

Application of the ARMA(p,q) model in data analysis: Three steps

1. Model specification, i.e., choice of p, q (and d if an ARIMA model is 
specified) specified) 

2. Parameter estimation

3. Diagnostic checking 3. Diagnostic checking 
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Estimation of ARMA ModelsEstimation of ARMA Models

The estimation methods

� OLS estimation

ML estimation� ML estimation

AR models

Explanatory variables are lagged values of the explained variable� Explanatory variables are lagged values of the explained variable

� Uncorrelated with error term 

OLS estimation � OLS estimation 
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MA Models: OLS EstimationMA Models: OLS Estimation

MA models:

� Minimization of sum of squared deviations is not straightforward

E.g., for an MA(1) model, S(µ,α) = Σ [Y - µ - αΣ (- α)j(Y – µ)]2� E.g., for an MA(1) model, S(µ,α) = Σt[Yt - µ - αΣj=0(- α)j(Yt-j-1 – µ)]2

� S(µ,α) is a nonlinear function of parameters

Needs Y for j=0,1,…, i.e., historical Y , s < 0� Needs Yt-j-1 for j=0,1,…, i.e., historical Ys, s < 0

� Approximate solution from minimization of 

S*(µ,α) = Σ [Y - µ - αΣ t-2(- α)j(Y – µ)]2S*(µ,α) = Σt[Yt - µ - αΣj=0
t-2(- α)j(Yt-j-1 – µ)]2

� Nonlinear minimization, grid search

ARMA models combine AR part with MA partARMA models combine AR part with MA part
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ML EstimationML Estimation

Assumption of normally distributed εt
Log likelihood function, conditional on initial values

log L(α,θ,µ,σ²) = - [(T-1)/2] log(2πσ²) – (2σ²)-1 Σ ε ²log L(α,θ,µ,σ²) = - [(T-1)/2] log(2πσ²) – (2σ²)-1 Σt εt²

εt are functions of the parameters

AR(1): ε = y - θ y� AR(1): εt = yt - θ1yt-1
� MA(1): εt = Σj=0

t-1(- α)jyt-j
Initial values: y for AR, ε = 0 for MAInitial values: y1 for AR, ε0 = 0 for MA

� Extension to exact ML estimator

� Again, estimation for AR models easier� Again, estimation for AR models easier

� ARMA models combine AR part with MA part
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Model SpecificationModel Specification

Based on the

� Autocorrelation function (ACF)

Partial Autocorrelation function (PACF)� Partial Autocorrelation function (PACF)

Structure of AC and PAC functions typical for AR and MA processes

Example: Example: 

� MA(1) process: ρ0 = 1, ρ1 = α/(1-α²); ρi = 0, i = 2, 3, …; θkk = αk, k = 0, 
1, …1, …

� AR(1) process: ρk = θk, k = 0, 1,…; θ00 = 1, θ11 = θ, θkk = 0 for k > 1

Empirical ACF and PACF give indications on the process underlying the Empirical ACF and PACF give indications on the process underlying the 
time series
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ARMA(p,q)-ProcessesARMA(p,q)-Processes

Condition for
AR(p)

θ(L)Yt = εt

MA(q)

Yt = α(L) εt

ARMA(p,q)

θ(L)Yt=α(L) εtθ(L)Yt = εt Yt = α(L) εt θ(L)Yt=α(L) εt

Stationarity
roots zi of 
θ(z)=0: |zi| > 1 

always stationary
roots zi of 
θ(z)=0: |zi| > 1 

Stationarity
θ(z)=0: |zi| > 1 

always stationary
θ(z)=0: |zi| > 1 

Invertibility always invertible
roots zi of 
α(z)=0: |z | > 1

roots  zi of 
α(z)=0: |z | > 1

Invertibility always invertible
α(z)=0: |zi| > 1 α(z)=0: |zi| > 1

AC function damped, infinite ρk = 0 for k > q damped, infiniteAC function damped, infinite ρk = 0 for k > q damped, infinite

PAC  θ = 0 for k > p damped, infinite damped, infinite
PAC 

function
 θkk = 0 for k > p damped, infinite damped, infinite
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Empirical AC and PAC FunctionEmpirical AC and PAC Function

Estimation of the AC and PAC functions 

AC ρk:
))((∑ −− yyyy

2)(

))((

∑

∑
−

−−
= −

t t

ktt t

k
yy

yyyy
r

PAC θkk: coefficient of Yt-k in regression of Yt on Yt-1, …, Yt-k

MA(q) process: standard errors for rk, k > q, from

√T(r – ρ ) → N(0, v )

∑t

√T(rk – ρk) → N(0, vk)

with vk = 1 + 2ρ1² + … + 2ρk²

test of H : ρ = 0, i.e., model is MA(0): compare √Tr with critical value � test of H0: ρ1 = 0, i.e., model is MA(0): compare √Tr1 with critical value 
from N(0,1), etc.

AR(p) process: test of H0: ρk = 0 for k > p based on asymptotic AR(p) process: test of H0: ρk = 0 for k > p based on asymptotic 
distribution

)1,0(ˆ NT kk →θ
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Diagnostic CheckingDiagnostic Checking

ARMA(p,q): Adequacy of choices p and q

Analysis of residuals from fitted model: 

Correct specification: residuals are realizations of white noise� Correct specification: residuals are realizations of white noise

� Box-Ljung Portmanteau test: for a ARMA(p,q) process 

∑
1

follows the Chi-squared distribution with K-p-q df

∑ = −
+= K

k kK r
kT

TTQ
1

21
)2(

follows the Chi-squared distribution with K-p-q df

Overfitting

� Starting point: a general model � Starting point: a general model 

� Comparison with a model with reduced number of parameters: 
choose model with smallest BIC or AIC

� AIC: tends to result asymptotically in overparameterized models 
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Example: Price/Earnings RatioExample: Price/Earnings Ratio

Data set PE: PE = price/earnings

� log(PE)
Mean 2.63� Mean 2.63

� Min 1.81

� Max 3.60

4.0

� Max 3.60

� Std 0.33
3.2

3.6

2.4

2.8

2.0

2.4

1.6
80 90 00 10 20 30 40 50 60 70 80 90 00

log(PE)
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PE Ratio: AC and PAC FunctionPE Ratio: AC and PAC Function

At level 0.05 significant values:
� ACF: k = 4
� PACF: k = 2, 4� PACF: k = 2, 4

possibly MA(4) (ACFk=0 if k>4) or AR(4)

Sample ACF and PACF of

log(PEt) - log(PEt-1) log(PEt) - log(PEt-1) 

Hackl, Econometrics 2, Lecture 3 66April 1, 2016



PE Ratio: MA (4) ModelPE Ratio: MA (4) Model

MA(4) model for differences log(PEt) – log(PEt-1), LOGPE = log(PE)

Function evaluations: 37
Evaluations of gradient: 11

Model 2: ARMA, using observations 1872-2002 (T = 131)Model 2: ARMA, using observations 1872-2002 (T = 131)
Estimated using Kalman filter (exact ML)
Dependent variable: d_LOGPE
Standard errors based on Hessian

coefficient   std. error   t-ratio   p-value
-------------------------------------------------------
const       0,00804276   0,0104120     0,7725   0,4398 
theta_1     0,0478900    0,0864653     0,5539   0,5797 
theta_2    -0,187566     0,0913502     -2,053    0,0400  **theta_2    -0,187566     0,0913502     -2,053    0,0400  **
theta_3    -0,0400834   0,0819391     -0,4892   0,6247 
theta_4    -0,146218    0,0915800     -1,597    0,1104 

Mean dependent var   0,008716   S.D. dependent var   0,181506Mean dependent var   0,008716   S.D. dependent var   0,181506
Mean of innovations -0,000308   S.D. of innovations  0,174545
Log-likelihood       42,69439   Akaike criterion    -73,38877
Schwarz criterion   -56,13759   Hannan-Quinn        -66,37884
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PE Ratio: AR(4) ModelPE Ratio: AR(4) Model

AR(4) model for differences log(PEt) – log(PEt-1), LOGPE = log(PE)

Function evaluations: 36
Evaluations of gradient: 9

Model 3: ARMA, using observations 1872-2002 (T = 131)Model 3: ARMA, using observations 1872-2002 (T = 131)
Estimated using Kalman filter (exact ML)
Dependent variable: d_LOGPE
Standard errors based on Hessian

coefficient   std. error   t-ratio   p-value
-------------------------------------------------------
const       0,00842210   0,0111324     0,7565   0,4493 
phi_1       0,0601061    0,0851737     0,7057   0,4804 
phi_2      -0,202907     0,0856482    -2,369    0,0178  **phi_2      -0,202907     0,0856482    -2,369    0,0178  **
phi_3      -0,0228251    0,0853236    -0,2675   0,7891 
phi_4      -0,206655     0,0850843    -2,429    0,0151  **

Mean dependent var 0,008716   S.D. dependent var 0,181506Mean dependent var 0,008716   S.D. dependent var 0,181506
Mean of innovations -0,000315   S.D. of innovations  0,173633
Log-likelihood       43,35448   Akaike criterion    -74,70896
Schwarz criterion   -57,45778   Hannan-Quinn        -67,69903
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PE Ratio: Various ModelsPE Ratio: Various Models

Diagnostics for various competing models: ∆yt = log(PEt) – log(PEt-1)

Best fit for

� BIC: MA(2) model ∆yt = 0.008 + et – 0.250 et-2
� AIC: AR(2,4) model ∆yt = 0.008 – 0.202 ∆yt-2 – 0.211 ∆yt-4 + et

Model Lags AIC BIC Q12 p-value

MA(4) 1-4 -73.389 -56.138 5.03 0.957MA(4) 1-4 -73.389 -56.138 5.03 0.957

AR(4) 1-4 -74.709 -57.458 3.74 0.988

MA 2, 4 -76.940 -65.440 5.48 0.940

AR 2, 4 -78.057 -66.556 4.05 0.982

MA 2 -76.072 -67.447 9.30 0.677

AR 2 -73.994 -65.368 12.12 0.436
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Time Series Models in GRETLTime Series Models in GRETL

Variable > Unit root tests > (a) Augmented Dickey-
Fuller test, (b) ADF-GLS test, (c) KPSS test  

a) DF test or ADF test with or without constant, trend and squared trenda) DF test or ADF test with or without constant, trend and squared trend

b) DF test or ADF test with or without trend, GLS estimation for 
demeaning and detrendingdemeaning and detrending

c) KPSS (Kwiatkowski, Phillips, Schmidt, Shin) test
Model > Time Series > ARIMAModel > Time Series > ARIMA

� Estimates an ARMA model, with or without exogenous regressors
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Your HomeworkYour Homework

1. Use Greene’s data set GREENE18_1 (Corporate bond yields, 
1990:01 to 1994:12) and answer the following questions for the 
variable YIELD (yield on Moody’s Aaa rated corporate bond). variable YIELD (yield on Moody’s Aaa rated corporate bond). 
a) Using the model-statement “Ordinary Least Squares …” in Gretl, (i) 

estimate the standard Dickey-Fuller regression with intercept and 
compute the DF test statistics for a unit root. What do you conclude about 
the presence of a unit root, about stationarity of YIELD?

b) Produce a graph of YIELD. Interpret the graph in view of the results of a).b) Produce a graph of YIELD. Interpret the graph in view of the results of a).

c) Using Gretl, conduct ADF tests including (i) with and (ii) without a linear 
trend, and (iii) with seasonal dummies. What do you conclude about the 
presence of a unit root? Compare the results with those of a).presence of a unit root? Compare the results with those of a).

d) Transform YIELD into its first differences d_YIELD. Repeat c) for the 
differences. What do you conclude? differences. What do you conclude? 

e) Determine the sample ACF and PACF for YIELD. What orders of the 
ARMA model for YIELD is suggested by these graphs?
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Your HomeworkYour Homework

e) Estimate (i) an AR(1)- and (ii) an AR(2)-model for YIELD. Test for 
autocorrelation in the residuals of the two models. What do you 
conclude?conclude?

2. For the AR(1) process Yt = θYt-1 + εt with white noise εt, show that (a) 
the ACF is ρk = θk, k = 0, ±1,…, and that (b) the PACF is θ00 = 1, θ11
= θ, θ = 0 for k > 1.

k 00 11

= θ, θkk = 0 for k > 1.
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