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Multiple Dependent VariablesMultiple Dependent Variables

Economic processes: Simultaneous and interrelated development of 
a multiple set of variables 

Examples:Examples:

� Households consume a set of commodities (food, durables, etc.); 
the demanded quantities depend on the prices of commodities, the the demanded quantities depend on the prices of commodities, the 
household income, the number of persons living in the household, 
etc.; a consumption model includes a set of dependent variables 
and a common set of explanatory variables. and a common set of explanatory variables. 

� The market of a product is characterized by (a) the demanded and 
supplied quantity and (b) the price of the product; a model for the supplied quantity and (b) the price of the product; a model for the 
market consists of equations representing the development and 
interdependencies of these variables.

� An economy consists of markets for commodities, labour, finances, � An economy consists of markets for commodities, labour, finances, 
etc.; a model for a sector or the full economy contains descriptions 
of the development of the relevant variables and their interactions.
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Systems of Regression Systems of Regression 
EquationsEquations
Economic processes encompass the simultaneous developments as 

well as interrelations of a set of dependent variables

For modelling economic processes: system of relations, typically in � For modelling economic processes: system of relations, typically in 
the form of regression equations: multi-equation model

Example: Two dependent variables yt1 and yt2 are modelled asExample: Two dependent variables yt1 and yt2 are modelled as

yt1 = x‘t1β1 + εt1
yt2 = x‘t2β2 + εt2yt2 = x‘t2β2 + εt2

with V{εti} = σi
2 for i = 1, 2, Cov{εt1, εt2} = σ12 ≠ 0

Typical situations:

1. The set of regressors x and x coincide1. The set of regressors xt1 and xt2 coincide
2. The set of regressors xt1 and xt2 differ, may overlap 

3. Regressors contain one or both dependent variables3. Regressors contain one or both dependent variables

4. Regressors contain lagged variables
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Types of Multi-equation ModelsTypes of Multi-equation Models

Multivariate regression or multivariate multi-equation model

� A set of regression equations, each explaining one of the 
dependent variablesdependent variables

� Possibly common explanatory variables 

� Seemingly unrelated regression (SUR) model: each equation is a � Seemingly unrelated regression (SUR) model: each equation is a 
valid specification of a linear regression, related to other equations 
only by the error terms

� See cases 1 and 2 of “typical situations” (slide 4) � See cases 1 and 2 of “typical situations” (slide 4) 

Simultaneous equations models

� Describe the relations within the system of economic variables � Describe the relations within the system of economic variables 

� in form of model equations

� See cases 3 and 4 of “typical situations” (slide 4)

Error terms: dependence structure is specified by means of second Error terms: dependence structure is specified by means of second 
moments or as joint probability distribution

April 22, 2016 Hackl, Econometrics 2, Lecture 5 5



Capital Asset Pricing ModelCapital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return Ri of asset i

Ri - Rf = βi(E{Rm} – Rf) + εiRi - Rf = βi(E{Rm} – Rf) + εi

with 

� Rf: return of a risk-free assetf

� Rm: return of the market’s optimal portfolio

� βi: indicates how strong fluctuations of the returns of asset i are 
determined by fluctuations of the market as a wholedetermined by fluctuations of the market as a whole

� Knowledge of the return difference Ri - Rf will give information on 

the return difference Rj - Rf of asset j, at least for some assetsthe return difference Rj - Rf of asset j, at least for some assets

� Analysis of a set of assets i = 1, …, s
� The error terms εi, i = 1, …, s, represent common factors, e.g., inflation � The error terms εi, i = 1, …, s, represent common factors, e.g., inflation 

rate, have a common dependence structure 

� Efficient use of information: simultaneous analysis
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A Model for InvestmentA Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld & 

Griliches (1960)]: Panel data set on gross investments Iit of firms i = 
1, ..., 6 over 20 years and related data 

it

1, ..., 6 over 20 years and related data 

� Investment decisions are assumed to be determined by

I = β + β F + β C + εIit = βi1 + βi2Fit + βi3Cit + εit

with 

F : market value of firm i at the end of year t-1� Fit: market value of firm i at the end of year t-1

� Cit: value of stock of plant and equipment at the end of year t-1

� Simultaneous analysis of equations for the various firms i: efficient � Simultaneous analysis of equations for the various firms i: efficient 
use of information 

� Error terms for the firms include common factors such as economic Error terms for the firms include common factors such as economic 

climate 

� Coefficients may be the same for the firms
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The Hog MarketThe Hog Market

Model equations:

Qd = α1 + α2P + α3Y + ε1 (demand equation)

Qs = β + β P + β Z + ε (supply equation)
1 2 3 1

Qs = β1 + β2P + β3Z + ε2 (supply equation)

Qd = Qs (equilibrium condition)

with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: 
income, and Z: costs of production, or

Q = α1 + α2P + α3Y + ε1 (demand equation)Q = α1 + α2P + α3Y + ε1 (demand equation)

Q = β1 + β2P + β3Z + ε2 (supply equation)

� Model describes quantity and price of the equilibrium transactions 

� Model determines simultaneously Q and P, given Y and Z

� Error terms 

� May be correlated: Cov{ε1, ε2} ≠ 0 

� Simultaneous analysis necessary for efficient use of information
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Klein‘s Model IKlein‘s Model I

1. Ct = α1 + α2Pt + α3Pt-1 + α4(Wt
p+ Wt

g) + εt1 (consumption)

2. It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investment)t 1 2 t 3 t-1 4 t-1 t2

3. Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (wages)

4. Xt = Ct + It + Gt

5. K = I + K5. Kt = It + Kt-1

6. Pt = Xt – Wt
p – Tt

with C (consumption), P (profits), Wp (private wages), Wgwith C (consumption), P (profits), W (private wages), W
(governmental wages), I (investment), K-1 (capital stock), X (national 

product), G (governmental demand), T (taxes) and t [time (year-

1936)] 1936)] 

� Model determines simultaneously C, I, Wp, X, K, and P 

Simultaneous analysis necessary in order to take dependence � Simultaneous analysis necessary in order to take dependence 

structure of error terms into account: efficient use of information 
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Examples of Multi-equation Examples of Multi-equation 
ModelsModels
Multivariate regression models

� Capital asset pricing (CAP) model: for all assets, return Ri (or risk 
premium R – R ) is a function of E{R } – R ; dependence structure 

i

premium Ri – Rf) is a function of E{Rm} – Rf; dependence structure 
of the error terms caused by common variables 

� Model for investment: firm-specific regressors, dependence � Model for investment: firm-specific regressors, dependence 
structure of the error terms like in CAP model 

� Seemingly unrelated regression (SUR) models

Simultaneous equations modelsSimultaneous equations models

� Hog market model: endogenous regressors, dependence structure 
of error termsof error terms

� Klein’s model I: endogenous regressors, dynamic model, 
dependence of error terms from different equations and possibly 
over timeover time
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Single- vs. Multi-equation Single- vs. Multi-equation 
ModelsModels
Complications for estimation of parameters of multi-equation models: 

� Dependence structure of error terms

� Violation of exogeneity of regressors

Example: Hog market model, demand equation 

Q = α + α P + α Y + εQ = α1 + α2P + α3Y + ε1
� Covariance matrix of ε = (ε1, ε2)’

{ }
2σ σ 

=

� P is not exogenous: Cov{P,ε } = (σ 2 - σ )/(β - α ) ≠ 0

{ } 1 12

2

12 2

Cov ε
σ σ
σ σ
 

=  
 

� P is not exogenous: Cov{P,ε1} = (σ1
2 - σ12)/(β2 - α2) ≠ 0

Statistical analysis of multi-equation models requires methods 
adapted to these featuresadapted to these features
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Analysis of Multi-equation Analysis of Multi-equation 
ModelsModels
Issues of interest: 

� Estimation of parameters

� Interpretation of model characteristics, prediction, etc. 

Estimation procedures 

Multivariate regression models � Multivariate regression models 

� GLS , FGLS, ML

� Simultaneous equations models � Simultaneous equations models 

� Single equation methods: indirect least squares (ILS), two stage least 
squares (TSLS), limited information ML (LIML)

� System methods of estimation: three stage least squares (3SLS), full � System methods of estimation: three stage least squares (3SLS), full 
information ML (FIML)

� Dynamic models: estimation methods for vector autoregressive (VAR) 
and vector error correction (VEC) modelsand vector error correction (VEC) models
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Example: Income and Example: Income and 
ConsumptionConsumption
Model for income (Y) and consumption (C) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tYt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1t
Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t

with (possibly correlated) white noises ε1t and ε2t
Notation: Z = (Y , C )‘, 2-vectors δ and ε, and (2x2)-matrix Θ = (θ ), the Notation: Zt = (Yt, Ct)‘, 2-vectors δ and ε, and (2x2)-matrix Θ = (θij), the 

model is

1 11 11 12 εδ θ θt t tY Y −        
= + +

in matrix notation

1 11 11 12

1 22 21 22

εδ θ θ

εδ θ θ

t t t

t t t

Y Y

C C

−

−

        
= + +        
        

in matrix notation

Zt = δ + ΘZt-1 + εt
� Represents each component of Z as a linear combination of lagged 

variables
Represents each component of Z as a linear combination of lagged 
variables

� Extension of the AR-model to the 2-vector Zt: vector autoregressive 
model of order 1, VAR(1) model
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The VAR(p) ModelThe VAR(p) Model

VAR(p) model: generalization of the AR(p) model for k-vectors Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt
with k-vectors Y , δ, and ε and k k-matrices Θ , …, Θwith k-vectors Yt, δ, and εt and kxk-matrices Θ1, …, Θp

� Using the lag-operator L: 
Θ(L)Yt = δ + εtΘ(L)Yt = δ + εt

with matrix lag polynomial Θ(L) = I – Θ1L - … - ΘpLp

� Θ(L) is a kxk-matrix 

Each matrix element of Θ(L) is a lag polynomial of order p� Each matrix element of Θ(L) is a lag polynomial of order p
� Error terms εt

� have covariance matrix Σ (for all t); allows for contemporaneous 
correlation correlation 

� are independent of Yt-j, j > 0, i.e., of the past of the components of Yt
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The VAR(p) Model, cont’dThe VAR(p) Model, cont’d

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt
Vector of expectations of Y : assuming stationarity� Vector of expectations of Yt: assuming stationarity

E{Yt} = δ + Θ1 E{Yt} + … + Θp E{Yt}

gives gives 
E{Yt} = µ = (Ik – Θ1 - … - Θp)

-1δ = Θ(1)-1δ

i.e., stationarity requires that the kxk-matrix Θ(1) is invertible

In deviations y = Y – µ, the VAR(p) model is� In deviations yt = Yt – µ, the VAR(p) model is
Θ(L)yt = εt

� MA representation of the VAR(p) model, given that Θ(L) is invertible � MA representation of the VAR(p) model, given that Θ(L) is invertible 
Yt = µ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + … 
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VAR(p) Model: ExtensionsVAR(p) Model: Extensions

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εtt 1 t-1 p t-p t

� VARMA(p,q) Model: Extension of the VAR(p) model by multiplying εt
(from the left) with a matrix lag polynomial A(L) of order q

� VARX(p) model with m-vector X of exogenous variables, kxm-matrix Γ� VARX(p) model with m-vector Xt of exogenous variables, kxm-matrix Γ

Yt = Θ1Yt-1 + … + ΘpYt-p + ΓXt + εt
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Reasons for Using a VAR ModelReasons for Using a VAR Model

VAR model represents a set of univariate AR(MA) models, one for each 
component

� Reformulation of simultaneous equations models as dynamic models� Reformulation of simultaneous equations models as dynamic models

� To be used instead of simultaneous equations models: 
� No need to distinct a priori endogenous and exogenous variables

� No need for a priori identifying restrictions on model parameters

� Simultaneous analysis of the components: More parsimonious, fewer 
lags, simultaneous consideration of the history of all included lags, simultaneous consideration of the history of all included 
variables 

� Allows for non-stationarity and cointegration

Attention: The number of parameters to be estimated increases with kAttention: The number of parameters to be estimated increases with k
and p

Number of parameters

in Θ(L) 
p 1 2 3

in Θ(L) k=2 4 8 12

k=4 16 32 48
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Example: Income and Example: Income and 
ConsumptionConsumption
Model for income (Yt) and consumption (Ct) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tt 1 11 t-1 12 t-1 1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t
with (possibly correlated) white noises ε1t and ε2t

� Matrix form of the simultaneous equations model: � Matrix form of the simultaneous equations model: 

A (Yt, Ct)‘ = Γ (1, Yt-1, Ct-1)‘ + (ε1t, ε2t)’ 

with
δ θ θ10    1 11 12

2 21 22

δ θ θ10
A ,

δ θ θ01

  
= Γ =   
   

� VAR(1) form: Zt = δ + ΘZt-1 + εt or 

1 11 11 12 εδ θ θt t tY Y −        
= + +        

   

1 11 11 12

1 22 21 22

εδ θ θ

εδ θ θ

t t t

t t t

Y Y

C C

−

−

        
= + +        
        
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Simultaneous Equations Models Simultaneous Equations Models 
in VAR Formin VAR Form
Model with m endogenous variables (and equations), K regressors

Ayt = Γzt + εt = Γ1 yt-1 + Γ2 xt + εtAyt = Γzt + εt = Γ1 yt-1 + Γ2 xt + εt
with m-vectors yt and εt, K-vector zt, (mxm)-matrix A, (mxK)-matrix Γ, 

and (mxm)-matrix Σ = V{εt}; t

� zt contains lagged endogenous variables yt-1 and exogenous 
variables xt
Rearranging gives� Rearranging gives

yt = Θ yt-1 + δt + vt
with Θ = = = = A-1 Γ , δ = A-1 Γ x , and v = A-1 εwith Θ = = = = A-1 Γ1, δt = A

-1 Γ2 xt, and vt = A-1 εt

� Extension of the set of variables by regressors xt: the matrix δt

becomes a vector of deterministic components (intercepts)becomes a vector of deterministic components (intercepts)
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VAR Model: EstimationVAR Model: Estimation

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt, V{εt} = Σ

� Components of Yt: linear combinations of lagged variables

� Error terms: Possibly contemporaneously correlated, covariance 

matrix Σ, uncorrelated over timematrix Σ, uncorrelated over time

� SUR model

Estimation, given the order p of the VAR modelEstimation, given the order p of the VAR model

� OLS estimates of parameters in Θ(L) are consistent 

� Estimation of Σ based on residual vectors e = (e , …, e )’: � Estimation of Σ based on residual vectors et = (e1t, …, ekt)’: 
1

t tt
S e e

T p
′=

− ∑

� GLS estimator coincides with OLS estimator: same explanatory 

variables for all equations

T p−
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VAR Model: Estimation, cont’dVAR Model: Estimation, cont’d

Choice of the order p of the VAR model 

� Estimation of VAR models for various orders p� Estimation of VAR models for various orders p

� Choice of p based on Akaike or Schwarz information criterion
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Income and Consumption: Income and Consumption: 
Estimation of VAR-SystemEstimation of VAR-System
AWM data base, 1971:1-2003:4: PCR (real private consumption), PYR

(real disposable income of households); respective annual growth 
rates of logarithms: C, Yrates of logarithms: C, Y

Fitting Zt = δ + ΘZt-1 + εt with Z = (Y, C)‘ gives

δ Y C adj.R2δ Y-1 C-1 adj.R2

Y
θij 0.001 0.815 0.106 0.82

t(θ ) 0.39 11.33 1.30
Y

t(θij) 0.39 11.33 1.30

C
Θij 0.003 0.085 0.796 0.78

with AIC = -14.60 

VAR(2) model: AIC = -14.55 

C
t(θij) 2.52 1.23 10.16

VAR(2) model: AIC = -14.55 

� LR-test of H0: VAR(1) against H1: VAR(2): p-value 0.51
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Income and Consumption: Income and Consumption: 
Other Estimation MethodsOther Estimation Methods
Alternative estimation methods 

� OLS equation-wise
δ Y C adj.R2

OLS equation-wise

� SUR

VAR estimation, SUR 

δ Y-1 C-1 adj.R2

Y
0.001 0.815 0.106 0.82

0.39 11.33 1.30VAR estimation, SUR 

estimation, and OLS 

equation-wise estimation 

OLS

Y
0.39 11.33 1.30

C
0.003 0.085 0.796 0.79

equation-wise estimation 

give very similar results
C

2.52 1.23 10.16

Y
0.001 0.815 0.106 0.82

SUR

Y
0.39 11.47 1.31

C
0.003 0.085 0.796 0.79

C
2.55 1.25 10.28
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VAR Model Estimation in VAR Model Estimation in 
GRETLGRETL
VAR systems

Model > Time Series > Vector Autoregression…

Estimates the specified VAR system for the chosen lag order; � Estimates the specified VAR system for the chosen lag order; 

calculates information criteria like AIC and BIC, F-tests for various 
zero restrictions for the equations and for the system as a wholezero restrictions for the equations and for the system as a whole

SUR model

Model > Simultaneous equations… Model > Simultaneous equations… 

� Allows for various estimation methods, among them OLS and SUR; 

estimates the specified equationsestimates the specified equations
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Impulse-response FunctionImpulse-response Function

MA representation of the VAR(p) model 

Yt = Θ(1)-1δ + εt + A1εt-1 + A2εt-2 + … Yt = Θ(1) δ + εt + A1εt-1 + A2εt-2 + … 

� Interpretation of As: the (i,j)-element of As represents the effect of a 
one unit increase of εjt upon the i-th variable Yi,t+s in Yt+s

Dynamic effects of a one unit increase of ε upon the i-th component � Dynamic effects of a one unit increase of εjt upon the i-th component 
of Yt are corresponding to the (i,j)-th elements of Ik, A1, A2, …

� The plot of these elements over s represents the impulse-response � The plot of these elements over s represents the impulse-response 
function of the i-th variable in Yt+s on a unit shock to εjt

Hackl, Econometrics 2, Lecture 5 27April 22, 2016



ContentsContents

� Systems of Equations

� VAR Models� VAR Models

� Simultaneous Equations and VAR Models

� VAR Models and CointegrationVAR Models and Cointegration

� VEC Model: Cointegration Tests

� VEC Model: Specification and Estimation 

April 22, 2016 Hackl, Econometrics 2, Lecture 5 28



AR(1) Process: Stationarity and AR(1) Process: Stationarity and 
Non-stationarity 
AR(1) process Yt = θYt-1 + εt

� is stationary, if the root z of the characteristic polynomial� is stationary, if the root z of the characteristic polynomial

Θ(z) = 1 - θz = 0

fulfils |z| > 1, i.e., |θ| < 1; fulfils |z| > 1, i.e., |θ| < 1; 
� Θ(z) is invertible, i.e., Θ(z)-1 can be derived such that Θ(z)-1Θ(z) = 1 

� Yt can be represented by a MA(∞) process: Yt = Θ(L)-1εt
� is non-stationary, if 

z = 1, i.e., θ = 1

i.e.,Y ~ I(1), Y has a stochastic trendi.e.,Yt ~ I(1), Yt has a stochastic trend
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VAR(1) Model, Non-stationarity, VAR(1) Model, Non-stationarity, 
and Cointegration 
VAR(1) model for the k-vector Yt = (Y1t, ..., Ykt)'

Yt = δ + Θ1Yt-1 + εt
If Θ(L) = I – Θ L is invertible, � If Θ(L) = I – Θ1L is invertible, 

Yt = Θ(1)-1δ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + …

i.e., each variable in Yt is a linear combination of white noises, is a i.e., each variable in Yt is a linear combination of white noises, is a 
stationary I(0) variable 

� If Θ(L) is not invertible, not all variables in Yt can be stationary I(0) 
variables: at least one variable must have a stochastic trendvariables: at least one variable must have a stochastic trend
� If all k variables have independent stochastic trends, all k variables are 

I(1) and no cointegrating relation exists; e.g., for k = 2:

1-θ θ 00   

i.e., θ = θ = 1, θ = θ = 0 and ∆Y = δ + ε ∆Y = δ + ε

11 12

21 22

1-θ θ 00
(1)

θ 1-θ 00

   
Θ = =   

  
i.e., θ11 = θ22 = 1, θ12 = θ21 = 0 and ∆Y1t = δ1 + ε1t, ∆Y2t = δ2 + ε2t

� The more interesting case: at least one cointegrating relation; number of 
cointegrating relations equals the rank r{Θ(1)} of matrix Θ(1)
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Example: A VAR(1) ModelExample: A VAR(1) Model

VAR(1) model Yt = δ + Θ1Yt-1 + εt for k-vector Y

∆Yt = – Θ(1)Yt-1 + δ + εt∆Yt = – Θ(1)Yt-1 + δ + εt

with (kxk) matrix Θ(L) = I – Θ1L and Θ(1) = Ik - Θ1

r = r{Θ(1)}: rank of Θ(1), 0 ≤ r ≤ kr = r{Θ(1)}: rank of Θ(1), 0 ≤ r ≤ k

1. r = 0: implies ∆Yt = δ + εt, i.e., Y is a k-dimensional random walk, 

each component is I(1), no cointegrating relationshipeach component is I(1), no cointegrating relationship

2. r < k: (k – r)-fold unit root, (kxr)-matrices γ and β can be found, both 

of rank r, with
Θ(1) = γβ'Θ(1) = γβ'

the r columns of β are the cointegrating vectors of r cointegrating 
relations β'Yt (β in normalized form, i.e., the main diagonal elements relations β'Yt (β in normalized form, i.e., the main diagonal elements 

of β being ones)

3. r = k: VAR(1) process is stationary, all components of Y are I(0)
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Cointegrating SpaceCointegrating Space

Yt: k-vector, each component I(1)

Cointegrating space: Cointegrating space: 

� Among the k variables, r ≤ k-1 independent linear relations βj'Yt, j = 1, 
…, r, are possible so that βj'Yt ~ I(0)j t

� Individual relations can be combined with others and these are again 

I(0), i.e., not the individual cointegrating relations are identified but 
only the r-dimensional spaceonly the r-dimensional space

� Cointegrating relations should have an economic interpretation 

Cointegrating matrix β from ∆Y = - Θ(1)Y + δ + ε = - γ β'Y + δ + εCointegrating matrix β from ∆Yt = - Θ(1)Yt-1 + δ + εt = - γ β'Yt-1 + δ + εt

� The kxr matrix β = (β1, …, βr) of vectors βj, j = 1, …, r, that state the 
cointegrating relations βj'Yt ~ I(0), j = 1, …, rcointegrating relations βj'Yt ~ I(0), j = 1, …, r

� Cointegrating rank: the rank of matrix β: r{β} = r
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Granger‘s Representation Granger‘s Representation 
TheoremTheorem
Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 

I(1) variables is cointegrated, then an error-correction (EC) relation of I(1) variables is cointegrated, then an error-correction (EC) relation of 
the variables exists.

Extends to VAR models: If the I(1) variables of the k-vector Yt are t

cointegrated, then an error-correction (EC) relation of the variables 

exists.
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Granger‘s Representation Granger‘s Representation 
Theorem for VAR(p) ModelsTheorem for VAR(p) Models
VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εtYt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt (A)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt (A)

� Π = – Θ(1) = – (Ik – Θ1 – … – Θp): „long-run matrix“, kxk, determines the 
long-run dynamics of Yt

Γ , …, Γ (kxk)-matrices, functions of Θ ,…, Θ� Γ1, …, Γp-1 (kxk)-matrices, functions of Θ1,…, Θp

� ΠYt-1 is stationary: ∆Yt and εt are I(0)

� Three cases� Three cases

1. r{Π} = r with 0 < r < k: there exist r stationary linear combinations of Yt, 
i.e., r cointegrating relations

2. r{Π} = 0: Π = 0, no cointegrating relation, equation (A) is a VAR(p) model 
for stationary variables ∆Yt

3. r{Π} = k: all variables in Yt are stationary, Π = - Θ(1) is invertible 
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Vector Error-Correction ModelVector Error-Correction Model

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εtYt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

with r{Π} = r and Π = γβ' gives 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

� r cointegrating relations β'Yt-1

� Adaptation parameters γ measure the portion or speed of adaptation � Adaptation parameters γ measure the portion or speed of adaptation 

of Yt in compensation of the “equilibrium errors” Zt-1 = β'Yt-1

� Equation (B) is called the vector error-correction (VEC) form of the 

VAR(p) modelVAR(p) model
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Example: Bivariate VAR ModelExample: Bivariate VAR Model

VAR(1) model for the 2-vector Yt = (Y1t, Y2t)'

Yt = ΘYt-1 + εt; and ∆Yt = ΠYt-1 + εtYt = ΘYt-1 + εt; and ∆Yt = ΠYt-1 + εt
� Long-run matrix

11 12θ 1 θ
(1)

θ θ 1

− 
Π = −Θ =  −

� Π = 0, if θ11 = θ22 = 1, θ12 = θ21 = 0, i.e., Y1t, Y2t are random walks

r{Π} < 2, if (θ – 1)(θ – 1) – θ θ = 0; cointegrating vector: β' = 

21 22

(1)
θ θ 1

Π = −Θ =  − 

� r{Π} < 2, if (θ11 – 1)(θ22 – 1) – θ12 θ21 = 0; cointegrating vector: β' = 
(θ11 – 1, θ12), long-run matrix

( )1
γβ ' θ 1 θ

 
Π = = − 

� The error-correction form is 

( )11 12

21 11

1
γβ ' θ 1 θ

θ / (θ 1)

 
Π = = − − 

∆ 1 1

11 1, 1 12 2, 1

2 221 11

ε1
(θ 1) θ

εθ / (θ 1)

t t

t t

t t

Y
Y Y

Y
− −

∆    
 = − + +      ∆ −    
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Deterministic ComponentDeterministic Component

VEC(p) model for the k-vector Yt

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

� Expectation gives

(Ik – Γ1 – … – Γp-1)E{∆Yt} = δ + γ E{β'Yt-1}(Ik – Γ1 – … – Γp-1)E{∆Yt} = δ + γ E{β'Yt-1}

The deterministic component (intercept) δ:

1. If E{∆Yt} = 0, i.e., no deterministic trend in any component of Yt: given 1. If E{∆Yt} = 0, i.e., no deterministic trend in any component of Yt: given 

that Γ = Ik – Γ1 – … – Γp-1 has full rank: 

� Γ E{∆Yt} = δ + γE{β'Yt-1} = 0 with equilibrium error β'Yt-1 = Zt-1

E{Z } corresponds to the intercepts of the cointegrating relations; with r-� E{Zt-1} corresponds to the intercepts of the cointegrating relations; with r-
dimensional vector E{Zt-1} = α (and hence δ = - γ E{Zt-1} = - γα)

∆Yt = Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt (C)∆Yt = Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt (C)

� Intercepts only in the cointegrating relations

� „Restricted constant“ case
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Deterministic Component, cont’dDeterministic Component, cont’d

2. Addition of a k-vector λ with identical components to (C)

∆Yt = λ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt∆Yt = λ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt

� Long-run equilibrium: steady state growth with growth rate E{∆Yt} = Γ
-1λ

� Deterministic trends cancel out in the long run, so that no deterministic � Deterministic trends cancel out in the long run, so that no deterministic 

trend in the error-correction term; cf. (B)

� Addition of k-vector λ can be repeated: up to k-r separate deterministic 

trends can cancel out in the error-correction term trends can cancel out in the error-correction term 

� The general notation is equation (B) with δ containing r intercepts of the 
long-run relations and k-r deterministic trends in the variables of Ytt

� „Unrestricted constant“ case

3. „No constant“ case: λ = α = 0

Hackl, Econometrics 2, Lecture 5 38April 22, 2016



Choice of ConstantsChoice of Constants

Example 1: Income and consumption

� Both processes are I(1)� Both processes are I(1)

� Both appear to follow a deterministic linear trend

� Equilibrium relation may show an intercept� Equilibrium relation may show an intercept

� Unrestricted constant case

Example 2: Interest ratesExample 2: Interest rates

� Generally not trended

� Difference between two rates might be stationary around a non-zero � Difference between two rates might be stationary around a non-zero 

mean due to, e.g., rate-specific risk premia

� Restricted constant case 

Choice between the three cases: visual inspection, economic reasoning 
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The Five CasesThe Five Cases

Based on empirical observation and economic reasoning, model 

specification has to choose between:specification has to choose between:

1) Unrestricted constant: variables show deterministic linear trends

2) Restricted constant: variables not trended but mean distance 2) Restricted constant: variables not trended but mean distance 

between them not zero; intercept in the error-correction term

3) No constant

Generalization: deterministic component contains intercept and trend

4) Constant + restricted trend: cointegrating relations include a trend 

but the first differences of the variables in question do notbut the first differences of the variables in question do not

5) Constant + unrestricted trend: trend in both the cointegrating 

relations and the first differences, corresponding to a quadratic trend relations and the first differences, corresponding to a quadratic trend 

in the variables (in levels)
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ContentsContents

� Systems of Equations

� VAR Models� VAR Models

� Simultaneous Equations and VAR Models

� VAR Models and CointegrationVAR Models and Cointegration

� VEC Model: Cointegration Tests
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Choice of the Cointegrating Choice of the Cointegrating 
Rank Rank 
Based on k-vector Yt ~ I(1) 

Yt follows the k-variate processYt follows the k-variate process

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt

Estimation procedure needs as input the cointegrating rank r , i.e., the Estimation procedure needs as input the cointegrating rank r , i.e., the 
rank r = r{γβ‘}

Testing for cointegration

� Engle-Granger approach

� Johansen‘s R3 method
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The Engle-Granger ApproachThe Engle-Granger Approach

Non-stationary processes Yt ~ I(1), Xt ~ I(1); the model is 

Yt = α + βXt + εtYt = α + βXt + εt

� Step 1: OLS-fitting 

� Test for cointegration based on residuals, e.g., DF test with special � Test for cointegration based on residuals, e.g., DF test with special 

critical values; H0: residuals are I(1), no cointegration 

� If H0 is rejected: 

� OLS fitting in Step 1 gives consistent estimate of the cointegrating vector

� Step 2: OLS estimation of the EC model based on the cointegrating 

vector from Step 1vector from Step 1

Can be extended to k-vector Yt = (Y1t, ..., Ykt)': 

� Step 1 applied to Y1t = α + β1Y2t + ... + βkYkt + εt� Step 1 applied to Y1t = α + β1Y2t + ... + βkYkt + εt

� DF test of H0: residuals are I(1), no cointegration 
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Engle-Granger Cointegration Engle-Granger Cointegration 
Test: Problems Test: Problems 
Residual based cointegration tests can be misleading

� Test results depend on specification � Test results depend on specification 

� Which variables are included

� Normalization of the cointegrating vector, i.e., which variable on left hand 

sideside

� Test may be inappropriate due to wrong specification of cointegrating 

relationrelation

� Power of the test may suffer from inefficient use of information 

(dynamic interactions not taken into account)(dynamic interactions not taken into account)

� Test gives no information about the rank r
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Johansen‘s R3 MethodJohansen‘s R3 Method

Reduced rank regression or R3 method: a method for specifying the 

cointegrating rank rcointegrating rank r

� Also called Johansen's test

� The test is based on the k eigenvalues λi (λ1> λ2>…> λk) of

Y1'Y1 – Y1'∆Y(∆Y'∆Y)
-1∆Y'Y1

with ∆Y: (Txk) matrix of differences ∆Yt, Y1: (Txk) matrix of Yt-1

Has the same rank as the kxk long run matrix γβ' = Π� Has the same rank as the kxk long run matrix γβ' = Π

� Eigenvalues λi fulfil 0 ≤ λi < 1

If r{γβ'} = r, the k-r smallest eigenvalues obey � If r{γβ'} = r, the k-r smallest eigenvalues obey 

log(1 – λj) = λj = 0,  j = r+1, …, k

� Johansen’s iterative test procedures, based on estimates Î of λ� Johansen’s iterative test procedures, based on estimates Îj of λj
� Trace test

� Maximum eigenvalue test or max test
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Max TestMax Test

LR test, based on the assumption of normally distributed errors

� Counts the number of non-zero eigenvalues � Counts the number of non-zero eigenvalues 

� For r0 = 0, 1, 2, …, the null-hypothesis H0: λr0 = 0 is tested; stops 

when H0 is not rejected for the first time, number of cointegrating 

relations is the number of rejections
0

relations is the number of rejections

� For r0 = 0, 1, …: 

Test of H : r ≤ r against H : r = r +1 � Test of H0: r ≤ r0 against H1: r = r0+1 

� Test statistic

λ (r ) = - T log(1 - Î )λmax(r0) = - T log(1 - Îr0+1)
� Stops when H0 is not rejected for the first time

� Critical values from simulations� Critical values from simulations

� Rejection of H0: r = 0 in favour of H1: r = 1: No cointegrating relation 
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Trace TestTrace Test

LR tests, based on the assumption of normally distributed errors

� For r0 = 1, 2, …, the null-hypothesis is tested that the sum of the � For r0 = 1, 2, …, the null-hypothesis is tested that the sum of the 

eigenvalues λj, j≥r0, is zero; stops when H0 is not rejected for the first 

time, number of cointegrating relations is the number of rejections

For r = 0, 1, …: � For r0 = 0, 1, …: 

� Test of H0: r ≤ r0 against H1: r > r0 (r0 < r ≤ k)

λ (r ) = - T Σk log(1- Î ) λtrace(r0) = - T Σk
j=r0+1log(1- Îj) 

� Tests whether the k-r0 smallest λj are zero

� H0 is rejected for large values of λtrace(r0)� H0 is rejected for large values of λtrace(r0)

� Stops when H0 is not rejected for the first time

� Critical values from simulationsCritical values from simulations
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Trace and Max Test: Critical Trace and Max Test: Critical 
LimitsLimits
Critical limits are shown in Verbeek’s Table 9.9 for both tests

� Depend on presence of trends and intercepts� Depend on presence of trends and intercepts

� Case 1: no deterministic trends, intercepts in cointegrating relations 

(“restricted constant”)

Case 2: k unrestricted intercepts in the VAR model, i.e., k - r deterministic � Case 2: k unrestricted intercepts in the VAR model, i.e., k - r deterministic 

trends, r intercepts in cointegrating relations (“unrestricted constant”)

� Depend on k – r� Depend on k – r

� Need small sample correction, e.g., factor (T-pk)/T for the test 

statistic: avoids too large values of rstatistic: avoids too large values of r
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Example: Purchasing Power Example: Purchasing Power 
ParityParity
Verbeek’s dataset PPP: Price indices and exchange rates for France 

and Italy, T = 186 (1/1981-6/1996)

� Variables: LNIT (log price index Italy), LNFR (log price index 

France), LNX (log exchange rate France/Italy) 

Purchasing power parity (PPP): exchange rate between the currencies Purchasing power parity (PPP): exchange rate between the currencies 

(Franc, Lira) equals the ratio of price levels of the countries 

LNX = LNPLNXt = LNPt

� Relative PPP: equality fulfilled only in the long run 

LNXt = α + β LNPtLNXt = α + β LNPt

with LNPt = LNITt – LNFRt, i.e., the log of the price index ratio 

France/Italy

Generalization:� Generalization:

LNXt = α + β1 LNITt – β2 LNFRt
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PPP: Cointegrating Rank rPPP: Cointegrating Rank r

As discussed by Verbeek: Johansen test for k = 3 variables, based on 
a VEC(3) model

r0
eigen-

value
H0 H1 λtr(r0) p-value H1 λmax(r0) p-value

0 0.301 r = 0 r ≥ 1 93.9 0.0000 r = 1 65.5 0.0000

1 0.113 r  ≤ 1 r ≥ 2 28.4 0.0023 r = 2 22.0 0.0035

2 0.034 r  ≤ 2 r = 3 6.4 0.169 r = 3 6.4 0.1690

H0 not rejected that smallest eigenvalue equals zero: series are non-

stationary

2 0.034 r  ≤ 2 r = 3 6.4 0.169 r = 3 6.4 0.1690

stationary

Both the trace and the max test suggest r = 2
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Estimation of VEC ModelsEstimation of VEC Models

Estimation of

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

requires finding (kxr)-matrices γ and β with Π = γβ' 

� β: matrix of cointegrating vectors 

� γ: matrix of adjustment coefficients

� Identification problem: linear combinations of cointegrating vectors 

are also cointegrating vectors are also cointegrating vectors 

� Unique solutions for γ and β require restrictions 

Minimum number of restrictions which guarantee identification is r2� Minimum number of restrictions which guarantee identification is r2

� Normalization

� Phillips normalization � Phillips normalization 

� Manual normalization 
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Phillips NormalizationPhillips Normalization

Cointegrating vectors 

β' = (β1', β2') β' = (β1', β2') 

β1: (rxr)-matrix with rank r, β2: [(k-r)xr]-matrix

� Normalization consists in transforming the (kxr)-matrix β into� Normalization consists in transforming the (kxr)-matrix β into

1

1

2

β̂
β β

I I

B
−

   
= =   −  

with matrix B of unrestricted coefficients

� The r cointegrating relations express the first r variables as functions 

12β β B−  

of the remaining k - r variables 

� Fulfils the condition that at least r2 restrictions are needed to 
guarantee identificationguarantee identification

� Resulting equilibrium relations may be difficult to interpret 

� Alternative: manual normalization 
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Example: Money DemandExample: Money Demand

Verbeek’s data set “money”: US data 1:54 – 12:1994 (T=164) 
� m: log of real M1 money stock

infl: quarterly inflation rate (change in log prices, % per year)� infl: quarterly inflation rate (change in log prices, % per year)

� cpr: commercial paper rate (% per year)

� y: log real GDP (billions of 1987 dollars)� y: log real GDP (billions of 1987 dollars)

� tbr: treasury bill rate
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Money Demand: Cointegrating Money Demand: Cointegrating 
RelationsRelations
Intuitive choice of long-run behaviour relations

� Money demand 

m = α + β y + β tbr + εmt = α1 + β14 yt + β15 tbrt + ε1t
Expected: β14 ≈ 1, β15 < 0

� Fisher equation� Fisher equation

inflt = α2 + β25 tbrt + ε2t
Expected: β25 ≈ 1

Stationary risk premium � Stationary risk premium 

cprt = α3 + β35 tbrt + ε3t
Stationarity of difference between cpr and tbr; expected: β35 ≈ 1Stationarity of difference between cpr and tbr; expected: β35 ≈ 1
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Money Demand: Cointegrating Money Demand: Cointegrating 
VectorsVectors
ML estimates, lag order p = 6, cointegration rank r = 2, restricted 

constant

� Cointegrating vectors β and β and standard errors (s.e.), Phillips � Cointegrating vectors β1 and β2 and standard errors (s.e.), Phillips 
normalization

m infl cpr y tbr const

β1
1.00 0.00 0.61 -0.35 -0.60 -4.27

(s.e.) (0.00) (0.00) (0.12) (0.12) (0.12) (0.91)

β2
0.00 1.00 -26.95 -3.28 -27.44 39.25

(s.e.) (0.00) (0.00) (4.66) (4.61) (4.80) (35.5)
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Estimation of VEC(p) Models: Estimation of VEC(p) Models: 
k=2k=2
Estimation procedure consists of the following steps

1. Test the variables in the 2-vector Yt for stationarity using the usual 1. Test the variables in the 2-vector Yt for stationarity using the usual 

ADF tests; VEC models need I(1) variables

2. Determine the order p

3. Specification of

� deterministic trends of the variables in Yt

� intercept in the cointegrating relation

4. Cointegration test

5. Estimation of cointegrating relation, normalization5. Estimation of cointegrating relation, normalization

6. Estimation of the VEC model
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Example: Income and Example: Income and 
ConsumptionConsumption
Model: 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1tt 1 11 t-1 12 t-1 1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t
With Z = (Y, C)', 2-vectors δ and ε, and (2x2)-matrix Θ, the VAR(1) 

model ismodel is

Zt = δ + ΘZt-1 + εt
Represents each component of Z as a linear combination of lagged 

variablesvariables
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Income and Consumption: Income and Consumption: 
VEC(1) ModelVEC(1) Model
AWM data base: PCR (real private consumption), PYR (real disposable 

income of households); logarithms: C, Yincome of households); logarithms: C, Y

1. Check whether C and Y are non-stationary, results in 

C ~ I(1), Y ~ I(1)

2. Lag order with minimal AIC: p = 4

3. Johansen test for cointegration: given that C and Y have no trends 

and the cointegrating relationship has an intercept: and the cointegrating relationship has an intercept: 

r = 1 (p < 0.05) 

the cointegrating relationship is the cointegrating relationship is 

C = 8.55 – 1.61Y 

with t(Y) = 18.2with t(Y) = 18.2
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Income and Consumption: Income and Consumption: 
VEC(1) Model, cont’dVEC(1) Model, 
3. VEC(1) model (same specification as in 2.) with Z = (Y, C)'

∆Zt = - γ(β'Zt-1 + δ) + Γ∆Zt-1 + εt∆Zt = - γ(β'Zt-1 + δ) + Γ∆Zt-1 + εt

coint ∆∆∆∆Y-1 ∆∆∆∆C-1 adj.R2 AIC

γij -0.029 0.167 0.059 0.14 -7.42
∆Y

γij -0.029 0.167 0.059 0.14 -7.42

t(γij) 5.02 1.59 0.49

γ -0.047 0.226 -0.148 0.18 -7.59
∆C

γij -0.047 0.226 -0.148 0.18 -7.59

t(γij) 2.36 2.34 1.35

The model explains growth rates of PCR and PYR; AIC = -15.41 is 
smaller than that of the VAR(1)-Modell (AIC = -14.45)
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Estimation of VEC ModelsEstimation of VEC Models

Estimation procedure consists of the following steps

1. Test of the k variables in Yt for stationarity: ADF test 1. Test of the k variables in Yt for stationarity: ADF test 

2. Determination of the number p of lags in the cointegration test (order 

of VAR): AIC or BIC

3. Specification of 

� deterministic trends of the variables in Yt

� intercept in the cointegrating relations

4. Determination of the number r of cointegrating relations: trace and/or 
max testmax test

5. Estimation of the coefficients β of the cointegrating relations and the 

adjustment coefficients γ; normalization; assessment of the adjustment coefficients γ; normalization; assessment of the 

cointegrating relations 

6. Estimation of the VEC model
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VEC Models in GRETLVEC Models in GRETL

Model > Time Series > VAR lag selection…

� Calculates information criteria like AIC and BIC from VARs of order 1 

to the chosen maximum order of the VARto the chosen maximum order of the VAR

Model > Time Series > Cointegration test > Johansen …

� Calculates eigenvalues, test statistics for the trace and max tests, � Calculates eigenvalues, test statistics for the trace and max tests, 

and estimates of the matrices γ, β, and Π = γβ‘ 

Model > Time Series > VECMModel > Time Series > VECM

� Estimates the specified VEC model for a given cointegration rank: (1) 

cointegrating vectors and standard errors, (2) adjustment vectors, (3) cointegrating vectors and standard errors, (2) adjustment vectors, (3) 

coefficients and various criteria for each of the equations of the VEC 

model
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1. Verbeek’s data set “money”: US data 1:54 – 12:1994 (T=164) with m: 

log of real M1 money stock, infl: quarterly inflation rate (change in log log of real M1 money stock, infl: quarterly inflation rate (change in log 
prices, % per year), cpr: commercial paper rate (% per year), y: log 
real GDP (billions of 1987 dollars), and tbr: treasury bill rate. Answer 
the following questions for the three equations for m with regressors ythe following questions for the three equations for m with regressors y
and tbr, infl with regressor tbr, and cpr with regressor tbr. 
a. Which indications for spurious regressions do you see? a. Which indications for spurious regressions do you see? 

b. Which indications for cointegrating relationships do you see? 

c. What order of integration apply to the five variables?

d. Determination of the number p of lags in the cointegration test.d. Determination of the number p of lags in the cointegration test.

e. Estimate an VAR(1) model for the vector Y = (m, infl, cpr, y, tbr)’. 

f. Estimate an VEC model for the vector Y = (m, infl, cpr, y, tbr)’ with p = 2 f. Estimate an VEC model for the vector Y = (m, infl, cpr, y, tbr)’ with p = 2 

and (i) r = 1 and (ii) r = 2. Compare the AICs for the two VEC models and 

the VAR model; compare the equation for d_m in the two VEC models. 
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2. For the VAR(2) model 

Yt = δ + Θ1Yt-1 + Θ2Yt-2 + εtYt = δ + Θ1Yt-1 + Θ2Yt-2 + εt

assuming a k-vector Yt and appropriate orders of the other vectors 

and matrices, derive the VEC form ∆Yt = δ + Γ1 ∆Yt-1 + ΠYt-1 + εt; 

indicate Γ and Π as functions of the parameters Θ and Θ .
t 1 t-1 t-1 t

indicate Γ1 and Π as functions of the parameters Θ1 and Θ2.
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