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Motivation I

I Causality - a crucial issue in economics (maybe more than in
other social sciences)

I Non-experimental nature of data as opposed to experiments
such as laboratory experiments or randomized controlled trials

I Estimation techniques developed over the past 70 or so years
to estimate a causal effect of variables on the outcome of
interest

I Development of ’instrumental variable estimation techniques’
is an attempt to account for causality in non-experimental
data



Basic set-up I

I Consider a basic regression y = xi βi + u, i = 1 , ...,K

I Key condition of consistency of OLS estimator is that the
error term is uncorrelated with each of the regressors:
cov (xi , u) = 0, i = 1 , ...,K

I Suffi cient condition for cov (xi , u) = 0 is E (u|xi ) = 0
I An explanatory variable is endogenous if it is correlated with
the error term which is caused by

1. omitted variables
2. measurement error
3. simultaneity



Basic set-up I

I β̂OLS = (X
′X )−1 X ′y = (X ′X )−1 X ′X β+ (X ′X )−1 X ′u =

β+ (X ′X )−1 X ′u

I β̂OLS = β+
(
N−1X ′X

)−1 N−1X ′u - renormalization to allow
the use of large numbers to be applied to X ′X

I plim β̂OLS = β+
(
p limN−1X ′X

)−1
(plimN−1X ′u) (Slutsky’s

theorem)

OLS is consistent if plimN−1X ′u = 0

I a necessary condition for the above equality to hold is that
E [X ′u] = 0



Instrumental Variable Regression I

I To obtain consistent estimates of β when cov (xi , u) 6= 0, we
need to find a variable - call it zi - which satisfies two
conditions:

1. Instrument relevance: cov (zi , xi ) 6= 0
2. Instrument exogeneity: cov (zi , u) = 0

I failure of the first condition leads to weak instrumental
variable problem, but we can deal with it (somehow)

I failure of the second condition is fatal and we can’t interpret
the estimated relationship as causal (only as a
sophisticated correlation)



Instrumental Variable Regression I

I we will deal with a single equation model
I number of instruments can be the same as the number of
endogenous variables (just-identified model) or larger
(overidentified model)

I just-identified model:

β̂IV = (Z
′X )−1 Z ′y = β+ (Z ′X )−1 Z ′u =

(
N−1Z ′X

)−1 N−1Z ′u
I consistency of IV estimator requires plimN−1Z ′u = 0 and
plimN−1Z ′X 6= 0

I variance of β̂IV : V̂ (β̂IV ) = (Z
′X )−1Z ′Ω̂Z (Z ′X )−1 where

Ω̂ = Diag(ûi
2)

I though consistent, IV estimators exhibit effi ciency loss



Instrumental Variable Regression I

I over-identified model requires Two-Stage Least Square
estimator (TSLS/2SLS)

β̂2SLS = [X
′Z (Z ′Z )−1Z ′X ]−1[X ′Z (Z ′Z )−1Z ′y ]

I in just-identified model 2SLS=IV
I Stage 1: obtain predicted values of X from a regression of X
on Z: X̂ = Z (Z ′Z )−1Z ′X

I Stage 2: run OLS with predicted values X̂
I again, 2SLS causes effi ciency loss relative to OLS, but, it is
effecienct estimator in the class of all instrumental variable
estimators using instrument linear in z



Instrumental Variable Regression I

I Even though 2SLS is a consistent estimator when instruments
satisfy the conditions of relevance and exogeneity, it is biased
in finite samples

I In fact, we must rely on large sample analysis to derive the
properties of 2SLS (mean of just-identified 2SLS does not
even exist)

I When instruments are weak, 2SLS is biased even in very large
sample

I Consider the ’degree of inconsistency’- there is some, though
very mild, correlation between instruments are error terms

I When instruments are weak, the degree of inconsistency
increases



Instrumental Variable Regression I

I consider a simple model with one endogenous variable:
Y1i = α1 + β1Y2i + εi and Y2i = α2 + β2Zi + µi

I assume that Var(εi )=1 and Var(µi )=1 =>cov(εi , µi )=ρ
where ρ is the correlation coeffi cient

I if we assume that Zi is exogenous, then ρ measures the
degree to which y2i is correlated with εi

I Hahn and Hausman (2005) showed that in this simple case,
the finite sample bias of 2SLS in overidentified case is, to a
second-degree approximation

E (β2SLS1 )− β1 ≈
lρ(1−R̃ 2)
nR̃ 2

I l is the number of instruments, n is sample size, R̃2 is R2

from the regression of Zi on Y2i and measures the strength of
instruments



Instrumental Variable Regression I

I the bias of 2SLS in finite samples is toward inconsistent OLS
I a fundamental question arises: if a consistent 2SLS estimator
is biased in finite samples toward inconsistent OLS, is 2SLS
bias smaller or larger then that of OLS?

I Hahn and Hausman (2005) offer the following equation

Bias(β2SLS1 )

Bias(βOLS1 )
≈ l

nR̃ 2

I as long as the denominator is larger than the nominator, 2SLS
bias is smaller than OLS bias

I ceteris paribus, the bias of 2SLS grows with the number of
instruments

I weak instruments (low R̃2) increase the bias of 2SLS
toward inconsistent OLS!!!



Instrumental Variable Regression I

I weak instruments and ’mild inconsistency’:

plim β̂IV = β+ cov (Z ,u)
cov (Z ,X ) =

σu
σu

[
corr (Z ,u)
corr (Z ,X )

]
I relative inconsistency of 2SLS

plim β̂2SLS−β

plim β̂OLS−β
= corr (X̂ ,u)
corr (X ,u)

1
R 2p

I if instruments are weak and moderately correlated with error
term (mildly endogenous), instrumental variable estimator is
even more inconsistent than OLS



Instrumental Variable Regression I

I unless we have a perfect natural experiment of a perfectly
exogenous instrument, weak instrument is more fatal than
running a simple OLS even when a correlation between
instrument and error term is very small

I this result is due to Bound, Jaeger and Baker (1995) and has
not received much attention in the literature

I literature on weak instruments assumes that instruments
satisfy exogeneity assumption and the only problem is their
weak correlation with endogenous variables



Weak Instruments I

I how to detect it:

1. Shea’s partial R2 from the first stage regression
2. F-statistics from the first stage regression

I logic of R2 from the first stage regressions: consider
y = β1x1 + β2x2 + u where x1 is endogenous and x2
exogenous, and let z be a vector of instruments (includes x2)

I we need a measure of the correlation between z and x1 which
purges out x2

I R2measure adjusted for the presence of x2 proposed by
Bound, Jaeger, and Baker (1995)

I R2measure adjusted for the presence of x2 and another
endogenous variables proposed Shea (1997)



Weak Instruments I

I F-statistics from the first-stage regression; the test statistics
are not drawn from the standard F-distribution

I Stock and Yogo (2005) offer critical values which depend on
the number of instruments and endogenous variables

I Null hypothesis: the bias in 2SLS is less than some
percentage of the bias of OLS

I for example, for one endogenous variable and three
instruments, and H0 stating the bias being less than 10%, the
critical value of F-statistic is 9.08



Weak Instruments - Solution(s) I

I alternative estimators to 2SLS which exhibit better properties
in the presence of weak instruments

I test statistics which are robust to weak-instrument problem



An Example - Housing Expenditures I

I the model allows for household fixed effects

dit = 1 (π′xit + ηi − uit ≥ 0)
y0it = β′0xit + α0i + ε0it if dit = 0
y1it = β′1xit + α1i + ε1it if dit = 1

I the selection variable dit is a choice between owning a
property (dit = 1) and renting a property (dit = 0)

I xit is a vector of explanatory variables (total expenditures,
square of total expenditures, prices, household characteristics)

I y1it and y0it are budget shares spent on housing for renters
and owners respectively

I α0i , α1i , ηi are unobservable household specific time-invariant
effects



An Example - Housing Expenditures I

I xi is decomposed into xai (log of total expend, square of total
expend), xbi (log of hh income, square of hh income), xdi
(prices, hh characteristics), xci are exclusion restrictions

I selection equation includes xbi and xdi , the budget equation
xai and xci

I taking the difference between period t and τ yields:

ypit − ypiτ = β′pa (xait − xaiτ) + β′pc (xcit − xciτ) + (εpit − εpiτ) if
dit = diτ = p, p=0,1

dis = 1 (π′bxbit + π′dxdit + ηi − uit ≥ 0) , s= t, τ



An Example - Housing Expenditures I

I we can rewrite the above equation as

ypit − ypiτ = β′pa (xait − xaiτ) + β′pc (xcit − xciτ) +
gptτ (xbit , xbiτ, xdit , xdiτ) + ε̃pitτ

I the function gptτ, p = 0, 1 is given by

gptτ (xbit , xbiτ, xdit , xdiτ) =
E (εpit − εpiτ|xbit , xbiτ, xdit , xdiτ, dit = dis = p)

I and ε̃pitτ satisfies

E (̃εpitτ|xbit , xbiτ, xdit , xdiτ, dit = dis = p) = 0, p = 0, 1



An Example - Housing Expenditures I

I we can assume no sample selection after differencing =>
gptτ = 0, p = 0, 1 which is equivalent to saying that ηi − uit
is independent of ε0it and ε1it for all t

I in other words, possible selection effect on budget shares
operate only through correlation between αi and (ηi , uit )












