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Organizational Issues

Course schedule 

Classes start at 10:00
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Class Date

1 Fr, Mar 9

2 Fr, Mar 16

3 Fr, Mar  23

4 Fr, Apr  6

5 Fr, Apr   20

6 Fr,  Apr 27



Organizational Issues, cont’d

Teaching and learning method

� Course in six blocks 
� Class discussion, written homework (computer exercises, GRETL) 

submitted by groups of (3-5) students, presentations of homework 
by participants

� Final exam 
Assessment of student work

� For grading, the written homework, presentation of homework in 
class and a final written exam will be of relevance

� Weights: homework 40 %, final written exam 60 %
� Presentation of homework in class: students must be prepared to be 

called at random
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Organizational Issues, cont’d

Literature

Course textbook
� Marno Verbeek, A Guide to Modern Econometrics, 3rd Ed., Wiley, 

2008
Suggestions for further reading 
� W.H. Greene, Econometric Analysis. 7th Ed., Pearson International, 

2012
� R.C. Hill, W.E. Griffiths, G.C. Lim, Principles of Econometrics, 4th Ed., 

Wiley, 2012 
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Aims and Content

Aims of the course 

� Deepening the understanding of econometric concepts and principles
� Learning about advanced econometric tools and techniques

� ML estimation and testing methods (MV, Cpt. 6) 
� Time series models (MV, Cpt. 8, 9)
� Multi-equation models (MV, Cpt. 9)
� Models for limited dependent variables (MV, Cpt. 7)
� Panel data models (MV, Cpt. 10)

� Use of econometric tools for analyzing economic data: specification of 
adequate models, identification of appropriate econometric methods, 
interpretation of results

� Use of GRETL
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Limited Dependent Variables: 
An Example

Explain whether a household owns a car: explanatory power have 
� income 
� household size 
� etc. 
Regression is not suitable! 

Why?
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Limited Dependent Variables: 
An Example

Explain whether a household owns a car: explanatory power have 
� income 
� household size 
� etc. 
Regression is not suitable!
� Owning a car has two manifestations: yes/no
� Indicator for owning a car is a binary variable 
Models are needed that allow to describe a binary dependent 

variable or a, more generally, limited dependent variable 
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Cases of Limited Dependent 
Variable
Typical situations: functions of explanatory variables are used to 

describe or explain 
� Dichotomous dependent variable, e.g., ownership of a car 

(yes/no), employment status (employed/unemployed)
� Ordered response, e.g., qualitative assessment 

(good/average/bad), working status (full-time/part-time/not 
working)

� Multinomial response, e.g., trading destinations 
(Europe/Asia/Africa), transportation means (train/bus/car)

� Count data, e.g., number of orders a company receives in a 
week, number of patents granted to a company in a year

� Censored data, e.g., expenditures for durable goods, duration of 
study with drop outs
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Time Series Example: 
Price/Earnings Ratio
Verbeek’s data set PE: PE = ratio of S&P composite stock price index 

and S&P composite earnings of the S&P500, annual, 1871-2002
� Is the PE ratio mean reverting?
� log(PE)

� Mean 2.63 
(PE: 13.9)

� Min 1.81 (6.1)
� Max 3.60 (36.6)
� Std 0.33
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Time Series Models 

Purpose of modelling 
� Description of the data generating process
� Forecasting
Types of model specification
� Deterministic trend: a function f(t) of the time t, describing the 

evolution of E{Yt} over time
Yt = f(t) + εt, εt: white noise 

e.g., Yt = α + βt + εt

� Autoregression AR(1) 
Yt = δ + θYt-1 + εt,   |θ| < 1, εt: white noise 

generalization: ARMA(p,q)-process
Yt = θ1Yt-1 + … + θpYt-p + εt + α1εt-1 + … + αqεt-q
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PE Ratio: Various Models

Diagnostics for various competing models: ∆yt = log PEt - log PEt-1

Best fit for
� BIC: MA(2) model ∆yt = 0.008 + et – 0.250 et-2

� AIC: AR(2,4) model ∆yt = 0.008 – 0.202 ∆yt-2 – 0.211 ∆yt-4 + et

� Q12: Box-Ljung statistic for the first 12 autocorrelations
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Model Lags AIC BIC Q12 p-value

MA(4) 1−4 -73.389 -56.138 5.03 0.957

AR(4) 1−4 -74.709 -57.458 3.74 0.988

MA 2, 4 -76.940 -65.440 5.48 0.940

AR 2, 4 -78.057 -66.556 4.05 0.982

MA 2 -76.072 -67.447 9.30 0.677

AR 2 -73.994 -65.368 12.12 0.436



Multi-equation Models
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Economic processes: Simultaneous and interrelated development of 
a set of variables 

Examples:
� Households consume a set of commodities (e.g., food, durables); 

the demanded quantities depend on the prices of commodities, the 
household income, the number of persons living in the household, 
etc.; a consumption model contains a set of dependent variables 
and a set of explanatory variables. 

� The market of a product is characterized by (a) the demanded and 
supplied quantity and (b) the price of the product; a model for the 
market consists of equations representing the development and 
interdependencies of these variables.

� An economy consists of markets for commodities, labour, finances, 
etc.; a model for a sector or the full economy contains descriptions 
of the development of the relevant variables and their interactions.



Panel Data

Population of interest: individuals, households, companies, 
countries

Types of observations
� Cross-sectional data: Observations of all units of a population, or of a 

(representative) subset, at one specific point in time

� Time series data: Series of observations on units of the population over 
a period of time

� Panel data (longitudinal data): Repeated observations of (the same) 
population units collected over a number of periods; data set with both a 
cross-sectional and a time series aspect; multi-dimensional data

Cross-sectional and time series data are special cases of panel data
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Panel Data Example: Individual 
Wages
Verbeek’s data set “males” 
� Sample of 

� 545 full-time working males 

� each person observed yearly after completion of school in 1980 till 
1987

� Variables
� wage: log of hourly wage (in USD)

� school: years of schooling

� exper: age – 6 – school

� dummies for union membership, married, black, Hispanic, public 
sector

� others

Mar 9, 2018 Hackl, Econometrics 2, Lecture 1 16



Panel Data Models

Panel data models allow
� controlling individual differences, comparing behaviour, analysing 

dynamic adjustment, measuring effects of policy changes 

� more realistic models than cross-sectional and time-series models

� more detailed or sophisticated research questions

E.g.: What is the effect of being married on the hourly wage
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The Linear Model
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Y: explained variable
X: explanatory or regressor variable
The model describes the data-generating process of Y

under the condition X

A simple linear regression model
Y = α + βX

β: coefficient of X
α: intercept

A multiple linear regression model
Y = β1 + β2X2 + … + βΚXΚ



Fitting a Model to Data

Choice of values b1, b2 for model parameters β1, β2 of Y = β1 + β2 X,
given the observations (yi, xi), i = 1,…,N

Model for observations: yi = β1 + β2 xi + εi, i = 1,…,N

Fitted values: ŷi = b1 + b2 xi, i = 1,…,N

Principle of (Ordinary) Least Squares gives the OLS estimators
bi = arg minβ1,β2 S(β1, β2), i=1,2

Objective function: sum of the squared deviations
S(β1, β2) = Σi [yi - (β1 + β2xi)]2 = Σi εi

2

Deviations between observation and fitted values, residuals: 
ei = yi - ŷi = yi - (b1 + b2xi)
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Observations and Fitted 
Regression Line

Simple linear regression: Fitted line and observation points (Verbeek, 
Figure 2.1) 
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OLS Estimators

OLS estimators b1 und b2 result in
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with mean values          and
and second moments
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OLS Estimators: The General 
Case 
Model for Y contains K-1 explanatory variables

Y = β1 + β2X2 + … + βKXK = x’β

with x = (1, X2, …, XK)’ and β = (β1, β2, …, βK)’ 

Observations: [yi, xi] = [yi, (1, xi2, …, xiK)’], i = 1, …, N

OLS-estimates b = (b1, b2, …, bK)’ are obtained by minimizing 

this results in the OLS estimators
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In Matrix Notation

N observations
(y1,x1), … , (yN,xN)

Model: yi = β1 + β2xi + εi, i = 1, …,N, or

y = Xβ + ε
with

OLS estimators 
b = (X’X)-1X’y
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Gauss-Markov Assumptions 

A1 E{εi} = 0 for all i

A2 all εi are independent of all xi (exogenous xi)

A3 V{εi} = σ2 for all i (homoskedasticity)

A4 Cov{εi, εj} = 0 for all i and j with i ≠ j (no autocorrelation)

Mar 9, 2018 Hackl, Econometrics 2, Lecture 1 26

Observation yi (i = 1, …, N) is a linear function 
yi = xi'β + εi

of observations xik, k =1, …, K, of the regressor variables and the 
error term εi

xi = (xi1, …, xiK)'; X = (xik)



Normality of Error Terms

Together with assumptions (A1), (A3), and (A4), (A5) implies
εi ~ NID(0,σ2) for all i

i.e., all εi are 
� independent drawings 
� from the normal distribution N(0,σ2) 
� with mean 0 
� and variance σ2

Error terms are “normally and independently distributed” (NID, n.i.d.)
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A5 εi normally distributed for all i



Properties of OLS Estimators

OLS estimator b = (X’X)-1X’y
1. The OLS estimator b is unbiased: E{b} = β
2. The variance of the OLS estimator is given by

V{b} = σ2(Σi xi xi’ )-1

3. The OLS estimator b is a BLUE (best linear unbiased estimator) 
for β

4. The OLS estimator b is normally distributed with mean β and 
covariance matrix V{b} = σ2(Σi xi xi’ )-1

Properties 
� 1., 2., and 3. follow from Gauss-Markov assumptions 
� 4. needs in addition the normality assumption (A5)
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Distribution of t-statistic

t-statistic

with the standard error se(bk) of bk follows 
1. the t-distribution with N-K d.f. if the Gauss-Markov assumptions 

(A1) - (A4) and the normality assumption (A5) hold 
2. approximately the t-distribution with N-K d.f. if the Gauss-Markov 

assumptions (A1) - (A4) hold but not the normality assumption (A5) 
3. asymptotically (N → ∞) the standard normal distribution N(0,1)
4. Approximately, for large N, the standard normal distribution N(0,1)
The approximation error decreases with increasing sample size N
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OLS Estimators: Consistency

The OLS estimators b are consistent,  
plimN → ∞ b = β,

if one of the two sets of conditions are fulfilled:
� (A2) from the Gauss-Markov assumptions and the assumption 

(A6), or
� the assumption (A7), which is weaker than (A2), and the 

assumption (A6)
Assumptions (A6) and (A7): 
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x

A6 1/N ΣN
i=1 xi xi’ converges with growing N to a finite, 

nonsingular matrix Σxx

A7 The error terms have zero mean and are uncorrelated 
with each of the regressors: E{xi εi} = 0
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Estimation Concepts
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OLS estimator: Minimization of objective function S(β) = Σi εi
2 gives 

� K first-order conditions Σi (yi – xi’b) xi = Σi ei xi = 0, the normal 
equations

� OLS estimators are solutions of the normal equations
� Moment conditions 

E{(yi – xi’ β) xi} = E{εi xi} = 0
� Normal equations are sample moment conditions (times N)
IV estimator: Model allows derivation of the moment conditions 

E{(yi – xi’ β) zi} = E{εi zi} = 0
which are functions of

� observable variables yi, xi, instrument variables zi, and unknown 
parameters β

� Moment conditions are used for deriving IV estimators
� OLS estimators are special case of IV estimators



Estimation Concepts, cont’d
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GMM estimator: generalization of the moment conditions
E{f(wi, zi, β)} = 0

� with observable variables wi, instrument variables zi, and unknown 
parameters β; f: multidimensional function with as many components 
as moment conditions 

� Allows for non-linear models
� Under weak regularity conditions, the GMM estimators are

� consistent
� asymptotically normal

Maximum likelihood estimation 
� Basis is the distribution of yi conditional on regressors xi

� Depends on unknown parameters β
� The estimates of the parameters β are chosen so that the distribution 

corresponds as good as possible to the observations yi and xi
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Example: Urn Experiment
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The experiment:
� The urn contains red and white balls 
� Proportion of red balls: p (unknown)
� N random draws
� Random draw i: yi = 1 if ball in draw i is red, yi = 0 otherwise; 

P{yi=1} = p
� Sample: N1 red balls, N-N1 white balls
� Probability for this result: 

P{N1 red balls, N-N1 white balls} ≈ pN1 (1 – p)N-N1

Likelihood function L(p): The probability of the sample result, 
interpreted as a function of the unknown parameter p

L(p) = pN1 (1 – p)N-N1 , 0 < p < 1



Urn Experiment: Likelihood 
Function and LM Estimator
Likelihood function: (proportional to) the probability of the sample 

result, interpreted as a function of the unknown parameter p
L(p) = pN1 (1 – p)N-N1 , 0 < p < 1

Maximum likelihood estimator: that value     of p which maximizes 
L(p)

Calculation of    : maximization algorithm
� As the log-function is monotonous, coordinates p of the extremes 

of L(p) and log L(p) coincide 
� Use of log-likelihood function is often more convenient

log L(p) = N1 log p + (N - N1) log (1 – p)
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Urn Experiment: Likelihood 
Function, cont’d
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x

Verbeek, Fig.6.1

p log 

L(p)

0.1 -107.21

0.2 -83.31

0.3 -72.95

0.4 -68.92

0.5 -69.31

0.6 -73.79

0.7 -83.12

0.8 -99.95

0.9 -133.58



Urn Experiment: ML Estimator

Maximizing log L(p) with respect to p gives the first-order condition 

Solving this equation for p gives the maximum likelihood estimator 
(ML estimator)

For N = 100, N1 = 44, the ML estimator for the proportion of red balls 
is     = 0.44
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Maximum Likelihood 
Estimator: The Idea
� Specify the distribution of the data (of y or y given x) 
� Determine the likelihood of observing the available sample as a 

function of the unknown parameters
� Choose as ML estimates those values for the unknown parameters 

that give the highest likelihood
� Properties: In general, the ML estimators are 

� consistent 
� asymptotically normal
� efficient
provided the likelihood function is correctly specified, i.e., 
distributional assumptions are correct
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Example: Normal Linear 
Regression
Model

yi = β1 + β2Xi + εi

with assumptions (A1) – (A5)
From the normal distribution of εi follows: contribution of  observation i

to the likelihood function:

L(β,σ²) = ∏i f(yi│xi;β,σ²) due to independent observations; the log-
likelihood function is given by
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Normal Linear Regression, cont’d

Maximizing log L(β,σ²) with respect to β and σ2 gives the ML estimators 

which coincide with the OLS estimators, and

which is biased and underestimates σ²!
Remarks:
� The results are obtained assuming normally and independently 

distributed (NID) error terms 
� ML estimators are consistent but not necessarily unbiased; see the 

properties of ML estimators below 
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ML Estimator: Notation
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Let the density (or probability mass function) of yi, given xi, be given by 
f(yi|xi,θ) with K-dimensional vector θ of unknown parameters

Given independent observations, the likelihood function for the sample 
of size N is

The ML estimators are the solutions of
maxθ log L(θ) = maxθ Σi log Li(θ)

or the solutions of the K first-order conditions 

s(θ) = Σi si(θ), the K-vector of gradients, also denoted score vector

Solution of s(θ) = 0 
� analytically (see examples above) or
� by use of numerical optimization algorithms
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Matrix Derivatives
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The scalar-valued function

or – shortly written as log L(θ) – has the K arguments θ1, …, θK

� K-vector of partial derivatives or gradient vector or score vector or 
gradient

� KxK matrix of second derivatives or Hessian matrix
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ML Estimator: Properties
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The ML estimator is
1. Consistent
2. asymptotically efficient
3. asymptotically normally distributed:

V: asymptotic covariance matrix of 

ˆ( ) N(0, )N Vθ θ− →
ˆNθ



The Information Matrix
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Information matrix I(θ)
� I(θ) is the limit (for N → ∞) of

� For the asymptotic covariance matrix V can be shown: V = I(θ)-1

� I(θ)-1 is the lower bound of the asymptotic covariance matrix for any 
consistent, asymptotically normal estimator for θ: Cramèr-Rao lower 
bound 

Calculation of Ii(θ) can also be based on the outer product of the score 
vector

for a miss-specified likelihood function, Ji(θ) can deviate from Ii(θ)
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Example: Normal Linear 
Regression
Model

yi = β1 + β2Xi + εi

with assumptions (A1) – (A5) fulfilled
The score vector with respect to β = (β1,β2)’ is – using xi = (1, Xi)’ –

The information matrix is obtained both via Hessian and outer product
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Covariance Matrix V: 
Calculation
Two ways to calculate V:
� Estimator based on the information matrix I(θ) 

index “H”: the estimate of V is based on the Hessian matrix
� Estimator based on the score vector 

with score vector s(θ); index “G”: the estimate of V is based on 
gradients
� also called: OPG (outer product of gradient) estimator 
� also called: BHHH (Berndt, Hall, Hall, Hausman) estimator
� E{si(θ) si(θ)’} coincides with Ii(θ) if f(yi| xi,θ) is correctly specified
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Again the Urn Experiment 

Likelihood contribution of the i-th observation 
log Li(p) = yi log p + (1 - yi) log (1 – p)

This gives scores

and 

With E{yi} = p, the expected value turns out to be 

The asymptotic variance of the ML estimator V = I-1 = p(1-p)
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Urn Experiment and Binomial 
Distribution
The asymptotic distribution is

� Small sample distribution:
N ~ B(N, p)

� Use of the approximate normal distribution for portions  
� rule of thumb for using the approximate distribution 

N p (1-p) > 9
Test of H0: p = p0 can be based on test statistic 
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Example: Normal Linear 
Regression
Model

yi = xi’β + εi

with assumptions (A1) – (A5)
Log-likelihood function

Scores of the i-th observation
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Normal Linear Regression: ML-
Estimators
The first-order conditions – setting both components of Σisi(β,σ²) to 

zero – give as ML estimators: the OLS estimator for β, the average 
squared residuals for σ²

Asymptotic covariance matrix: Contribution of the i-th observation 
(E{εi} = E{εi

3} = 0, E{εi
2} = σ², E{εi

4} = 3σ4)

gives
V = I(β,σ²)-1 = diag (σ²Σxx

-1, 2σ4)
with Σxx = lim (Σixixi‘)/N
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Normal Linear Regression: ML-
and OLS-Estimators
The ML estimate for β and σ² follow asymptotically

For finite samples: Covariance matrix of ML estimators for β

similar to OLS results 
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Diagnostic Tests

Diagnostic (or specification) tests based on ML estimators
Test situation:
� K-dimensional parameter vector θ = (θ1, …, θK)’
� J ≥ 1 linear restrictions (K ≥ J)
� H0: R θ = q with JxK matrix R, full rank; J-vector q
Test principles based on the likelihood function:
1. Wald test: Checks whether the restrictions are fulfilled for the 

unrestricted ML estimator for θ; test statistic ξW

2. Likelihood ratio test: Checks whether the difference between the 
log-likelihood values with and without the restriction is close to 
zero; test statistic ξLR

3. Lagrange multiplier test (or score test): Checks whether the first-
order conditions (of the unrestricted model) are violated by the 
restricted ML estimators; test statistic ξLM
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Likelihood and Test Statistics

A
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The Asymptotic Tests

Under H0, the test statistics of all three tests 
� follow asymptotically, for finite sample size approximately, the Chi-

square distribution with J d.f.
� The tests are asymptotically (large N) equivalent
� Finite sample size: the values of the test statistics obey the relation

ξW ≥ ξLR ≥ ξLM

Choice of the test: criterion is computational effort
1. Wald test: Requires estimation only of the unrestricted model; 

e.g., testing for omitted regressors: estimate the full model, test 
whether the coefficients of potentially omitted regressors are 
different from zero

2. Lagrange multiplier test: Requires estimation only of the restricted 
model; preferable if restrictions complicate estimation

3. Likelihood ratio test: Requires estimation of both the restricted  
and the unrestricted model

Mar 9, 2018 Hackl, Econometrics 2, Lecture 1 58



Wald Test

Checks whether the restrictions are fulfilled for the unrestricted ML 
estimator for θ

Asymptotic distribution of the unrestricted ML estimator:

Hence, under H0: R θ = q, 

The test statistic

� under H0, ξW is expected to be close to zero
� p-value to be read from the Chi-square distribution with J d.f.
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Wald Test, cont’d

Typical application: tests of linear restrictions for regression 
coefficients

� Test of H0: βi = 0 
ξW = bi

2/[se(bi)2]
� ξW follows the Chi-square distribution with 1 d.f.
� ξW is the square of the t-test statistic

� Test of the null-hypothesis that a subset of J of the coefficients β
are zeros

ξW = (eR’eR – e’e)/[e’e/(N-K)] 
� e: residuals from unrestricted model
� eR: residuals from restricted model
� ξW follows the Chi-square distribution with J d.f.
� ξW is related to the F-test statistic by ξW = FJ
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Likelihood Ratio Test

Checks whether the difference between the ML estimates obtained 
with and without the restriction is close to zero 
for nested models

� Unrestricted ML estimator:    
� Restricted ML estimator:    ; obtained by minimizing the log-

likelihood subject to R θ = q
Under H0: R θ = q, the test statistic 

� is expected to be close to zero
� p-value to be read from the Chi-square distribution with J d.f.
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Likelihood Ratio Test, cont’d

Test of linear restrictions for regression coefficients
� Test of the null-hypothesis that J linear restrictions of the 

coefficients β are valid
ξLR = N log(eR’eR/e’e) 

� e: residuals from unrestricted model
� eR: residuals from restricted model 
� ξLR follows the Chi-square distribution with J d.f.

� Requires that the restricted model is nested within the unrestricted 
model 
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Lagrange Multiplier Test

Checks whether the derivative of the likelihood for the restricted ML 
estimator is close to zero

Based on the Lagrange constrained maximization method
Lagrangian, given θ = (θ1’, θ2’)’ with restriction θ2 = q, J-vectors θ2, q, λ

H(θ, λ) = Σi log L i(θ) – λ‘(θ2-q)
First-order conditions give the restricted ML estimators 

and 

λ measures the extent of violation of the restrictions, basis for ξLM

si are the scores; LM test is also called score test 
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Lagrange Multiplier Test, cont’d

For     can be shown that           follows asymptotically the normal 
distribution N(0,Vλ)  with 

i.e., the inverted lower block diagonal (dimension J x J ) of the 
inverted information matrix 

The Lagrange multiplier test statistic

has under H0 an asymptotic Chi-square distribution with J d.f.
is the lower block diagonal of the estimated inverted 

information matrix, evaluated at the restricted estimators for θ
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The LM Test Statistic

Outer product gradient (OPG) of ξLM

� Information matrix estimated on basis of scores (cf. slide 48)

� With 

� the LM test statistics can be written as

With the NxK matrix of first derivatives S = [s1(  ), …, sN(  )]‘

� and – with the N-vector i = (1, …, 1)’ 
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Calculation of the LM Test 
Statistic
Auxiliary regression of a N-vector i = (1, …, 1)’ on the scores si(  ),  

i.e., on the columns of S; no intercept 
� Predicted values from auxiliary regression: S(S'S)-1S’i

� Sum of squared predictions: i’S(S’S)-1S’S(S’S)-1S’i = i’S(S’S)-1S’i 

� Total sum of squares: i’i = N
� LM test statistic 

ξLM = i’S(S’S)-1S’i = i’S(S’S)-1S’i (i’i)-1N = N uncR² 
with the uncentered R² of the auxiliary regression with residuals e

Remember: For  the regression y = Xβ + ε
� OLS estimates for β: b = (X‘X)-1X‘y
� the predictions for y: ŷ = X(X‘X)-1X‘y
� uncentered R²: uncR² = ŷ’ŷ/y’y
Also: ∑i si(θ) = S’i and ∑i si(θ) si(θ)’ = S’S
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The Urn Experiment: Three 
Tests of H0: p=p0
The urn experiment: test of H0: p = p0

The likelihood contribution of the i-th observation is
log Li(p) = yi log p + (1 - yi) log (1 – p)

This gives 
si(p) = yi/p – (1-yi)/(1-p) and Ii(p) = [p(1-p)]-1

Wald test (with the unrestricted estimators     and   )
ξW = N(R - q) [RV-1R]-1 (R - q) = N(   - p0) [ (1- )]-1 (   - p0)

with J = 1, R = I; this gives

Example: In a sample of N = 100 balls, N1 = 40 are red, i.e.,    =0.40
� Test of H0: p0 = 0.5 results in 

ξW = 4.167, corresponding to a p-value of 0.041
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The Urn Experiment: LR Test 
of H0: p=p0
Likelihood ratio test:

with

unrestricted estimator     and restricted estimator

Example: In the sample of N = 100 balls, N1 = 40 are red
� =0.40,     = p0 = 0.5 
� Test of H0: p0 = 0.5 results in 

ξW = 4.027, corresponding to a p-value of 0.045
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The Urn Experiment: LM Test 
of H0: p=p0
Lagrange multiplier test:

with

and the inverted information matrix [I(p)]-1 = p(1-p), calculated for 
the restricted case, the LM test statistic is

Example: 
� In the sample of N = 100 balls, 40 are red
� LM test of H0: p0 = 0.5 gives ξLM = 4.000 with p-value of 0.044
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Normal Linear Regression: 
Scores
Log-likelihood function

Scores:

Covariance matrix
V = I(β,σ²)-1 = diag(σ²Σxx

-1, 2σ4) 
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Testing for Omitted Regressors

Model: yi = xi’β + zi’γ + εi, εi ~ NID(0,σ²); sample  size N
Test whether the J regressors zi are erroneously omitted:
� Fit the restricted model 
� Apply the LM test to check H0: γ = 0
First-order conditions give the scores

with restricted ML estimators for β and σ²; ML-residuals 
� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores gives 

the uncentered R² 
� The LM test statistic is ξLM = N uncR² 
� An asymptotically equivalent LM test statistic is NRe² with Re² 

from the regression of the ML residuals on xi and zi
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Testing for Heteroskedasticity

Model: yi = xi’β + εi, εi ~ NID, V{εi} = σ² h(zi’α), h(.) > 0 but unknown, 
h(0) = 1, ∂/∂α{h(.)} ≠ 0, J-vector zi

Test for homoskedasticity: Apply the LM test to check H0: α = 0 
First-order conditions with respect to σ² and α give the scores

with restricted ML estimators for β and σ²; ML-residuals 
� Auxiliary regression of N-vector i = (1, …, 1)’ on the scores gives 

the uncentered R² 
� LM test statistic ξLM = N uncR²; a version of Breusch-Pagan test
� An asymptotically equivalent version of the Breusch-Pagan test is 

based on NRe² with Re² from the regression of the squared ML 
residuals on zi and an intercept

� Attention! No effect of the functional form of h(.) 
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Testing for Autocorrelation

Model: yt = xt’β + εt, εt = ρεt-1 + vt, vt ~ NID(0,σ²)
LM test of H0: ρ = 0 
First-order conditions give the scores with respect to β and ρ

with restricted ML estimators for β and σ²
� The LM test statistic is ξLM = (T-1) uncR² with the uncentered

R² from the auxiliary regression of the N-vector i = (1,…,1)’ on 
the scores

� If xt contains no lagged dependent variables: products with xt
can be dropped from the regressors; ξLM = (T-1) R² with R² 
from i = (1, …, 1)’ on the scores

An asymptotically equivalent test is the Breusch-Godfrey test 
based on NRe² with Re² from the regression of the ML 
residuals on xt and the lagged residuals
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Your Homework

1. Open the Greene sample file “greene7_8, Gasoline price and 
consumption”, offered within the Gretl system. The dataset 
contains time series of annual observations from 1960 through 
1995.The variables to be used in the following are: G = total U.S. 
gasoline consumption, computed as total expenditure of gas 
divided by the price index; Pg = price index for gasoline; Y = per 
capita (p.c.) disposable income; Pnc = price index for new cars; 
Puc = price index for used cars; Pop = U.S. total population in 
millions. Perform the following analyses and interpret the results: 

a. Produce and discuss a time series plot of the gasoline consumption 
(G), the disposable income (Y), and the U.S. total population (Pop).

b. Produce and interpret the scatter plot of the p.c. gasoline consumption 
(Gpc) over the p.c. disposable income (Y). 

c. Fit the linear regression of log(Gpc) on the regressors log(Y) and Pg
and give an interpretation of the outcome.
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Your Homework, cont’d

d. Test for autocorrelation of the error terms using the LM test statistic 
ξLM = (T-1) R² with the uncentered R² from the auxiliary regression of 
the vector of ones i = (1, …, 1)’ on the scores (et*et-1).

e. Test for autocorrelation using the Breusch-Godfrey test, the test 
statistic being TRe² with Re² from the regression of the residuals on the 
regressors and the lagged residuals et-1. 

f. Use the Chow test to test for a structural break between 1979 and 
1980.

2. Assume that the errors εt of the linear regression yt = β1 + β2xt + εt
are NID(0, σ2) distributed. (a) Determine the log-likelihood 
function of the sample for t = 1, …,T; (b) derive (i) the first-order 
conditions and (ii) the ML estimators for β1, β2, and σ2; (c) derive 
the asymptotic covariance matrix of the ML estimators for β1 and 
β2 on the basis (i) of the information matrix and (ii) of the score 
vector.
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