Econometrics 2 - Lecture 1

ML Estimation, Diagnostic Tests

Contents

- $\overline{\mathbb{R}^n}$ Organizational Issues
- $\mathcal{L}^{\mathcal{L}}$ Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\overline{\mathbb{R}^n}$ Estimation Concepts
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Idea and Illustrations
- $\overline{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\overline{\mathbb{R}^n}$ ML Estimator: Two Examples
- Π Asymptotic Tests
- П Some Diagnostic Tests

Organizational Issues

Course schedule

Classes start at 10:00

Organizational Issues, cont'd

Teaching and learning method

- k. Course in six blocks
- k. Class discussion, written homework (computer exercises, GRETL) submitted by groups of (3-5) students, presentations of homework by participants
- k. Final exam

Assessment of student work

- \mathbb{R}^n For grading, the written homework, presentation of homework in class and a final written exam will be of relevance
- \mathbb{R}^3 Weights: homework 40 %, final written exam 60 %
- **Presentation of homework in class: students must be prepared to be** k. called at random

Organizational Issues, cont'd

Literature

Course textbook

- k. Marno Verbeek, *A Guide to Modern Econometrics*, 3rd Ed., Wiley, 2008
- Suggestions for further reading
- \Box W.H. Greene, *Econometric Analysis*. 7th Ed., Pearson International, 2012
- R.C. Hill, W.E. Griffiths, G.C. Lim, *Principles of Econometrics*, 4th Ed., Wiley, 2012

Aims and Content

Aims of the course

- k. Deepening the understanding of econometric concepts and principles
- m. Learning about advanced econometric tools and techniques
	- \Box ML estimation and testing methods (MV, Cpt. 6)
	- \Box Time series models (MV, Cpt. 8, 9)
	- \Box Multi-equation models (MV, Cpt. 9)
	- \Box Models for limited dependent variables (MV, Cpt. 7)
	- \Box Panel data models (MV, Cpt. 10)
- $\overline{\mathcal{A}}$ Use of econometric tools for analyzing economic data: specification of adequate models, identification of appropriate econometric methods, interpretation of results
- k. Use of GRETL

Contents

$\overline{\mathcal{A}}$ Organizational Issues

- \sim Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\overline{\mathbb{R}^n}$ Estimation Concepts
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Idea and Illustrations
- $\overline{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\overline{\mathbb{R}^n}$ ML Estimator: Two Examples
- Π Asymptotic Tests
- П Some Diagnostic Tests

Limited Dependent Variables: An Example

Explain whether a household owns a car: explanatory power have

- M. income
- . household size
- \blacksquare etc.

Regression is not suitable! Why?

Limited Dependent Variables: An Example

Explain whether a household owns a car: explanatory power have

- M. income
- M. household size
- \blacksquare etc.

Regression is not suitable!

- M. Owning a car has two manifestations: yes/no
- M. Indicator for owning a car is a binary variable
- Models are needed that allow to describe a binary dependent variable or a, more generally, limited dependent variable

Cases of Limited Dependent Variable

- Typical situations: functions of explanatory variables are used to describe or explain
- H Dichotomous dependent variable, e.g., ownership of a car (yes/no), employment status (employed/unemployed)
- $\overline{\mathcal{A}}$ Ordered response, e.g., qualitative assessment (good/average/bad), working status (full-time/part-time/not working)
- $\overline{\mathcal{A}}$ Multinomial response, e.g., trading destinations (Europe/Asia/Africa), transportation means (train/bus/car)
- $\mathcal{L}_{\mathcal{A}}$ Count data, e.g., number of orders a company receives in a week, number of patents granted to a company in a year
- Π Censored data, e.g., expenditures for durable goods, duration of study with drop outs

Time Series Example: Price/Earnings Ratio

- Verbeek's data set PE: PE = ratio of S&P composite stock price index and S&P composite earnings of the S&P500, annual, 1871-2002
- M. Is the PE ratio mean reverting?

Time Series Models

Purpose of modelling

- \Box Description of the data generating process
- k. Forecasting
- Types of model specification
- k. ■ Deterministic trend: a function $f(t)$ of the time *t*, describing the evolution of E{*Y*_t} over time

 $Y_t = f(t) + \varepsilon_t$, ε_t : white noise

e.g.,
$$
Y_t = \alpha + \beta t + \varepsilon_t
$$

 \mathbb{R}^n Autoregression AR(1)

 $Y_t = \delta + \theta Y_{t-1} + \varepsilon_t$, $|\theta| < 1$, ε_t : white noise

generalization: ARMA(*p*,*q*)-process

$$
Y_{t} = \theta_{1} Y_{t-1} + \dots + \theta_{p} Y_{t-p} + \varepsilon_{t} + \alpha_{1} \varepsilon_{t-1} + \dots + \alpha_{q} \varepsilon_{t-q}
$$

PE Ratio: Various Models

Diagnostics for various competing models: Δ*y*_t = log PE_t - log PE_{t-1} Best fit for

- П BIC: MA(2) model $\Delta y_t = 0.008 + e_t - 0.250 e_{t-2}$
- M. AIC: AR(2,4) model $\Delta y_t = 0.008 - 0.202 \Delta y_{t-2} - 0.211 \Delta y_{t-4} + e_t$
- \Box *^Q*12: Box-Ljung statistic for the first 12 autocorrelations

Multi-equation Models

Economic processes: Simultaneous and interrelated development of a set of variables

Examples:

- Households consume a set of commodities (e.g., food, durables); the demanded quantities depend on the prices of commodities, the household income, the number of persons living in the household, etc.; a consumption model contains a set of dependent variables and a set of explanatory variables.
- $\overline{\mathbb{R}^n}$ The market of a product is characterized by (a) the demanded and supplied quantity and (b) the price of the product; a model for the market consists of equations representing the development and interdependencies of these variables.
- $\mathcal{O}(\mathcal{O}_\mathcal{C})$ An economy consists of markets for commodities, labour, finances, etc.; a model for a sector or the full economy contains descriptions of the development of the relevant variables and their interactions.

Panel Data

Population of interest: individuals, households, companies, countries

- Types of observations
- Cross-sectional data: Observations of all units of a population, or of a (representative) subset, at one specific point in time
- Ŀ, Time series data: Series of observations on units of the population over a period of time
- $\mathcal{L}_{\mathcal{A}}$ Panel data (longitudinal data): Repeated observations of (the same) population units collected over a number of periods; data set with both a cross-sectional and a time series aspect; multi-dimensional data

Cross-sectional and time series data are special cases of panel data

Panel Data Example: Individual Wages

- Verbeek's data set "males"
- H Sample of
	- □ 545 full-time working males
	- \Box each person observed yearly after completion of school in 1980 till 1987
- H Variables
	- \Box *wage*: log of hourly wage (in USD)
	- \Box *school*: years of schooling
	- \Box *exper*: age – 6 – *school*
	- \Box dummies for union membership, married, black, Hispanic, public sector
	- \Box others

Panel Data Models

Panel data models allow

- **n** controlling individual differences, comparing behaviour, analysing dynamic adjustment, measuring effects of policy changes
- $\mathcal{C}^{\mathcal{A}}$ more realistic models than cross-sectional and time-series models
- $\mathcal{L}_{\mathcal{A}}$ more detailed or sophisticated research questions
- E.g.: What is the effect of being married on the hourly wage

Contents

- $\overline{\mathbb{R}^n}$ Organizational Issues
- **The State** Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\overline{\mathbb{R}^n}$ Estimation Concepts
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Idea and Illustrations
- $\overline{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\overline{\mathbb{R}^n}$ ML Estimator: Two Examples
- Π Asymptotic Tests
- П Some Diagnostic Tests

The Linear Model

Y: explained variable *X*: explanatory or regressor variable The model describes the data-generating process of *Y*under the condition *X*

A simple linear regression model*Y =* α + β*X* β: coefficient of *X*α: intercept

A multiple linear regression model*Y* = $\beta_1 + \beta_2X_2 +$ … $\ldots + \beta_K X_K$

Fitting a Model to Data

Choice of values $b_1^{},\,b_2^{}$ given the observations (*y*ⁱ, *x*i), *i* = 1,…,*N* $_{2}$ for model parameters β₁, β₂ $₂$ of Y = β₁ + β₂ X,</sub>

Model for observations: $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, $i = 1,...,N$

Fitted values: $\hat{y}_i = b_1 + b_2 x_i$, $i = 1,...,N$

Principle of (Ordinary) Least Squares gives the OLS estimators*b*_i = arg min_{β1,β2} S(β₁, β₂), *i*=1,2

Objective function: sum of the squared deviationsS(β_1 , β_2) = Σ_i [*y*_i - (β_1 + β_2 *x*_i)]² = Σ_i ε_i ²

Deviations between observation and fitted values, residuals: *e*i ⁼ *y*i- $\hat{y}_i = y_i - (b_1 + b_2 x_i)$

Observations and Fitted Regression Line

Simple linear regression: Fitted line and observation points (Verbeek, Figure 2.1)

Contents

- $\overline{\mathcal{A}}$ Organizational Issues
- \mathcal{L}^{max} Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\overline{\mathcal{A}}$
- $\overline{\mathbb{R}^n}$ Estimation Concepts
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Idea and Illustrations
- $\overline{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\mathcal{C}^{\mathcal{A}}$ ML Estimator: Two Examples
- Π Asymptotic Tests
- П Some Diagnostic Tests

OLS Estimators

Equating the partial derivatives of S(β_1 , β_2) to zero: normal equations

$$
b_1 + b_2 \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i
$$

$$
b_1 \sum_{i=1}^{N} x_i + b_2 \sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} x_i y_i
$$

OLS estimators b_1 und b_2 estimators b_1 und b_2 result in

with mean values x, y and
i and second moments $\frac{2}{x} = \frac{1}{y} \sum_{i} (x_i - \overline{x})^2$ 1 $(x_i - \overline{x})(y_i - \overline{y})$ 1*xx* $N^{\sum_{l} \sum_{l}^{l}}$ *sxx* \sum_{i} $(x_i - x)(y_i - y)$ *si* $X = \frac{1}{N} \sum_i \binom{N_i}{i}$ \mathcal{N} *N* \mathcal{L}_i \mathcal{N}_i *v* \mathcal{N}_i ==−∑∑

OLS Estimators: The General Case

Model for *Y* contains *K*-1 explanatory variables

Y = β₁ + β₂X₂ + … + β_KX_K = *x*'β with *x* = (1, *X*₂, …, *X*_K)' and β = (β₁, β₂, …, β_K)' Observations: [*y*_i, *x*_i] = [*y*_i, (1, *x*_{i2}, …, *x*_{iK})'], *i* = 1, …, *N* OLS-estimates $b = (b_1, b_2, ..., b_K)$ ' are obtained by minimizing this results in the OLS estimators 2 1^{V_i} N_i P) $(\beta) = \sum_{i=1}^{N} (y_i - x'_i \beta)^2$ *N* $\mu_{i=1}$ $\left\langle y_i - x_i \right\rangle$ $S(\beta) = \sum_{i=1}^{N} (y_i - x'_i \beta)$ = $=$ $\sum_{i=1}^{n}$ $(y_i - y_i)$ $\sum_{i=1}^{N} (y_i - x'_i)$ N \longrightarrow \uparrow \uparrow \uparrow N

$$
b = \left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} x_{i} y_{i}
$$

In Matrix Notation

N observations

$$
(y_1, x_1), \dots, (y_N, x_N)
$$

Model: $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, $i = 1, ..., N$, or

$$
y = \chi \beta + \varepsilon
$$

with

$$
y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{pmatrix}
$$

OLS estimators

$$
b=(XX)^{-1}X^{\prime}Y
$$

 \int

 $\bigg)$

Gauss-Markov Assumptions

Observation *y*i (*ⁱ* = 1, …, *N*) is a linear function

*y*i ⁼*x*i'β ⁺*ε*ⁱ

of observations x_{ik} , $k = 1, ..., K$, of the regressor variables and the error term *ε*i

$$
x_{i} = (x_{i1}, ..., x_{ik})'; X = (x_{ik})
$$

Normality of Error Terms

A5*ε*i normally distributed for all *i*

Together with assumptions (A1), (A3), and (A4), (A5) implies

*ε*i ~ NID(0, *σ*2) for all *i*

- i.e., all *ε*i are
- \Box independent drawings
- \Box from the normal distribution N(0, *σ*²)
- \Box with mean 0
- \Box and variance *σ*²

Error terms are "normally and independently distributed" (NID, n.i.d.)

Properties of OLS Estimators

OLS estimator *b* = (*X*'*X*)-1 *X*'*y*

- 1. The OLS estimator *b* is unbiased: E{ *b*} = β
- 2. The variance of the OLS estimator is given by

 $V{b} = σ²(Σ_i x_i x_i['])⁻¹$

- 3. The OLS estimator *b* is a BLUE (best linear unbiased estimator) for β
- 4. The OLS estimator *b* is normally distributed with mean β and covariance matrix V{b} = $\sigma^2(\Sigma_i x_i x_i^{\prime})^{-1}$

Properties

- Π 1., 2., and 3. follow from Gauss-Markov assumptions
- 4. needs in addition the normality assumption (A5)

Distribution of *t*-statistic

t-statistic

$$
t_k = \frac{b_k}{se(b_k)}
$$

with the standard error $se(b_{\sf k})$ of $b_{\sf k}$ follows

- 1. the *t*-distribution with *N*-*K* d.f. if the Gauss-Markov assumptions (A1) - (A4) and the normality assumption (A5) hold
- 2. approximately the *t*-distribution with *N*-*K* d.f. if the Gauss-Markov assumptions (A1) - (A4) hold but not the normality assumption (A5)
- 3. asymptotically $(N \rightarrow \infty)$ the standard normal distribution N(0,1)
- 4. Approximately, for large *N*, the standard normal distribution N(0,1)The approximation error decreases with increasing sample size *N*

OLS Estimators: Consistency

The OLS estimators *b* are consistent,

 $\mathsf{plim}_{N \to \infty} b = \beta,$

if one of the two sets of conditions are fulfilled:

- (A2) from the Gauss-Markov assumptions and the assumption (A6), or
- $\overline{}$ the assumption (A7), which is weaker than (A2), and theassumption (A6)

Assumptions (A6) and (A7):

Contents

- $\overline{\mathbb{R}^n}$ Organizational Issues
- \mathcal{L}^{max} Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\mathcal{L}_{\mathcal{A}}$
- $\overline{\mathbb{R}^n}$ Estimation Concepts
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Idea and Illustrations
- $\overline{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\mathcal{C}^{\mathcal{A}}$ ML Estimator: Two Examples
- Π Asymptotic Tests
- П Some Diagnostic Tests

Estimation Concepts

OLS estimator: Minimization of objective function $S(β) = \sum_i ε_i^2$ gives

- \Box *K* first-order conditions $\Sigma_i (y_i - x_i^{\prime}b) x_i = \Sigma_i e_i x_i = 0$, the normal equations
- **DRUAN EXT COLS estimators are solutions of the normal equations**
- **Moment conditions**

 $E\{(y_i - x_i' \beta) x_i\} = E\{\varepsilon_i x_i\} = 0$

 Normal equations are sample moment conditions (times *N*) \Box

IV estimator: Model allows derivation of the moment conditions

 $E\{(y_i - x_i \cap \beta) z_i\} = E\{\varepsilon_i z_i\} = 0$

which are functions of

- $\overline{\mathbb{R}^n}$ ■ observable variables y_i , x_i , instrument variables z_i , and unknown parameters β
- **Noment conditions are used for deriving IV estimators** k.
- \Box OLS estimators are special case of IV estimators

Estimation Concepts, cont'd

GMM estimator: generalization of the moment conditions

E{*f*(*^w*i, *z*i, β)} = 0

- **with observable variables** w_i **, instrument variables** z_i **, and unknown** k. parameters β; *f*: multidimensional function with as many components as moment conditions
- **Allows for non-linear models**
- \Box ■ Under weak regularity conditions, the GMM estimators are
	- \Box consistent
	- \Box asymptotically normal

Maximum likelihood estimation

- k. **B** Basis is the distribution of y_i conditional on regressors x_i
- \Box ■ Depends on unknown parameters β
- The estimates of the parameters β are chosen so that the distribution \Box corresponds as good as possible to the observations *y*i and *x*i

Contents

- $\overline{\mathbb{R}^n}$ Organizational Issues
- \mathcal{L}^{max} Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\mathcal{L}_{\mathcal{A}}$
- $\overline{\mathcal{A}}$ Estimation Concepts
- $\overline{}$ ML Estimator: Idea and Illustrations
- $\overline{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\mathcal{C}^{\mathcal{A}}$ ML Estimator: Two Examples
- \mathbb{R}^n Asymptotic Tests
- П Some Diagnostic Tests

Example: Urn Experiment

The experiment:

- The urn contains red and white balls
- Proportion of red balls: *p* (unknown)
- *N* random draws
- **Random draw** *i***:** $y_i = 1$ if ball in draw *i* is red, $y_i = 0$ otherwise; P{*y*i=1} = *p*
- Sample: N₁ red balls, N-N₁ white balls
- Probability for this result:

 $P\{N_1 \text{ red balls}, \ N\text{-}N_1 \text{ white balls}\} \approx \rho^{\text{N1}} \left(1 - p\right)^{\text{N-N1}}$ Likelihood function *L*(*p*): The probability of the sample result, interpreted as a function of the unknown parameter *pL*(*p*) = *p*N1 (1 –*p*)N-N1 , 0 < *p* < 1

Urn Experiment: Likelihood Function and LM Estimator

Likelihood function: (proportional to) the probability of the sample result, interpreted as a function of the unknown parameter *p*

L(*p*) = *p*N1 (1 –*p*)N-N1 , 0 < *p* < 1

Maximum likelihood estimator: that value \hat{p} of p which maximizes *L*(*p*)

 \hat{p} = arg max $(L(p))$ *p* \hat{p} = arg max $_{p}$ $L(p)$

Calculation of \hat{p} : maximization algorithm

- As the log-function is monotonous, coordinates p of the extremes of *L*(*p*) and log *L*(*p*) coincide
- **Use of log-likelihood function is often more convenient**

log *L*(*p*) = *N*1 log *p* + (*N*-*N*1) log (1 –*p*)
Urn Experiment: Likelihood Function, cont'd

Urn Experiment: ML Estimator

Maximizing log *L(p)* with respect to *p* gives the first-order condition Solving this equation for *p* gives the maximum likelihood estimator (ML estimator) $\frac{\log L(p)}{q} = \frac{N_1}{q} - \frac{N - N_1}{q} = 0$ $1-p$ $\frac{d \log L(p)}{d} = \frac{N_1}{1 - \frac{N - N_1}{N_1}}$ dp *p* $1-p$
countion for p gives the = − − − − − − = −

$$
\hat{p} = \frac{N_1}{N}
$$

For *N* = 100, N_1 = 44, the ML estimator for the proportion of red balls is $\hat{R} = 0.44$ is \hat{p} = 0.44

Maximum Likelihood Estimator: The Idea

- Specify the distribution of the data (of y or y given x) \Box
- \Box Determine the likelihood of observing the available sample as a function of the unknown parameters
- \Box Choose as ML estimates those values for the unknown parameters that give the highest likelihood
- **Properties: In general, the ML estimators are**
	- □ consistent
	- $\, \Box \,$ asymptotically normal
	- □ efficient

provided the likelihood function is correctly specified, i.e., distributional assumptions are correct

Example: Normal Linear Regression

Model

 $y_i = \beta_1 + \beta$ 2*X*i ⁺ *ε*i

with assumptions (A1) – (A5)

From the normal distribution of *ε*i follows: contribution of observation *i*to the likelihood function:

$$
f(y_i|X_i; \beta, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \frac{(y_i - \beta_1 - \beta_2 X_i)^2}{\sigma^2}\right\}
$$

L(β,σ²) = $\prod_i f(y_i | x_i; \beta, \sigma^2)$ due to independent observations; the log-
likelihood function is given by likelihood function is given by

$$
\log L(\beta, \sigma^2) = \log \prod_i f(y_i | X_i; \beta, \sigma^2)
$$

= $-\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_i (y_i - \beta_1 - \beta_2 X_i)^2$

Normal Linear Regression, cont'd

Maximizing log *L*(β,σ²) with respect to β and σ2 gives the ML estimators

$$
\hat{\beta}_2 = Cov\{y, x\} / V\{x\}
$$

$$
\hat{\beta}_1 = \overline{y} - \hat{\beta}_2 \overline{x}
$$

which coincide with the OLS estimators, and

$$
\hat{\sigma}^2 = \frac{1}{N} \sum_i e_i^2
$$

which is biased and underestimates σ²!

Remarks:

- The results are obtained assuming normally and independently distributed (NID) error terms
- ٠ ML estimators are consistent but not necessarily unbiased; see the properties of ML estimators below

Contents

- $\overline{\mathcal{A}}$ Organizational Issues
- \mathcal{L}^{max} Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\mathcal{L}_{\mathcal{A}}$
- $\overline{\mathcal{A}}$ Estimation Concepts
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Idea and Illustrations
- $\overline{\mathcal{A}}$ ML Estimator: Notation and Properties
- $\mathcal{C}^{\mathcal{A}}$ ML Estimator: Two Examples
- $\overline{\mathcal{A}}$ Asymptotic Tests
- П Some Diagnostic Tests

ML Estimator: Notation

Let the density (or probability mass function) of *y*i, given *^x*i, be given by *f*(*y*i|*^x*i,θ) with *K*-dimensional vector θ of unknown parameters Given independent observations, the likelihood function for the sample of size *N* is

$$
L(\theta \mid y, X) = \prod_i L_i(\theta \mid y_i, x_i) = \prod_i f(y_i \mid x_i; \theta)
$$

The ML estimators are the solutions of

max_θ log *L*(θ) = max_θ Σ_i log *L*_i(θ) or the solutions of the *K* first-order conditions $s(\theta)$ = Σ_i $s_i(\theta)$, the *K*-vector of gradients, also denoted *score vector* Solution of *s*(θ) = 0 $\hat{\theta}$ ⁻ \angle_i and $\hat{\theta}$ ⁻ \angle_i ³⁽⁰⁾ $\hat{\theta}$ ⁻ $\frac{\log L(\theta)}{\log L_i(\theta)}\Big|_{\hat{\theta}} = \sum_{i=1}^n \frac{\partial \log L_i(\theta)}{\partial \theta}$ ˆ $(\theta) = \frac{\partial \log P(\theta)}{\partial \theta} \Big|_{\hat{\theta}} = \sum_{i} \frac{\partial \log P_{i}(\theta)}{\partial \theta} \Big|_{\hat{\theta}} = \sum_{i} s(\theta) \Big|_{\hat{\theta}} = 0$ *LL ss* θ $\leftarrow i$ $\partial \theta$ θ $\leftarrow i$ θ θ θ θ) = $\frac{\partial \log P(\theta)}{\partial t}$ | = $\sum \frac{\partial \log P_i(\theta)}{\partial t}$ | = $\sum s(\theta)$ θ θ θ ∂∂ $=$ $=$ $\frac{1}{a}$ $=$ $\frac{1}{a}$ $=$ $\frac{1}{a}$ $=$ $\frac{1}{a}$ $=$ $\frac{1}{a}$ $=$ $\frac{1}{a}$ $\frac{1}{a}$ $=$ $\frac{1}{a}$ $=$ $\frac{1}{a}$ $\frac{\partial}{\partial \theta} \bigg|_{\hat{\theta}} = \sum_{i} \frac{\partial \log L_i(\theta)}{\partial \theta} \bigg|_{\hat{\theta}} = \sum_{i}$

- analytically (see examples above) or
- by use of numerical optimization algorithms

Matrix Derivatives

The scalar-valued function

1 $\log L(\theta | y, X) = \prod_i \log L_i(\theta | y_i, x_i) = \log L(\theta_1, ..., \theta_K | y, X)$

or – shortly written as log *L*(θ) – has the *K* arguments θ₁, …, θ_K
Κ

 K-vector of partial derivatives or gradient vector or score vector or \Box gradient

$$
\frac{\partial \log L(\theta)}{\partial \theta} = \left(\frac{\partial \log L(\theta)}{\partial \theta_1}, \dots, \frac{\partial \log L(\theta)}{\partial \theta_K}\right)' = s(\theta)
$$

 \Box $\partial \theta$ $\left(\begin{array}{c} \partial \theta_1 & \partial \theta_K \end{array}\right)$
Kx*K* matrix of second derivatives or Hessian matrix

ML Estimator: Properties

The ML estimator is

- 1. Consistent
- 2. asymptotically efficient
- 3. asymptotically normally distributed:

$$
\sqrt{N}(\hat{\theta} - \theta) \to N(0, V)
$$

V: asymptotic covariance matrix of $N\, (\theta\! -\! \theta) \! \rightarrow \! \mathrm{N}(0,V)$
mptotic covariance matrix of $\sqrt{N}\hat{\theta}$

The Information Matrix

Information matrix *I*(θ)

 \mathbb{R}^2 *I*(θ) is the limit (for *N* [→]∞) of

$$
\overline{I}_N(\theta) = -\frac{1}{N} E \left\{ \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} \right\} = -\frac{1}{N} \sum_i E \left\{ \frac{\partial^2 \log L_i(\theta)}{\partial \theta \partial \theta'} \right\} = \frac{1}{N} \sum_i I_i(\theta)
$$

- $\mathcal{L}_{\mathcal{A}}$ For the asymptotic covariance matrix *V* can be shown: $V = I(\theta)^{-1}$
- $\mathcal{L}_{\mathcal{A}}$ $I(\theta)^{-1}$ is the lower bound of the asymptotic covariance matrix for any consistent, asymptotically normal estimator for θ: Cramèr-Rao lower bound

Calculation of *I*i(θ) can also be based on the outer product of the score vector

$$
J_i(\theta) = E\left\{s_i(\theta)s_i(\theta)'\right\} = -E\left\{\frac{\partial^2 \log L_i(\theta)}{\partial \theta \partial \theta'}\right\} = I_i(\theta)
$$

for a miss-specified likelihood function, *J*i(θ) can deviate from *I*i(θ)

Example: Normal Linear Regression

Model

 $y_i = \beta_1 + \beta$ 2*X*i ⁺ *ε*i with assumptions (A1) – (A5) fulfilled The score vector with respect to β = (β₁,β₂)' is – using *x*_i = (1, *X*_i)' – ²) = $\frac{1}{\sigma^2}$ 1 $S_i(\beta) = \frac{\partial}{\partial \beta} \log L_i(\beta, \sigma^2) = \frac{1}{\sigma^2} \mathcal{E}_i x_i$ ∂ $=\frac{1}{\partial \beta} \log L_i(\beta, o)$

The information matrix is obtained both via Hessian and outer product

$$
I_{i,11}(\boldsymbol{\beta}, \sigma^2) = -E \left\{ \frac{\partial^2 \log L_i(\boldsymbol{\theta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^*} \right\} = E \left\{ s_i s_i \right\}
$$

$$
= \frac{1}{\sigma^4} E \left\{ \varepsilon_i^2 x_i x_i \right\} = \frac{1}{\sigma^2} x_i x_i \right\} = \frac{1}{\sigma^2} \begin{pmatrix} 1 & X_i \\ X_i & X_i^2 \end{pmatrix}
$$

Covariance Matrix *V*: Calculation

Two ways to calculate *V*:

F. ■ Estimator based on the information matrix *I*(θ)

$$
\hat{V}_H = \left(-\frac{1}{N} \sum_i \frac{\partial^2 \log L_i(\theta)}{\partial \theta \partial \theta'}\Big|_{\hat{\theta}}\right)^{-1} = \overline{I}_N(\hat{\theta})^{-1}
$$

index "H": the estimate of *V* is based on the Hessian matrix

 $\mathcal{L}^{\mathcal{L}}$ Estimator based on the score vector

$$
\hat{V}_G = \left(\frac{1}{N} \sum_i s_i(\hat{\theta}) s_i(\hat{\theta})'\right)^{-1} = \left(\frac{1}{N} \sum_i J_i(\hat{\theta})\right)^{-1}
$$
\nconver, $g(0)$: index "C": the estimate of M .

with score vector *s*(*θ*); index "G": the estimate of *V* is based on gradients

□ also called: OPG (outer product of gradient) estimator \Box

- \Box also called: BHHH (Berndt, Hall, Hall, Hausman) estimator
- \Box E{ *^s*i(θ)*^s*i(θ)'} coincides with *I*i(θ) if *f*(*y*i| *^x*i,θ) is correctly specified

Contents

- $\overline{\mathbb{R}^n}$ Organizational Issues
- \mathcal{L}^{max} Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\mathcal{L}_{\mathcal{A}}$
- $\overline{\mathcal{A}}$ Estimation Concepts
- $\mathcal{L}^{\mathcal{L}}$ ML Estimator: Idea and Illustrations
- $\overline{\mathbb{R}^n}$ ML Estimator: Notation and Properties
- $\mathcal{C}^{\mathcal{A}}$ ML Estimator: Two Examples
- $\overline{\mathcal{A}}$ Asymptotic Tests
- П Some Diagnostic Tests

Again the Urn Experiment

Likelihood contribution of the *ⁱ*-th observation log Li(*p*) = *y*i log *p* + (1 - *y*i) log (1 –*p*)

This gives scores

∂

$$
\frac{\partial \log L_i(p)}{\partial p} = s_i(p) = \frac{y_i}{p} - \frac{1 - y_i}{1 - p}
$$

and

$$
\frac{\partial^2 \log L_i(p)}{\partial p^2} = -\frac{y_i}{p^2} - \frac{1 - y_i}{(1 - p)^2}
$$

With E{*y*i} = *p*, the expected value turns out to be

$$
I_i(p) = E\left\{ -\frac{\partial^2 \log L_i(p)}{\partial p^2} \right\} = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}
$$

The asymptotic variance of the ML estimator $V = I^{-1} = p(1-p)$

Urn Experiment and Binomial Distribution

The asymptotic distribution is

$$
\sqrt{N}(\hat{p}-p) \to N(0, p(1-p))
$$

Small sample distribution:

N \hat{p} ~ B(N, p)

- \blacksquare Use of the approximate normal distribution for portions \hat{p}
	- \Box rule of thumb for using the approximate distribution

N p (1- *p*) > 9

Test of H_0 : $p = p_0$ can be based on test statistic

0 $(\hat{p} - p_{0}) / \text{se}(\hat{p})$

Example: Normal Linear Regression

Model

*y*i ⁼ *^x*i'β ⁺ *ε*iwith assumptions $(A1) - (A5)$ Log-likelihood functionScores of the i-th observation =−−∑−′ $\sum_i (y_i - x_i)$ *xN* $L(\beta, \sigma^2) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\pi^2} \sum_i (y_i - x_i' \beta)^2$ σ^2) = $-\frac{1}{2}log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_i(y_i - x'_i\beta)$ 1 $\log(2\pi\sigma^2)$ – $\frac{1}{2}$ 2 $\frac{1}{2} \log(2\pi\sigma^2)$ $\log L(\beta, \sigma^2) = -\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_i (y_i - x_i'\beta)$ σ $\beta,\sigma^2)=-\frac{1}{2}\log(2\pi\sigma)$ 2 σ^2) = $\frac{\partial \beta}{\partial \sigma^2}$ = $\frac{\sigma^2}{-\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4} (y_i - x_i^2 \beta)^2}$ $\frac{\log L_i(\beta, \sigma^2)}{2 \cdot 2}$ (β, σ^2) = $\left[\frac{\log L_i(\beta, \sigma^2)}{\partial \sigma^2}\right] \left(-\frac{1}{2\sigma^2}+\frac{1}{2\sigma^4}(y_i-x_i'\beta)^2\right]$ $\frac{\partial y_i}{\partial R}$ $\frac{\partial y_i}{\partial x_i}$ $\frac{\partial z_i}{\partial x_i}$ *i* $\left(-\frac{i}{2\sigma^2} + \frac{1}{2\sigma^4} (y_i - x_i) \right)$ $\frac{L_i(\beta, \sigma^2)}{2a}$ $\left(\frac{y_i - x'_i \beta}{2} x_i\right)$ *sL L L L L L L L* $\left(\frac{-\frac{1}{2}y^2}{2\sigma^2} + \frac{1}{2\sigma^4}(y_i - x_i) \right)$ β,σ $\left(\frac{\sigma^2}{2} \right)$ $\left(\frac{y_i - x_i' \beta}{2} \right)$ β and σ^2 and σ $(\beta, \sigma^2) =$ $\begin{bmatrix} \sigma \rho \\ \sigma \end{bmatrix}$ $=$ $\begin{bmatrix} \sigma \\ \sigma \end{bmatrix}$ β,σ $\frac{6}{2}$ | $-\frac{1}{2}$ + $\frac{1}{2}$ (y_i - x'_i β) σ^2 σ^2 $2\sigma^2$ $2\sigma^2$ $\left(\frac{\partial \log L_i(\beta, \sigma^2)}{\partial \beta}\right)$ $\left(\frac{y_i - x'_i \beta}{\sigma^2} x_i\right)$ = ⁼ $\left| \frac{\partial \log L_i(\beta, \sigma^2)}{\partial \log L_i(\beta, \sigma^2)} \right| = \left| \frac{\sigma^2}{\sigma^2} + \frac{1}{\sigma^2} (y_i - x_i^2 \beta)^2 \right|$ $\left(\frac{\partial \log L_i(\beta,0)}{\partial \sigma^2}\right) \left(-\frac{1}{2\sigma^2}+\frac{1}{2\sigma^4}(y_i-x'_i\beta)^2\right)$ $\left(\frac{\partial \sigma^2}{\partial \sigma^2}\right)$ $\left(2\sigma^2 \right) 2\sigma^4 \left(\frac{\partial \sigma^2}{\partial \sigma^2}\right)$

Normal Linear Regression: ML**Estimators**

 The first-order conditions – setting both components of Σi*s*i(β,σ²) to zero – give as ML estimators: the OLS estimator for β, the average squared residuals for σ²

$$
\hat{\beta} = \left(\sum_i x_i x_i'\right)^{-1} \sum_i x_i y_i, \ \hat{\sigma}^2 = \frac{1}{N} \sum_i (y_i - x_i' \hat{\beta})^2
$$

Asymptotic covariance matrix: Contribution of the *i*-th observation Asymptotic covariance matrix: Contribution of the *i*-th observation (E{ ϵ_i } = E{ ϵ_i^3 } = 0, E{ ϵ_i^2 } = σ², E{ ϵ_i^4 } = 3σ⁴ ⁴) L^2) = $E\{s, (\beta, \sigma^2)s, (\beta, \sigma^2)\}$ $(\beta, \sigma^2) = E\{s_i(\beta, \sigma^2)s_i(\beta, \sigma^2)'\} = \text{diag}\left(\frac{1}{\sigma^2}x_i x_i', \frac{1}{2\sigma^4}\right)$ *i* $I_i(\beta, \sigma^2) = E\{s_i(\beta, \sigma^2)s_i(\beta, \sigma^2)'\} = \text{diag}\left(\frac{1}{\sigma^2}x_i x_i', \frac{1}{2\sigma^4}\right)$

gives

V = *I*(β,σ²)⁻¹ = diag (σ²Σ_{xx}⁻¹, 2σ⁴ $^4)$ with Σ_{xx} = lim (Σ_ix_ix_i')/N

Normal Linear Regression: MLand OLS-Estimators

The ML estimate for β and σ^2 follow asymptotically

$$
\sqrt{N}(\hat{\beta} - \beta) \rightarrow N(0, \sigma^2 \Sigma_{xx}^{-1})
$$

$$
\sqrt{N}(\hat{\sigma}^2 - \sigma^2) \rightarrow N(0, 2\sigma^4)
$$

For finite samples: Covariance matrix of ML estimators for βsimilar to OLS results () $^{2}(\sum x^{r})^{-1}$ ˆˆ $(\beta) = \hat{\sigma}$ i^{i} ^{i^{j}} i^{j} _{*i*} $\hat{V}(\hat{\beta}) = \hat{\sigma}^2 \left(\sum_i x_i x_i' \right)^{-1}$ $=$ σ \rightarrow γ γ \rightarrow $\sum_{i} x_{i} x'_{i}$

Contents

- $\overline{\mathbb{R}^n}$ Organizational Issues
- \mathcal{L}^{max} Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\mathcal{L}_{\mathcal{A}}$
- $\overline{\mathcal{A}}$ Estimation Concepts
- $\overline{}$ ML Estimator: Idea and Illustrations
- $\overline{\mathbb{R}^n}$ ML Estimator: Notation and Properties
- $\overline{\mathcal{A}}$ ML Estimator: Two Examples
- $\overline{\mathcal{A}}$ Asymptotic Tests
- П Some Diagnostic Tests

Diagnostic Tests

Diagnostic (or specification) tests based on ML estimatorsTest situation:

- k. *K*-dimensional parameter vector θ = (θ₁, …, θ_κ)'
- *J* ≥ 1 linear restrictions (*K* [≥] *J*)
- H0: *R* θ = *q* with *J*x*K* matrix *R*, full rank; *J*-vector *q*

Test principles based on the likelihood function:

- 1. Wald test: Checks whether the restrictions are fulfilled for the unrestricted ML estimator for θ; test statistic ξ $_{\mathsf{W}}$
- 2. Likelihood ratio test: Checks whether the difference between the log-likelihood values with and without the restriction is close to zero; test statistic $ξ_{LR}$
- 3. Lagrange multiplier test (or score test): Checks whether the firstorder conditions (of the unrestricted model) are violated by the restricted ML estimators; test statistic $ξ_{LM}$

The Asymptotic Tests

Under ${\sf H}_{0}$, the test statistics of all three tests

- **find** follow asymptotically, for finite sample size approximately, the Chi- \Box square distribution with *J* d.f.
- \Box ■ The tests are asymptotically (large *N*) equivalent
- \Box Finite sample size: the values of the test statistics obey the relation

ξW $_{\mathsf{W}}$ $\geq \xi_{\mathsf{LR}}$ $\geq \xi_{\mathsf{LM}}$

Choice of the test: criterion is computational effort

- 1. Wald test: Requires estimation only of the unrestricted model; e.g., testing for omitted regressors: estimate the full model, test whether the coefficients of potentially omitted regressors are different from zero
- Lagrange multiplier test: Requires estimation only of the restricted 2.model; preferable if restrictions complicate estimation
- 3. Likelihood ratio test: Requires estimation of both the restricted and the unrestricted model

Wald Test

Checks whether the restrictions are fulfilled for the unrestricted ML estimator for θ

Asymptotic distribution of the unrestricted ML estimator:

$$
\sqrt{N}(\hat{\theta} - \theta) \to N(0, V)
$$

under H: $R \theta = a$

Hence, under H₀: R θ = q ,

$$
\sqrt{N}(R\hat{\theta} - R\theta) = \sqrt{N}(R\hat{\theta} - q) \rightarrow N(0, RVR')
$$

The test statistic

$$
\xi_W = N(R\hat{\theta} - q)'[R\hat{V}R']^{-1}(R\hat{\theta} - q)
$$

- \Box \blacksquare under H₀, ξ_W is expected to be close to zero
- \Box *^p*-value to be read from the Chi-square distribution with *^J* d.f.

Wald Test,cont'd

Typical application: tests of linear restrictions for regression coefficients

Test of H₀: $\beta_i = 0$

 $\xi_{\rm W}$ = *b*_i²/[se(*b*_i)²]
follows the Chi a

- **□** *ξ*_W follows the Chi-square distribution with 1 d.f.
- **□** *ξ*_W is the square of the *t*-test statistic
- Test of the null-hypothesis that a subset of *^J* of the coefficients βare zeros

 $\xi_{\rm W}$ = ($e_{\rm R}$ ' $e_{\rm R}$ – e ' e)/[e ' e /(N - K)]
residuals from unrestricted mod

- *^e*: residuals from unrestricted model
- □ e_R: residuals from restricted model
- \Box *ξ*^W follows the Chi-square distribution with *^J* d.f.
- \Box *ξ***_W is related to the** *F***-test statistic by** *ξ***_W =** *FJ*

Likelihood Ratio Test

Checks whether the difference between the ML estimates obtained with and without the restriction is close to zero for nested models

- **L** Unrestricted ML estimator: $\hat{\theta}$
- Restricted ML estimator: $\widetilde{\theta}$; obtained by minimizing the loglikelihood subject to *R* θ = *q*

Under H₀: $R \theta = q$, the test statistic

$$
\xi_{LR} = 2\Bigl(\log L(\hat{\theta}) - \log L(\widetilde{\theta})\Bigr)
$$

- $\hbox{\tt\char'42}$ is expected to be close to zero
- *p*-value to be read from the Chi-square distribution with *J* d.f. \Box

Likelihood Ratio Test,cont'd

Test of linear restrictions for regression coefficients

 \mathbb{R}^n ■ Test of the null-hypothesis that *J* linear restrictions of the coefficients β are valid

*ξ*_{LR} = N log(*e_R'e_R/e'e*)

- *^e*: residuals from unrestricted model \Box
- \Box e_R : residuals from restricted model
- *ξ*LR follows the Chi-square distribution with *J* d.f. \Box
- **Requires that the restricted model is nested within the unrestricted** \mathbb{R}^n model

Lagrange Multiplier Test

Checks whether the derivative of the likelihood for the restricted ML estimator is close to zero

Based on the Lagrange constrained maximization method

Lagrangian, given θ = $(\theta_1', \theta_2')'$ with restriction θ_2 = *q*, *J*-vectors θ_2 , *q, λ* $H(\theta, \lambda) = \Sigma_{i}$ log $L_{i}(\theta) - \lambda^{i}(\theta_{2} - q)$

First-order conditions give the restricted ML estimators $\tilde{\theta} = (\tilde{\theta}'_1, q')'$ and $\widetilde{\lambda}$

$$
\sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{1}}|_{\widetilde{\theta}} = \sum_{i} s_{i1}(\widetilde{\theta}) = 0
$$

$$
\widetilde{\lambda} = \sum_{i} \frac{\partial \log L_{i}(\theta)}{\partial \theta_{2}}|_{\widetilde{\theta}} = \sum_{i} s_{i2}(\widetilde{\theta})
$$

λ measures the extent of violation of the restrictions, basis for ξ_{LM} *s*i are the scores; LM test is also called *score test*

Lagrange Multiplier Test, cont'd

For $\tilde{\lambda}$ can be shown that $N^{-1}\tilde{\lambda}\,$ follows asymptotically the normal distribution N(0,*V_λ*) with $N^{-1}\tilde{\lambda}$ $\tilde{}$

$$
V_{\lambda} = I_{22}(\theta) - I_{21}(\theta)I_{11}^{ -1}(\theta)I_{22}(\theta) = [I^{22}(\theta)]^{-1}
$$

i.e., the inverted lower block diagonal (dimension *J*x *J)* of the inverted information matrix

$$
I(\boldsymbol{\theta})^{-1} = \begin{pmatrix} I_{11}(\boldsymbol{\theta}) & I_{12}(\boldsymbol{\theta}) \\ I_{21}(\boldsymbol{\theta}) & I_{22}(\boldsymbol{\theta}) \end{pmatrix}^{-1} = \begin{pmatrix} I^{11}(\boldsymbol{\theta}) & I^{12}(\boldsymbol{\theta}) \\ I^{21}(\boldsymbol{\theta}) & I^{22}(\boldsymbol{\theta}) \end{pmatrix}
$$

The Lagrange multiplier test statistic

$$
\xi_{\scriptscriptstyle LM} = N^{-1} \widetilde{\lambda}' \hat{I}^{22}(\widetilde{\theta}) \widetilde{\lambda}
$$

has under H_0 an asymptotic Chi-square distribution with *J* d.f. $\widetilde{\theta}$) is the lower block diagonal of the estimated inverted information matrix, evaluated at the restricted estimators for θ $\hat{I}^{22}(\widetilde{\theta}$

The LM Test Statistic

Outer product gradient (OPG) of ξ_{LM}

Information matrix estimated on basis of scores (cf. slide 48) \Box $\hat{I}(\tilde{\theta}) = N^{-1} \sum_{i} s_i(\tilde{\theta}) s_i(\tilde{\theta})' = N^{-1} diag\left\{0, \sum_{i} s_{i2}(\tilde{\theta}) s_{i2}(\tilde{\theta})'\right\}$ $(\theta) = N^{-1} \sum_{i} s_i(\theta) s_i(\theta)' = N^{-1} diag\{0, \sum_{i} s_{i2}(\theta) s_{i2}(\theta)'\}$ *i* $\hat{I}(\tilde{\theta}) = N^{-1} \sum_{i} s_i(\tilde{\theta}) s_i(\tilde{\theta})' = N^{-1} diag\left\{0, \sum_{i} s_{i2}(\tilde{\theta}) s_{i2}(\tilde{\theta})'\right\}$

\Box With

$$
\tilde{\lambda} = \sum_{i} s_{i2}(\tilde{\theta})
$$

 $\overline{}$ \blacksquare the LM test statistics can be written as

$$
\xi_{LM} = \sum_{i} s_{i2}(\tilde{\theta})' \Big(\sum_{i} s_{i2}(\tilde{\theta}) s_{i2}(\tilde{\theta})' \Big)^{-1} \sum_{i} s_{i2}(\tilde{\theta})
$$

With the *NxK* matrix of first derivatives $S = [s_1(\tilde{\theta}), ..., s_N(\tilde{\theta})]'$

$$
\hat{I}(\tilde{\theta}) = N^{-1} \sum_{i} s_i(\tilde{\theta}) s_i(\tilde{\theta})' = N^{-1} S' S
$$

and – with the
$$
\overline{N}
$$
-vector $i = (1, ..., 1)^n$
\n
$$
\xi_{LM} = \sum_i s_{i2}(\tilde{\theta})^n (\sum_i s_{i2}(\tilde{\theta})s_{i2}(\tilde{\theta})^n)^{-1} \sum_i s_{i2}(\tilde{\theta})
$$

$$
= \sum_i s_i(\tilde{\theta})' \Bigl(\sum_i s_i(\tilde{\theta})s_i(\tilde{\theta})'\Bigr)^{-1} \sum_i s_i(\tilde{\theta}) = i' S(S'S)^{-1} S'i
$$

Calculation of the LM Test Statistic

Auxiliary regression of a *N*-vector i = (1, …, 1)' on the scores $s_i(\theta)$, i.e., on the columns of *S*; no intercept ~

- Predicted values from auxiliary regression: *S*(*S*'*S*)-1*S'i*
- Sum of squared predictions: *i*'*S*(*S*'*S*)-1*S'S*(*S*'*S*)-1*S'i = i*'*S*(*S*'*S*)-1*S'i* \Box
- Total sum of squares: $$
- k. LM test statistic

ξLM ⁼ *i*'*S*(*S*'*S*)-1*S'i = i*'*S*(*S*'*S*)-1*S'i* (*i*'*i*)-1*N = N* unc *R*²

with the uncentered*R*² of the auxiliary regression with residuals *e*

Remember: For the regression *y* ⁼ *X*β + ε

- \Box ■ OLS estimates for $β$: *b* = $(X^{\prime}X)^{-1}X^{\prime}y$
- **I** the predictions for *y*: $\hat{y} = X(X^tX)^{-1}X^t y$ k.
- k. uncentered*R*²: unc*R*² = *ŷ*'*ŷ*/*y*'*y*

 Δ lso: $\sum_i s_i(\theta)$ = $S'i$ and $\sum_i s_i(\theta)$ $s_i(\theta)'$ = $S'S$

The Urn Experiment: Three Tests of H0: *p*=*p*0

IL 1851 OL \mathbf{r} The urn experiment: test of H_0 : $p = p_0$ The likelihood contribution of the *ⁱ*-th observation is log *L*i(*p*) = *y*i log *p* + (1 - *y*i) log (1 –*p*)This gives *s*i(*p*) = *y*i/*p* – (1- *y*i)/(1-*p*) and *I*(*p*) = [*p*(1-*p*)]-1 Wald test (with the unrestricted estimators $\hat{\theta \text{ }}$ and $\hat{p})$ iξ_W = N(\hat{R} - q) [RV⁻¹R]⁻¹ (\hat{R} ⁰ - q) = N(\hat{p} - p ₀) with *^J*= 1, *R* ⁼ *I*; this gives*q*) [*R*V-1 *R*]-1 (*R*- $\hat{\theta}$ - *q*) [RV⁻¹R]⁻¹ ($\hat{\theta}$ - *q*) = N(\hat{p} - p_0) [\hat{p} (1- \hat{p})]⁻¹ (\hat{p} - p_0) ² $(N_1 - N p_0)^2$ Example: In a sample of *N* = 100 balls, *N*₁ = 40 are red, i.e., \hat{P} =0.40 **Test of** H_0 **:** $p_0 = 0.5$ **results in** ξ $_W$ = 4</sub> = 4.167, corresponding to a *p*-value of 0.041 $\frac{0}{1} = N \frac{(1 \vee 1) \vee (1 \vee p)}{1}$ 1 $N_{W} = N \frac{(\hat{p} - p_{0})^{2}}{\hat{p}(1 - \hat{p})} = N \frac{(N_{1} - Np_{0})^{2}}{N(N - N_{1})}$ $\hat{p}_W^2 = N \frac{(\hat{p} - p_0)^2}{\hat{p}(1 - \hat{p})} = N \frac{(N_1 - Np_0)}{N(N - N)}$ $p(1-p)$ *N*(*N-N*₂ $\xi_W = N \frac{(p - p_0)}{\hat{p}(1 - \hat{p})} = N \frac{(N_1 - N_2)}{N(N - \hat{p})}$ $\hat{\theta}$ - q) [RV⁻¹R]⁻¹ (R $\hat{\theta}$ *z N(p̂ - p₀) [p̂(1-* \hat{p} *)]⁻¹ (p̂* $^{\prime}$ and \hat{p}

The Urn Experiment: LR Test of H0: *p*=*p*0

поос ган Likelihood ratio test:

$$
\xi_{LR} = 2\bigl(\log L(\hat{p}) - \log L(\tilde{p})\bigr)
$$

with

 $log L(\hat{p}) = N_1 log(N_1 / N) + (N - N_1) log(1 - N_1 / N)$ $L(\hat{p}) = N_1 \log(N_1/N) + (N - N_1) \log(1 - N_1/N)$

 $log L(\widetilde{p}) = N_1 log(p_0) + (N - N_1) log(1 - p_0)$ $L(\tilde{p}) = N_1 \log(p_0) + (N - N_1) \log(1-p)$

unrestricted estimator \hat{p} and restricted estimator \tilde{p}

Example: In the sample of N = 100 balls, N_1 = 40 are red

- $\hat{p} = 0.40, \tilde{p} = p_0 = 0.5$
- **Test of** H_0 **:** $p_0 = 0.5$ **results in**

ξ $_W$ = 4</sub> = 4.027, corresponding to a *p*-value of 0.045

The Urn Experiment: LM Test of H0: *p*=*p*0

anoe muu **ACT** Lagrange multiplier test:

with
$$
\tilde{\lambda} = \sum_i s_i(p)|_{p_0} = \frac{N_1}{p_0} - \frac{N - N_1}{1 - p_0} = \frac{N_1 - N p_0}{p_0 (1 - p_0)}
$$

and the inverted information matrix $[I(p)]^{-1} = p(1-p)$, calculated for the restricted case, the LM test statistic is

$$
\xi_{LM} = N^{-1} \tilde{\lambda} [p_0 (1 - p_0)] \tilde{\lambda} = N(\hat{p} - p_0) [p_0 (1 - p_0)]^{-1} (\hat{p} - p_0)
$$

$$
N^{-1}\tilde{\lambda}[p_0(1-p_0)]\tilde{\lambda} = N\frac{(\hat{p}-p_0)^2}{p_0(1-p_0)}
$$

Comparison of the test results

Example:

- In the sample of $N = 100$ balls, 40 are red
- **LM** test of $H_0: p_0 = 0.5$ gives $\xi_{LM} = 4.000$ with *p*-value of 0.044

Contents

- $\overline{\mathbb{R}^n}$ Organizational Issues
- \mathcal{L}^{max} Overview of Contents
- $\overline{\mathcal{A}}$ Linear Regression: A Review
- **Estimation of Regression Parameters** $\mathcal{L}_{\mathcal{A}}$
- $\overline{\mathcal{A}}$ Estimation Concepts
- $\overline{}$ ML Estimator: Idea and Illustrations
- $\overline{\mathbb{R}^n}$ ML Estimator: Notation and Properties
- $\mathcal{L}_{\mathcal{A}}$ ML Estimator: Two Examples
- \mathcal{L}^{max} Asymptotic Tests
- $\overline{\mathcal{A}}$ Some Diagnostic Tests

Normal Linear Regression: Scores

Log-likelihood function

$$
\log L(\beta, \sigma^2) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_i (y_i - x_i'\beta)^2
$$

Scores:

$$
s_i(\beta, \sigma^2) = \begin{pmatrix} \frac{\partial \log L_i(\beta, \sigma^2)}{\partial \beta} \\ \frac{\partial \log L_i(\beta, \sigma^2)}{\partial \sigma^2} \end{pmatrix} = \begin{pmatrix} \frac{y_i - x'_i \beta}{\sigma^2} x_i \\ -\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4} (y_i - x'_i \beta)^2 \end{pmatrix}
$$

Covariance matrix

$$
V = I(\beta, \sigma^2)^{-1} = diag(\sigma^2 \Sigma_{xx}^{-1}, 2\sigma^4)
$$

Testing for Omitted Regressors

Model: *y*i ⁼ *x*i'*β* ⁺ *z*i'*γ* ⁺ *ε*i*, ε*ⁱ [~]*NID*(0,σ²); sample size *N*

Test whether the *J* regressors *z*i are erroneously omitted:

k. Fit the restricted model

 \blacksquare Apply the LM test to check *H*₀: *γ* = 0 First-order conditions give the scores

$$
\frac{1}{\tilde{\sigma}^2} \sum_{i} \tilde{\varepsilon}_i x_i = 0, \quad \frac{1}{\tilde{\sigma}^2} \sum_{i} \tilde{\varepsilon}_i z_i, \quad -\frac{N}{2\tilde{\sigma}^2} + \frac{1}{2} \sum_{i} \frac{\tilde{\varepsilon}_i^2}{\tilde{\sigma}^4} = 0
$$

with restricted ML estimators for *β* and σ²; ML-residuals ' $\tilde{\varepsilon}_i = y_i - x_i' \beta$

- $\left\vert \cdot \right\rangle$ ■ Auxiliary regression of N-vector *i* = (1, ..., 1)' on the scores gives the uncentered*R*²
- $\mathcal{L}_{\mathcal{A}}$ **The LM test statistic is** $\xi_{LM} = N$ **unc** R^2
- \Box ■ An asymptotically equivalent LM test statistic is $N R_e^2$ with R_e^2 from the regression of the ML residuals on *x*i and *z*i

ˆ
Testing for Heteroskedasticity

Model: *y*i ⁼ *x*i'*β* ⁺ *ε*i*, ε*ⁱ [~]*NID,* V{ *^ε*i} = σ^² *h*(*z*i'*α*), *h*(.) > 0 but unknown, *h*(0) = 1, ∂/∂*α*{*h*(.)} ≠ 0, *J*-vector *z*i

Test for homoskedasticity: Apply the LM test to check *H*₀: *α* = 0 First-order conditions with respect to σ² and *α* give the scores~~

 \boldsymbol{i} \boldsymbol{i} \boldsymbol{j} \boldsymbol{j} \boldsymbol{k} \boldsymbol{j} \boldsymbol{k} \boldsymbol{j} \boldsymbol{k} \boldsymbol{j} \boldsymbol{k} \boldsymbol{j})*z* \sim 2 \sim 2 \sim $\widetilde{\bm{\mathcal{E}}}_{i}^{\,2}-\widetilde{\bm{\mathcal{O}}}^{\,2},\quad (\widetilde{\bm{\mathcal{E}}}_{i}^{\,2}-\bm{\mathcal{C}}_{i}^{\,2})$ 2 $\widetilde{\varepsilon}^2 - \widetilde{\sigma}^2$, $(\widetilde{\varepsilon}^2 - \widetilde{\sigma}^2)$

with restricted ML estimators for *β* and σ²; ML-residuals $\tilde{\mathcal{E}}_{_{l}}$

- Auxiliary regression of N-vector *i* = (1, ..., 1)' on the scores gives the uncentered*R*²
- $\mathcal{L}_{\mathcal{A}}$ ■ LM test statistic ξ_{LM} = *N* unc*R*²; a version of Breusch-Pagan test
- \mathbb{R}^n An asymptotically equivalent version of the Breusch-Pagan test is based on *NRe*² with *Re*² from the regression of the squared ML residuals on *z*i and an intercept
- k. Attention! No effect of the functional form of *h*(.)

Testing for Autocorrelation

Model: *y*t ⁼ *x*t'*β* ⁺ *^ε*t*, ε*^t = ρ*^ε*t-1 *+ v*t, *v*^t [~]*NID*(0,σ²) LM test of *H*₀: ρ = 0

First-order conditions give the scores with respect to *β* and ρ

1 \sim \sim , $\widetilde{}$ ′ $t^{v}t$, $t^{v}t$ \mathcal{E}_{\cdot} *x*_{\cdot} \cdot \mathcal{E}_{\cdot} *ε*

with restricted ML estimators for *β* and σ²

- **The LM test statistic is** $\xi_{LM} = (T-1)$ **unc** R^2 **with the uncentered
R² from the quality regression of the Museter is (1, 1)² g** *R*² from the auxiliary regression of the *N*-vector *i* = (1,…,1)' on the scores
- If x_t contains no lagged dependent variables: products with x_t can be dropped from the regressors; ξ_{LM} = (*T*-1) R^2 with R^2
fram *i* = (1 \qquad 1)' on the searse $\tilde{a}\tilde{a}$ from i = (1, …, 1)' on the scores $\tilde{\mathcal{E}}_{_{t}}\tilde{\mathcal{E}}_{_{t-1}}$ $\widetilde{\mathcal{E}}_t \widetilde{\mathcal{E}}_{t-1}$

An asymptotically equivalent test is the Breusch-Godfrey test based on *NRe*² with *Re*² from the regression of the ML residuals on x_{t} and the lagged residuals

Your Homework

- 1. Open the Greene sample file "greene7_8, Gasoline price and consumption", offered within the Gretl system. The dataset contains time series of annual observations from 1960 through 1995. The variables to be used in the following are: $G =$ total U.S. gasoline consumption, computed as total expenditure of gas divided by the price index; $Pg = price$ index for gasoline; $Y = per$ capita (p.c.) disposable income; Pnc = price index for new cars; Puc = price index for used cars; Pop = U.S. total population in millions. Perform the following analyses and interpret the results:
	- a. Produce and discuss a time series plot of the gasoline consumption (G), the disposable income (Y), and the U.S. total population (Pop).
	- b. Produce and interpret the scatter plot of the p.c. gasoline consumption (Gpc) over the p.c. disposable income (Y).
	- $\mathbf c$. Fit the linear regression of log(Gpc) on the regressors log(Y) and Pg and give an interpretation of the outcome.

Your Homework,cont'd

- d. Test for autocorrelation of the error terms using the LM test statistic ξLM = (*T*-1)*R*² with the uncentered*R*² from the auxiliary regression of the vector of ones $i = (1, ..., 1)$ ' on the scores $(e_t^*e_{t-1})$.
- e. Test for autocorrelation using the Breusch-Godfrey test, the test statistic being *TRe*² with *Re*² from the regression of the residuals on the regressors and the lagged residuals $\bm{e}_{\mathsf{t-1}}.$
- f. Use the Chow test to test for a structural break between 1979 and 1980.
- 2. Assume that the errors $ε_t$ of the linear regression $y_t = β_1 + β$ $2X_t + \varepsilon_t$ are NID(0, σ^2) distributed. (a) Determine the log-likelihood function of the sample for t = 1, ..., T ; (b) derive (i) the first-order conditions and (ii) the ML estimators for β_1 , β_2 , and σ^2 ; (c) derive the asymptotic covariance matrix of the ML estimators for $β_1$ and β_2 on the basis (i) of the information matrix and (ii) of the score vector.