Econometrics 2 - Lecture 5

Multi-equation Models

Contents

- $\overline{}$ Systems of Equations
- $\mathcal{L}(\mathcal{A})$ VAR Models
- $\overline{}$ Simultaneous Equations and VAR Models
- $\mathcal{C}^{\mathcal{A}}$ VAR Models and Cointegration
- $\overline{\mathcal{A}}$ VEC Model: Cointegration Tests
- $\overline{}$ VEC Model: Specification and Estimation

Multiple Dependent Variables

Economic processes: Simultaneous and interrelated development of a multiple set of variables

Examples:

- Households consume a set of commodities (food, durables, etc.); the demanded quantities depend on the prices of commodities, the household income, the number of persons living in the household, etc.; a consumption model includes a set of dependent variables and a common set of explanatory variables.
- $\mathcal{L}_{\mathcal{A}}$ The market of a product is characterized by (a) the demanded and supplied quantity and (b) the price of the product; a model for the market consists of equations representing the development and interdependencies of these variables.
- $\overline{\mathcal{A}}$ An economy consists of markets for commodities, labour, finances, etc.; a model for a sector or the full economy contains descriptions of the development of the relevant variables and their interactions.

Systems of Regression **Equations**

 Economic processes encompass the simultaneous developments as well as interrelations of a set of dependent variables

■ For modelling economic processes: system of relations, typically in the form of regression equations: multi-equation model

Example: Two dependent variables $y_{\sf t1}$ and $y_{\sf t2}$ are modelled as

*y*_{t1} = $x'_{t1}β_1 + ε_{t1}$ *y*_{t2} = $x'_{t2}β_2 + ε_{t2}$ with V{ ε_{ti} } = σ_i^2 for *i* = 1, 2, Cov{ ε_{t1} , ε_{t2} } = $\sigma_{12} \neq 0$ Typical situations:

- 1. The set of regressors x_{t1} and x_{t2} coincide
- 2. The set of regressors x_{t1} and x_{t2} differ, may overlap
- 3. Regressors contain one or both dependent variables
- 4. Regressors contain lagged variables

Types of Multi-equation Models

Multivariate regression or multivariate multi-equation model

- Π A set of regression equations, each explaining one of the dependent variables
	- \Box Possibly common explanatory variables
	- \Box Seemingly unrelated regression (SUR) model: each equation is a valid specification of a linear regression, related to other equations only by the error terms
	- \Box See cases 1 and 2 of "typical situations" (slide 4)

Simultaneous equations models

- П Describe the relations within the system of economic variables
	- \Box in form of model equations
	- \Box See cases 3 and 4 of "typical situations" (slide 4)

Error terms: dependence structure is specified by means of second moments or as joint probability distribution

Capital Asset Pricing Model

Capital asset pricing (CAP) model: describes the return *R*i of asset *i*

*R*i- R_f = β_i(E{ R_m } – R_f) + ε_i

with

- □ *R*_f: return of a risk-free asset
- □ *R*_m: return of the market's optimal portfolio
- βi: indicates how strong fluctuations of the returns of asset*i* are determined by fluctuations of the market as a whole
- ш ■ Knowledge of the return difference R_i the return difference $R_{\rm j}$ - $R_{\rm f}$ of asset *j*, ϵ $R_{\rm f}$ will give information on -*R*f of asset *j*, at least for some assets
- Analysis of a set of assets *i* = 1, …, *s*
	- \Box \Box The error terms ε_i , *i* = 1, …, *^s*, represent common factors, e.g., inflation rate, have a common dependence structure
	- □ Efficient use of information: simultaneous analysis

A Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld & Griliches (1960)]: Panel data set on gross investments *I*_{it} of firms *i* = 1, ..., 6 over 20 years and related data

M. Investment decisions are assumed to be determined by

 $I_{it} = \beta_{i1} + \beta_{i2}F_{it} + \beta_{i3}C_{it} + \varepsilon_{it}$

with

- -*F*it: market value of firm *i* at the end of year *t*-1
- -*C*it: value of stock of plant and equipment at the end of year*t*-1
- Simultaneous analysis of equations for the various firms: efficient use of information
	- \Box Error terms for the firms include common factors such as economic climate
	- \Box Coefficients may be the same for the firms

The Hog Market

Model equations:

 $Q^d = α₁ + α₂P + α₃Y + ε₁$ (demand equation) $Q^s = β₁ + β₂P + β₃$ *Q*d = *Q*s (equilibrium condition)2*P* + β 3^2 + ε₂ $_2$ (supply equation) with *Q*d: demanded quantity, *Q*s: supplied quantity, *P*: price, *Y*: income, and *Z*: cost of production, or $Q = \alpha_1 + \alpha_2 P + \alpha_3 Y + \epsilon_1$ (demand equation) *Q* = β₁ + β₂*P* + β₁ 2*P* + β 3^2 + ε₂ $_2$ (supply equation)

- Model describes quantity and price of the equilibrium transactions
- Model determines simultaneously Q and P, given Y and Z
- Error terms
	- \Box May be correlated: Cov{ε₁, ε₂} ≠ 0
- Simultaneous analysis necessary for efficient use of information

Klein's Model I

- *1.* $C_t = \alpha_1 + \alpha_2 P_t + \alpha_3 P_{t-1} + \alpha_4 (W_t^{p+} W_t^{g}) + \epsilon_{t1}$ (consumption)
- 2. $I_t = \beta_1 + \beta_2 P_t + \beta_3 P_{t-1} + \beta_4 P_t$ $2P_t + \beta_3 P_{t-1} + \beta$ $_{4}$ K_{t-1} + ε_{t2} (investment)
- 3. $W_t^p = v_1 + v_2X_t + v_3X_{t-1} + v_4t + \varepsilon_{t3}$ (wages)
- *4.* $X_t = C_t + I_t + G_t$
- *5.* $K_t = I_t + K_{t-1}$

6.
$$
P_t = X_t - W_t^p - T_t
$$

with *C* (consumption), *P* (profits), *W*p (private wages), *W*g

- (governmental wages), *I* (investment), *K*-1 (capital stock), *X* (national product), *G* (governmental demand), *T* (taxes) and *t* [time (year-1936)]
- Model determines simultaneously *C*, *I*, *W*^p, *X*, *K*, and *P*
- Simultaneous analysis necessary in order to take dependence structure of error terms into account: efficient use of information

Examples of Multi-equation Models

Multivariate regression models

- Π ■ Capital asset pricing (CAP) model: for all assets, return R_i (or risk premium *R*i –*R*f) is a function of E{*R*m} –*R*f; dependence structure of the error terms caused by common variables
- \mathcal{L}_{max} Model for investment: firm-specific regressors, dependence structure of the error terms like in CAP model
- Π Seemingly unrelated regression (SUR) models

Simultaneous equations models

- Hog market model: endogenous regressors, dependence structure Π of error terms
- Klein's model I: endogenous regressors, dynamic model, \mathcal{L}_{max} dependence of error terms from different equations and possibly over time

Single- vs. Multi-equation Models

Complications for estimation of parameters of multi-equation models:

- \Box Dependence structure of error terms
- Violation of exogeneity of regressors k.

Example: Hog market model, demand equation

 $Q = α_1 + α_2P + α_3Y + ε_1$

k. Covariance matrix of $\epsilon = (\epsilon_1, \epsilon_2)'$

$$
Cov{\varepsilon} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}
$$

 \Box *P* is not exogenous: Cov{ P ,ε₁} = (σ₁² - σ₁₂)/(β₂ - α₂) ≠ 0 Statistical analysis of multi-equation models requires methods adapted to these features

Analysis of Multi-equation Models

Issues of interest:

- \Box Estimation of parameters
- **Interpretation of model characteristics, prediction, etc.** k.
- Estimation procedures
- \Box Multivariate regression models
	- \Box GLS , FGLS, ML
- **Simultaneous equations models**
	- \Box Single equation methods: indirect least squares (ILS), two stage least squares (TSLS), limited information ML (LIML)
	- \Box System methods of estimation: three stage least squares (3SLS), full information ML (FIML)
	- \Box Dynamic models: estimation methods for vector autoregressive (VAR) and vector error correction (VEC) models

Contents

- $\overline{\mathbb{R}^n}$ Systems of Equations
- $\overline{\mathcal{A}}$ VAR Models
- $\overline{}$ Simultaneous Equations and VAR Models
- $\mathcal{C}^{\mathcal{A}}$ VAR Models and Cointegration
- $\overline{\mathcal{A}}$ VEC Model: Cointegration Tests
- $\overline{}$ VEC Model: Specification and Estimation

Example: Income and Consumption

Model for income (*Y*) and consumption (*C*)

*Y*_t = δ_1 + θ_{11} *Y*_{t-1} + θ_{12} *C*_{t-1} + ε_{1t} *C*_t = δ_2 + θ₂₁*C*_{t-1} + θ₂₂*Y*_{t-1} + ε_{2t} with (possibly correlated) white noises $\bm{\mathnormal{\varepsilon}}_{1\mathnormal{t}}$ and $\bm{\mathnormal{\varepsilon}}_{2\mathnormal{t}}$ Notation: *Z*_t = (*Y*_t, *C*_t)', 2-vectors δ and ε, and (2x2)-matrix Θ = (θ_{ij}), the model is

$$
\begin{pmatrix} Y_t \\ C_t \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta_2 \end{pmatrix} + \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ C_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}
$$

in matrix notation

 $Z_t = \delta + \Theta Z_{t-1} + \varepsilon_t$

- Represents each component of *Z* as a linear combination of lagged variables
- Extension of the AR-model to the 2-vector *Z*_t: vector autoregressive model of order 1, VAR(1) model

The VAR(*p*) Model for the *k*-Vector

VAR(*p*) model for the *k*-vector Y_t: generalization of the AR(*p*) model *Y*_t = δ + Θ₁*Y*_{t-1} + … + Θ_p*Y*_{t-p} + ε_t with *k*-vectors $\mathsf{Y}_\mathsf{t},$ δ, and $\mathsf{\epsilon}_\mathsf{t}$ and k x*k*-matrices $\Theta_\mathsf{1},$ …, Θ_p

■ Using the lag-operator *L*:

 $\Theta(L)Y_t = \delta + \varepsilon_t$

with matrix lag polynomial Θ(*L*) = *I* –^Θ1*^L* - … - ^Θp*L*^p

- ^Θ(*L*) is a *k*x*k*-matrix
- Each matrix element of Θ(*L*) is a lag polynomial of order *^p*
- **E**rror terms $ε_t$
	- \Box have covariance matrix Σ (for all *t*); allows for contemporaneous correlation
	- \Box are independent of Y_{t-i} , $j \geq 0$, i.e., of the past of the components of Y_t

The VAR(*p*) Model, cont'd

VAR(*p*) model for the *k*-vector *Y*t*Y*_t = δ + Θ₁*Y*_{t-1} + … + Θ_p*Y*_{t-p} + ε_t $\overline{\mathcal{A}}$ Vector of expectations of Y_t: assuming stationarity $E{Y_t} = \delta + \Theta_1 E{Y_t} + ... + \Theta_p E{Y_t}$ gives E{*Y*_t} = μ = (I_k – Θ₁ - … - Θ_p)⁻¹δ = Θ(1)⁻¹δ
stationarity requires that the *k*×k-matrix (i.e., stationarity requires that the *k*x*k*-matrix Θ(1) is invertible \mathbb{R}^3 In deviations $y_t = Y_t - \mu$, the VAR(ρ) model is $\Theta(L)$ *y*_t = ε_t k. MA representation of the VAR(*p*) model, given that Θ(*L*) is invertible

$$
Y_{t} = \mu + \Theta(L)^{-1} \varepsilon_{t} = \mu + \varepsilon_{t} + A_{1} \varepsilon_{t-1} + A_{2} \varepsilon_{t-2} + \dots
$$

VAR(*p*) Model: Extensions

of the VAR(*p*) model

*Y*_t = δ + Θ₁*Y*_{t-1} + … + Θ_p*Y*_{t-p} + ε_t

for the k -vector Y_t

- **v** VARMA(*p*,*q*) Model: Extension of the VAR(*p*) model by multiplying $ε_t$ (from the left) with a matrix lag polynomial MA(*L*) of order *q*
- VARX(*p*) model with *m*-vector *X*t of exogenous variables, *k*x*m*-matrix Γ*Y*_t = Θ₁*Y*_{t-1} + … + Θ_p*Y*_{t-p} + Γ*X*_t + ε_t

Reasons for Using a VAR Model

VAR model represents a set of univariate AR(MA) models, one for each component

- **Reformulation of simultaneous equations models as dynamic models**
- $\mathcal{L}^{\text{max}}_{\text{max}}$ To be used instead of simultaneous equations models:
	- \Box No need to distinct a priori endogenous and exogenous variables
	- \Box No need for a priori identifying restrictions on model parameters
- $\overline{\mathcal{A}}$ Simultaneous analysis of the components: More parsimonious, fewer lags, simultaneous consideration of the history of all included variables
- **Allows for non-stationarity and cointegration**

 Attention: The number of parameters to be estimated increases with *k*and *p*

Contents

- $\mathcal{L}_{\mathcal{A}}$ Systems of Equations
- \mathcal{L}^{max} VAR Models
- $\overline{\mathcal{A}}$ Simultaneous Equations and VAR Models
- $\mathcal{C}^{\mathcal{A}}$ VAR Models and Cointegration
- $\overline{\mathcal{A}}$ VEC Model: Cointegration Tests
- $\overline{}$ VEC Model: Specification and Estimation

Example: Income and Consumption

Model for income (*Y*_t) and consumption (*C*_t) *Y*_t = δ_1 + θ_{11} *Y*_{t-1} + θ_{12} *C*_{t-1} + ε_{1t} *C*_t = δ_2 + θ₂₁*C*_{t-1} + θ₂₂*Y*_{t-1} + ε_{2t} with (possibly correlated) white noises $\bm{\mathnormal{\varepsilon}}_{1\mathnormal{t}}$ and $\bm{\mathnormal{\varepsilon}}_{2\mathnormal{t}}$ M. Matrix form of the simultaneous equations model: A $(Y_t, C_t)' = \Gamma(1, Y_{t-1}, C_{t-1}')' + (\epsilon_{1t}, \epsilon_{2t})'$ with \blacksquare VAR(1) form: *Z*_t = δ + Θ*Z*_{t-1} + ε_t or δ_1 $_{+}$ $\left(\begin{array}{cc} \theta_{11} & \theta_{12} \end{array} \right) \left(\begin{array}{c} Y_{t-1} \end{array} \right)_{+}$ $\left(\begin{array}{c} \varepsilon_{1t} \end{array} \right)$ 2) $\begin{pmatrix} 0 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 0 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ δ_2) $(\theta_{21} \quad \theta_{22}) (C_{t-1})$ (ε $\begin{pmatrix} Y_t \\ C_t \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta_2 \end{pmatrix} + \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ C_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$ *t* t (52) (21) (22) (51) (21) 1 $\sqrt{11}$ $\sqrt{12}$ 2^{6} 21 6 22 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} \delta_1 & \theta_{11} & \theta_{12} \\ \delta_2 & \theta_{21} & \theta_{22} \end{pmatrix}$

Simultaneous Equations Model in VAR Form

Model with *m* endogenous variables (and equations), *^K* regressors

 $Ay_t = \Gamma z_t + \varepsilon_t = \Gamma_1 y_{t-1} + \Gamma_2 x_t + \varepsilon_t$

with *m*-vectors y_t and ε_t , *K*-vector z_t , (*mxm*)-matrix A, (*mxK*)-matrix Γ, and $(mx m)$ -matrix $\Sigma = V\{\epsilon_t\}$;

- \Box \blacksquare *z*_t contains lagged endogenous variables y_{t-1} and exogenous variables x_t
- $\overline{\mathbb{R}^n}$ Rearranging gives

*y*_t = Θ *y*_{t-1} + δ_t + *v*_t with Θ = A⁻¹ Γ₁, δ_t = A⁻¹ Γ₂ x_t , and v_t = A⁻¹ ε_t

Extension of the set of variables by regressors x_t **: the matrix** δ_t becomes a vector of deterministic components (intercepts)

VAR Model: Estimation

VAR(*p*) model for the *k*-vector *^Y*^t

$$
Y_t = \delta + \Theta_1 Y_{t-1} + \dots + \Theta_p Y_{t-p} + \varepsilon_t, V\{\varepsilon_t\} = \Sigma
$$

- \mathbb{R}^n Components of Y_t: linear combinations of lagged variables
- k. Error terms: Possibly contemporaneously correlated, covariance matrix Σ, uncorrelated over time
- Estimation, given the order *p* of the VAR model
- k. OLS estimates of parameters in Θ(*L*) are consistent
- k. Estimation of Σ based on residual vectors $e_t = (e_{1t}, \ldots, e_{kt})$.

$$
S = \frac{1}{T - p} \sum_{t} e_t e_t'
$$

- \Box GLS estimator coincides with OLS estimator: same explanatory variables for all equations
- Cf. with estimation of SUR model

VAR Model: Estimation,cont'd

Choice of the order *p* of the VAR model

- $\overline{\mathcal{A}}$ Estimation of VAR models for various orders *^p*
- \mathbb{R}^n ■ Choice of *p* based on Akaike or Schwarz information criterion

Income and Consumption: Estimation of VAR-System

 AWM data base, 1971:1-2003:4: *PCR* (real private consumption), *PYR* (real disposable income of households); respective annual growth rates of logarithms: *C*, *Y*

 $Fitting Z_t = δ + ΘZ_{t-1} + ε_t$ with $Z = (Y, C)^t$ gives

with $AIC = -14.60$

VAR(2) model: AIC = -14.55

LR-test of H₀: VAR(1) against H₁: VAR(2): p -value 0.51

Income and Consumption: Other Estimation Methods

Alternative estimation methods

- M. OLS equation-wise
- \Box **SUR**

VAR estimation, SUR estimation, and OLS equation-wise estimation give very similar results

VAR Model Estimation in GRETL

VAR systems

Model > Time Series > Multivariate > Vector Autoregression

Estimates the specified VAR system for the chosen lag order; calculates information criteria like AIC and BIC, *F*-tests for various zero restrictions for the equations and for the system as a whole

SUR model

Model > Simultaneous equations

Allows for various estimation methods, among them OLS and SUR; estimates the specified equations

Impulse-response Function

MA representation of the VAR(*p*) model

 $Y_t = \Theta(1)^{-1}\delta + \varepsilon_t + A_1 \varepsilon_{t-1} + A_2 \varepsilon_{t-2} + ...$

- $\overline{\mathbb{R}^n}$ Interpretation of A_s : the (i,j) -element of A_s represents the effect of a one unit increase of ε_{jt} upon the *i*-th variable $Y_{\mathsf{i},\mathsf{t}+\mathsf{s}}$ in $Y_{\mathsf{t}+\mathsf{s}}$
- $\mathcal{C}^{\mathcal{A}}$ Dynamic effects of a one unit increase of ε_{jt} upon the *i*-th component of Y_t are corresponding to the (i,j) -th elements of I_k , A_1 , A_2 , ...
- $\mathcal{L}^{\mathcal{L}}$ ■ The plot of these elements over *s* represents the impulse-response function of the *i*-th variable in Y_{t+s} on a unit shock to ε_{jt}

Contents

- $\mathcal{L}_{\mathcal{A}}$ Systems of Equations
- $\mathcal{L}(\mathcal{A})$ VAR Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equations and VAR Models
- $\overline{\mathbb{R}^n}$ VAR Models and Cointegration
- $\overline{\mathbb{R}^n}$ VEC Model: Cointegration Tests
- $\overline{\mathcal{A}}$ VEC Model: Specification and Estimation

AR(1) Process: Stationarity

 $AR(1)$ process $Y_t = \theta Y_{t-1} + \varepsilon_t$

 \mathbb{R}^3 **ighthary** if the root *z* of the characteristic polynomial

 $\Theta(z) = 1 - \theta z = 0$

fulfils |*z*| > 1, i.e., |θ| < 1;

- \Box Θ(*z*) is invertible, i.e., Θ(*z*)-1 can be derived such that Θ(*z*)-1Θ(*z*) = 1
- \Box *Y*_t can be represented by an MA(∞) process: $Y_t = \Theta(L)^{-1} \varepsilon_t$
- is non-stationary, if

z = 1, i.e., θ = 1

i.e.,*Y_t ~ I*(1), *Y_t has a stochastic trend*

VAR(1) Model, Non-stationarity, and Cointegration

 $VAR(1)$ model for the *k*-vector $Y_t = (Y_{1t}, ..., Y_{kt})'$

$$
Y_t = \delta + \Theta_1 Y_{t-1} + \varepsilon_t
$$

 $\overline{\mathcal{A}}$ If $\Theta(L) = I - \Theta_1 L$ is invertible,

*Y*_t = Θ(1)⁻¹δ + Θ(*L*)⁻¹ε_t = μ + ε_t + A₁ε_{t-1} + A₂ε_{t-2} + …

i.e., each variable in $Y_{\mathfrak{t}}$ is a linear combination of white noises, is a
stationary *I*(0) variable stationary $I(0)$ variable

- If $\Theta(L)$ is not invertible, not all variables in Y_t can be stationary $I(0)$ variables: at least one variable must have a stochastic trend
	- □ If all *k* variables have independent stochastic trends, all *k* variables are \Box *I*(1) and no cointegrating relation exists; e.g., for *^k* = 2:

$$
\Theta(1) = \begin{pmatrix} 1 - \theta_{11} & -\theta_{12} \\ -\theta_{21} & 1 - \theta_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

i.e., θ₁₁ = θ₂₂ = 1, θ₁₂ = θ₂₁ = 0 and ΔY_{1t} = δ₁ + ε_{1t,} ΔY_{2t} = δ₂ + ε_{2t}

 \Box The more interesting case: at least one cointegrating relation; number of cointegrating relations equals the rank $r\{\Theta(1)\}\$ of matrix $\Theta(1)$

Example: A VAR(1) Model

VAR(1) model $Y_t = δ + Θ_1Y_{t-1} + ε_t$ for *k*-vector *Y* $\Delta Y_t = -\Theta(1)Y_{t-1} + \delta + \varepsilon_t$ with (*k*x*k*) matrix Θ(*L*) = *I* – ^Θ1*^L* and Θ(1) = I^k - ^Θ¹ *r =* r{Θ(1)}: rank of Θ(1), 0 ≤ *r* [≤]*^k*

- *1.* $r = 0$: implies $\Delta Y_t = \delta + \varepsilon_t$, i.e., *Y* is a *k*-dimensional random walk, each component is *I*(1), no cointegrating relationship
- *2. ^r* <*k*: (*^k ^r*)-fold unit root, (*k*x*^r*)-matrices γ and β can be found, both of rank *r*, with

Θ(1) = γβ'

the *r* columns of β are the cointegrating vectors of *^r* cointegrating relations β'Y_t (β in normalized form, i.e., the main diagonal elements of β being ones)

3. ^r ⁼*k*: VAR(1) process is stationary, all components of *^Y* are *I*(0)

Cointegrating Space

*Y*_t: *k*-vector with *Y*_t ~ *I*(1)

Cointegrating space:

- \Box **Among the** *k* **variables,** $r \leq k-1$ **independent linear relations** $\beta_j' Y_t$ **,** $j = 1$ **,** …, *r*, are possible so that β $'_{j}$ 'Y $_{t}$ ~ *I*(0)
- $\mathcal{L}^{\text{max}}_{\text{max}}$ Individual relations can be combined with others and these are again *I*(0), i.e., not the individual cointegrating relations are identified but only the *r*-dimensional space
- $\overline{\mathbb{R}^n}$ Cointegrating relations should have an economic interpretation Cointegrating matrix β from Δ Y_t = - Θ(1) Y_{t-1} + δ + ε_t = - γ β' Y_{t-1} + δ + ε_t
- k. The *kxr* matrix $\beta = (\beta_1, ..., \beta_r)$ of vectors β_i , $j = 1, ..., r$, that state the cointegrating relations β_j'Y_t ~ *I*(0), *j* = 1, …, *r*
- $\overline{\mathcal{A}}$ Cointegrating rank: the rank of matrix β: r{β} = *^r*

Granger's Representation Theorem

Granger's Representation Theorem (Engle & Granger, 1987): If a set of *I*(1) variables is cointegrated, then an error-correction (EC) relation of the variables exists.

Extends to VAR models: If the *I*(1) variables of the *k*-vector Y_t are cointegrated, then an error-correction (EC) relation of the variables exists.

Granger's Representation Theorem for VAR(*p*) Models

 $VAR(p)$ model for the *k*-vector Y_t with $Y_t \sim I(1)$

*Y*_t = δ + Θ₁*Y*_{t-1} + … + Θ_p*Y*_{t-p} + ε_t

transformed into

 $\Delta Y_t = \delta + \Gamma_1 \Delta Y_{t-1} + ... + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_t$ (A)

- \Box Π = Θ(1) = (**I**_k Θ₁ ... Θ_p): "long-run matrix", *k*_x*k*, determines the long-run dynamics of *Y*_t
- \Box Γ₁, …, Γ_{p-1} (*k*x*k*)-matrices, functions of Θ₁,..., Θ_p
- **■** Π *Y*_{t-1} is stationary: Δ*Y*_t and ε_t are *I*(0)

$\mathcal{L}(\mathcal{A})$ Three cases

- 1. $r\{\Pi\} = r$ with $0 \le r \le k$: there exist *r* stationary linear combinations of Y_t , i.e., *r* cointegrating relations
- 2. $r\{\Pi\} = 0$: $\Pi = 0$, no cointegrating relation, equation (A) is a VAR(*p*) model for stationary variables ΔY_t
- 3. r{Π} = *k*: all variables in *Y*^t are stationary, Π = ^Θ(1) is invertible

Vector Error-Correction Form

 $VAR(p)$ model for the *k*-vector Y_t with $Y_t \sim I(1)$

$$
Y_t = \delta + \Theta_1 Y_{t-1} + \dots + \Theta_p Y_{t-p} + \varepsilon_t
$$

transformed into

$$
\Delta Y_t = \delta + \Gamma_1 \Delta Y_{t-1} + ... + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_t
$$

with r{Π} = *r* and Π = γβ' gives

$$
\Delta Y_t = \delta + \Gamma_1 \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma \beta' Y_{t-1} + \varepsilon_t
$$
 (B)

- $\mathcal{L}_{\mathcal{A}}$ *r* cointegrating relations β'Y_{t-1}
- Adaptation parameters γ measure the portion or speed of adaptation k. of Y_t in compensation of the "equilibrium errors" Z_{t -1 = β' Y_{t -1
- Equation (B) is called the vector error-correction (VEC) form of the VAR(*p*) model

Example: Bivariate VAR(1) Model

 $VAR(1)$ model for the 2-vector $Y_t = (Y_{1t}, Y_{2t})'$ *Y*_t = Θ*Y*_{t-1} + ε_t; and Δ*Y*_t = (*I*₂ - Θ)*Y*_{t-1} + ε_t = Π*Y*_{t-1} + ε_t k. Long-run matrix $=$ $\begin{bmatrix} \theta_{11} - 1 & \theta_{12} \end{bmatrix}$ \Box Π = 0, if θ₁₁ = θ₂₂ = 1, θ₁₂ = θ₂₁ = 0, i.e., *Y*_{1t}, *Y*_{2t} are random walks r{Π} < 2, if $(\theta_{11} - 1)(\theta_{22} - 1) - \theta_{12} \theta_{21} = 0$; cointegrating vector: β' = (θ, – 1, θ,) long-run matrix (θ₁₁ – 1, θ₁₂), long-run matrix \Box The error-correction form is 21 $\frac{6}{22}$ $(1) = \begin{pmatrix} \theta_{11} - 1 & \theta_1 \\ 0 & 0 \end{pmatrix}$ $\Pi = -\Theta(1) = \begin{pmatrix} \theta_{11} - 1 & \theta_{12} \\ \theta_{21} & \theta_{22} - 1 \end{pmatrix}$ $(\theta_{11} - 1 \quad \theta_{12})$ 21' $\frac{11}{11}$ 1 $\Pi = \gamma \beta' = \begin{pmatrix} 1 \\ \theta_{21} / (\theta_{11} - 1) \end{pmatrix} (\theta_{11} - 1 \quad \theta_1)$

$$
\left(\frac{\Delta Y_{1t}}{\Delta Y_{2t}}\right) = \left(\frac{1}{\theta_{21} / (\theta_{11} - 1)}\right) \left[(\theta_{11} - 1) Y_{1,t-1} + \theta_{12} Y_{2,t-1} \right] + \left(\frac{\varepsilon_{1t}}{\varepsilon_{2t}}\right)
$$

Example: Bivariate VAR Model, cont'd

 \Box The equilibrium error $Z_t = (\Theta_{11} - 1)Y_{1t} + \Theta_{12}Y_{2t}$ is stationary: $\Delta Z_t = (\Theta_{11} - 1, \Theta_{12}) \Delta Y_t$ $= (\Theta_{11} - 1, \Theta_{12})[1, \Theta_{21}/(\Theta_{11} - 1)]^{T} Z_{t-1} + (\Theta_{11} - 1, \Theta_{12}) \epsilon_{t}$ $= (\Theta_{11} - 1 + \Theta_{22} - 1) Z_{11} + (\Theta_{11} - 1, \Theta_{12}) \varepsilon_{11}$

or

$$
Z_{t} = (\Theta_{11} + \Theta_{22} - 1)Z_{t-1} + v_{t}
$$

with $v_{t} = (\Theta_{11} - 1) \epsilon_{1t} + \Theta_{12} \epsilon_{2t}$, i.e., Z_{t} is $l(0)$

Deterministic Components

VEC(*p*) model for the *k*-vector *^Y*^t

 $ΔY_t = δ + Γ_1ΔY_{t-1} + ... + Γ_{p-1}ΔY_{t-p+1} + γβ'Y_{t-1} + ε_t$ (B)

k. Expectation gives

$$
(\mathsf{I}_{\mathsf{k}} - \Gamma_1 - \ldots - \Gamma_{\mathsf{p-1}}) \mathsf{E} \{\Delta Y_t\} = \Gamma \mathsf{E} \{\Delta Y_t\} = \delta + \gamma \mathsf{E} \{\beta' Y_{t-1}\}
$$

The deterministic component (intercept) δ:

- 1. No deterministic trend in any component of *Y*_t, i.e., E{Δ*Y*_t} = 0: given that $\Gamma = I_k - \Gamma_1 - \ldots - \Gamma_{p-1}$ has full rank:
	- \Box ΓE{Δ*Y*_t} = δ + γE{β'*Y*_{t-1}} = 0 with equilibrium error β'*Y*_{t-1} = Z_{t-1}
	- \Box E{*Z*_{t-1}} corresponds to the intercepts of the cointegrating relations; with *r*-
dimensional vector E{*Z*_{t-1}} = α (and hence δ = - γ E{*Z*_{t-1}} = - γα)

$$
\Delta Y_t = \Gamma_1 \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \gamma (-\alpha + \beta' Y_{t-1}) + \varepsilon_t
$$
 (C)

- \Box Intercepts only in the cointegrating relations
- \Box "Restricted constant" case

Deterministic Component, cont'd

2. Variables with deterministic trend: addition of a *k*-vector λ with identical components to (C)

 $ΔY_t = λ + Γ_1ΔY_{t-1} + ... + Γ_{p-1}ΔY_{t-p+1} + γ(-α + β'Y_{t-1}) + ε_t$

- \Box Long-run equilibrium: steady state growth path with growth rate $E{\Delta}Y_t$ = Γ-1λ
- \Box Deterministic trends are assumed to cancel out in the long run: no deterministic trend in the error-correction term; cf. (B)
- \Box Addition of *k*-vector λ can be repeated: up to *k*-*^r* separate deterministic trends can cancel out in the error-correction term
- \Box The general notation is equation (B) with δ containing *^r* intercepts of the long-run relations and *k-r* deterministic trends in the variables of Y_t
- □ ,,Unrestricted constant" case
- <mark>3.</mark> "No constant" case: λ = α = 0

Choice of Constants

Choice between the three cases: visual inspection, economic reasoning Example 1: Income and consumption

- \Box Both processes are *I*(1)
- \Box Both appear to follow a deterministic linear trend
- k. Equilibrium relation may show an intercept
- \Box Unrestricted constant case

Example 2: Interest rates

- \Box Generally not trended
- \Box Difference between two rates might be stationary around a non-zero mean due to, e.g., rate-specific risk premia
- \Box Restricted constant case

The Five Cases

Based on empirical observation and economic reasoning, model specification has to choose between:

- 1)Unrestricted constant: variables show deterministic linear trends
- 2) Restricted constant: variables not trended but mean distance between them not zero; intercept in the error-correction term
- 3)No constant

Generalization: deterministic component contains intercept and trend

- 4) Constant + restricted trend: cointegrating relations include a trend but the first differences of the variables in question do not
- 5) Constant + unrestricted trend: trend in both the cointegrating relations and the first differences, corresponding to a quadratic trend in the variables (in levels)

Contents

- $\mathcal{L}_{\mathcal{A}}$ Systems of Equations
- $\mathcal{L}(\mathcal{A})$ VAR Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equations and VAR Models
- $\overline{\mathbb{R}^n}$ VAR Models and Cointegration
- \Box VEC Model: Cointegration Tests
- $\overline{\mathcal{A}}$ VEC Model: Specification and Estimation

Treatment of VEC Models

The following steps

- 1. Test of the k variables in Y_t for stationarity
- 2. Determination of the number *p* of lags
- 3. Specification of
	- \Box deterministic trends of the variables in *Y*^t
	- \Box intercept in the cointegrating relations
- 4. Determination of the number *^r* of cointegrating relations
- **5**. Estimation of the coefficients β of the cointegrating relations and the adjustment coefficients γ
- 6. Estimation of the VEC model

Choice of the Cointegrating Rank

The *k*-vector Y_t obeys $Y_t \sim I(1)$

*Y*t follows the process

 $ΔY_t = δ + Γ_1ΔY_{t-1} + ... + Γ_{p-1}ΔY_{t-p+1} + γβ'Y_{t-1} + ε_t$

Estimation procedure needs as input the cointegrating rank *^r*, i.e., the rank *r* = r{γβ'}

Testing for cointegration

- \Box Engle-Granger approach
- k. Johansen's R3 method

The Engle-Granger Approach

Two non-stationary processes $Y_t \sim I(1), X_t \sim I(1)$; the model is

*Y*_t = α + β*X*_t + ε_t

- $\overline{\mathbb{R}^n}$ **Step 1**: OLS-fitting
- $\overline{\mathcal{A}}$ Test for cointegration based on residuals, e.g., DF test with special critical values; H_0 : residuals are $I(1)$, no cointegration
- **I** If H_0 is rejected:
	- \Box OLS fitting in Step 1 gives consistent estimate of the cointegrating vector
	- \Box **Step 2**: OLS estimation of the EC model based on the cointegrating vector from Step 1

Can be extended to *k*-vector $Y_t = (Y_{1t}, ..., Y_{kt})$ ":

- \Box Step 1 applied to $Y_{1t} = \alpha + \beta_1 Y_{2t} + ... + \beta_k Y_{kt} + \varepsilon_t$
- \Box DF test of H₀: residuals are $I(1)$, no cointegration

Engle-Granger Cointegration Test: Problems

Residual based cointegration tests can be misleading

- $\overline{\mathcal{A}}$ Test results depend on specification
	- \Box Which variables are included
	- \Box Normalization of the cointegrating vector, i.e., which variable on left hand side
- $\overline{\mathcal{A}}$ Test may be inappropriate due to wrong specification of cointegrating relation
- $\mathcal{L}^{\mathcal{L}}$ Power of the test may suffer from inefficient use of information (dynamic interactions not taken into account)
- m. Test gives no information about the rank *^r*

Johansen's R3 Method

Reduced rank regression (R3) method, also called Johansen's test: a method for specifying the cointegrating rank *r*

 \Box ■ The test is based on the *k* eigenvalues $λ_i (λ₁ > λ₂ > ... > λ_k)$ of

Y₁'Y₁ – Y₁'ΔY(ΔY'ΔY)⁻¹ΔY'Y₁

with ΔY: (*Txk*) matrix of differences Δ*Y*_t, Y₁: (*Txk*) matrix of *Y*_{t-1}

- Has the same rank as the *k*x*^k* long run matrix γβ' = Π
- \Box Eigenvalues λ_{i} fulfil 0 ≤ λ_{i} < 1 for all *i*
- If *r*{γβ'} = *^r*, the *k*-*^r* smallest eigenvalues obey

$$
log(1 - \lambda_j) = \lambda_j = 0, j = r+1, ..., k
$$

- $\overline{\mathbb{R}^n}$ \blacksquare Johansen's iterative test procedures, based on estimates $\hat{I}_{\rm j}$ of $\lambda_{\rm j}$
	- \Box Trace test
	- \Box Maximum eigenvalue test or max test

Max Test

LR test, based on the assumption of normally distributed errors

- k. Counts the number of non-zero eigenvalues
- $\overline{}$ For $r_0 = 0, 1, 2, \ldots$, the null-hypothesis $H_0: \lambda_{r0} = 0$ is tested; stops when H_0 is not rejected for the first time, number of cointegrating relations is the number of rejections
- For $r_0 = 0, 1, ...$:
	- \Box □ Test of $H_0: r \le r_0$ against $H_1: r = r_0+1$
	- \Box Test statistic

 $\lambda_{\text{max}}(r_0) = -T \log(1 - \hat{I}_{r0+1})$

- \Box \Box Stops when H_0 is not rejected for the first time
- \Box Critical values from simulations
- \Box Rejection of H_0 : $r = 0$ in favour of H_1 : $r = 1$: Test of no cointegrating relation

Trace Test

LR tests, based on the assumption of normally distributed errors

- $\mathcal{L}_{\mathcal{A}}$ For $r_0 = 1, 2, \ldots$, the null-hypothesis is tested that the sum of the eigenvalues λ^j, *j*[≥]*r*0, is zero; stops when *H*⁰ is not rejected for the first time, number of cointegrating relations is the number of rejections
- For $r_0 = 0, 1, ...$:
	- \Box □ Test of $H_0: r \le r_0$ against $H_1: r > r_0$ ($r_0 < r \le k$)

 $λ_{\text{trace}}(r_{0}) = -T \sum_{j=r0+1}^{k} log(1 - \hat{l}_{j})$

- \Box \Box Tests whether the *k-r* $_0$ smallest $\lambda_{\sf j}$ are zero
- \Box \Box H_0 is rejected for large values of $\lambda_\mathrm{trace}(r_0)$
- \Box \Box Stops when H_0 is not rejected for the first time
- \Box Critical values from simulations

Trace and Max Test: Critical Limits

Critical limits are shown in Verbeek's Table 9.9 for both tests

- k. Depend on presence of trends and intercepts
	- \Box Case 1: no deterministic trends, intercepts in cointegrating relations ("restricted constant")
	- \Box Case 2: *^k* unrestricted intercepts in the VAR model, i.e., *k - ^r* deterministic trends, *r* intercepts in cointegrating relations ("unrestricted constant")
- **Depend on** $k r_0$
- $\mathcal{L}^{\mathcal{L}}$ ■ Small sample correction, e.g., factor (*T-pk)/T* for the test statistic: avoids too large values of *r*

Example: Purchasing Power Parity

```

Verbeek's dataset PPP: Price indices and exchange rates for France and Italy, T = 186 (1:1981-6:1996)
M.
   Variables: LNIT (log price index Italy), LNFR (log price index 
   France), LNX (log exchange rate France/Italy) Purchasing power parity (PPP): exchange rate between the currencies (Franc, Lira) equals the ratio of price levels of the countries LNX_t = LNP_t (A)
\Box Relative PPP: equality fulfilled only in the long run 
         LNX_t = \alpha + \beta LNP_t (B)
   with \mathsf{LNP}_\mathsf{t} = \mathsf{LMIT}_\mathsf{t} – \mathsf{LNFR}_\mathsf{t}, i.e., the log of the price index ratio
   France/ItalyGeneralization:
         LNX_t = \alpha + \beta_1 LNIT_t - \beta_2 LNFR_t (C)
```
PPP: Cointegrating Rank *r*

As discussed by Verbeek: Johansen test for *k* = 3 variables, based on a VEC(3) model; cf. equation (C)

*H*₀ not rejected that smallest eigenvalue equals zero: series are nonstationary

Both the trace and the max test suggest $r = 2$, two cointegrating relations are identified among the variables LNIT, LNFR, and LNX

Identification of Cointegrating Vectors

After determining the number *^r*, identification of the cointegrating vectors of

$$
\Delta Y_t = \delta + \Gamma_1 \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Pi Y_{t-1} + \varepsilon_t
$$

requires finding (kx *r*)-matrices γ and β with $\Pi = \gamma \beta'$

- \Box β: matrix of cointegrating vectors
- γ: matrix of adjustment coefficients
- $\overline{\mathcal{A}}$ Identification problem: linear combinations of cointegrating vectors are also cointegrating vectors
- $\overline{\mathcal{A}}$ Unique solutions for γ and β require restrictions
- \mathbb{R}^n Minimum number of restrictions which guarantee identification is *r*²
- \Box Normalization
	- \Box Phillips normalization
	- □ Manual normalization

Phillips Normalization

Cointegrating vectors

 $β' = (β₁', β₂'')$

 $β₁: (rxr)$ -matrix with rank *r*, $β₂: [(k-r)×r]$ -matrix

 $\overline{\mathcal{A}}$ Normalization consists in transforming the (*k*x*^r*)-matrix β into

$$
\hat{\beta} = \begin{pmatrix} I \\ \beta_2 \beta_1^{-1} \end{pmatrix} = \begin{pmatrix} I \\ -B \end{pmatrix}
$$

with matrix *B* of unrestricted coefficients

- $\mathcal{L}^{\text{max}}_{\text{max}}$ The *^r* cointegrating relations express the first *r* variables as functions of the remaining *k* - *^r*variables
- k. Fulfils the condition that at least *r*²restrictions are needed to guarantee identification
- k. Resulting equilibrium relations may be difficult to interpret
- Alternative: manual normalization

Example: Money Demand

Verbeek's data set "money": US data 1:54 – 4:1994 (*T*=164)

- M. *^m*: log of real M1 money stock
- *infl*: quarterly inflation rate (change in log prices, % per year) \Box
- M. *cpr*: commercial paper rate (% per year)
- M. *^y*: log real GDP (billions of 1987 dollars)
- M. *tbr*: treasury bill rate

All variables are *I*(1)

Money Demand: Cointegrating Relations

Intuitive choice of long-run behaviour relations

M. Money demand

 $m_t = \alpha_1 + \beta_{14} y_t + \beta_{15} tbr_t + ε_{1t}$

Expected: β $_{14}$ ≈ 1, β $_{15}$ < 0 M. Fisher equation (stationary real interest rate)

 $infl_t = \alpha_2 + \beta_{25}$ tbr_t + ε_{2t}

- Expected: β $_{25}$ ≈ 1
- Stationary risk premium

 $cpr_t = α_3 + β_{35}$ *tbr*_t + ε_{3t}

Stationarity of difference between *cpr* and *tbr*; expected: $\beta_{35} \approx 1$

Money Demand: Cointegrating Vectors

- ML estimates, lag order *p* = 6, cointegration rank *^r* = 2, restricted constant
- M. **Cointegrating vectors** $β_1$ **and** $β_2$ **and standard errors (***s.e.***), Phillips corresting** normalization

Contents

- $\mathcal{L}_{\mathcal{A}}$ Systems of Equations
- $\overline{\mathcal{A}}$ VAR Models
- $\overline{\mathbb{R}^n}$ Simultaneous Equations and VAR Models
- $\overline{\mathbb{R}^n}$ VAR Models and Cointegration
- $\overline{\mathcal{A}}$ VEC Model: Cointegration Tests
- \Box VEC Model: Specification and Estimation

Estimation of VEC Models

Estimation procedure consists of the following steps

- 1.Test of the *k* variables in Y_t for stationarity: ADF test; VEC models need *I*(1) variables
- 2. Determination of the number p of lags in the cointegration test (order
ef \ (AD); AIC ex DIC of VAR): AIC or BIC
- 3. Specification of
	- $\,$ deterministic trends of the variables in $\,$
	- \Box intercept in the cointegrating relation
- 4. Cointegration test: Determination of the number *^r* of cointegrating relations: trace and/or max test
- 5. Estimation of the coefficients β of the cointegrating relations and the equivation of the coefficients is normalization. adjustment coefficients γ; normalization
- 6. Estimation of the VEC model

Example: Income and Consumption

Model:

*Y*_t = δ_1 + θ_{11} *Y*_{t-1} + θ_{12} *C*_{t-1} + ε_{1t} *C*_t = δ_2 + θ₂₁*C*_{t-1} + θ₂₂*Y*_{t-1} + ε_{2t} With *Z* = (*Y*, *C*)', 2-vectors δ and ε, and (2x2)-matrix Θ, the VAR(1) model is*Z*_t = δ + Θ*Z*_{t-1} + ε_t Represents each component of *Z* as a linear combination of lagged variables

Income and Consumption: VEC(1) Model

- AWM data base: *PCR* (real private consumption), *PYR* (real disposable income of households); logarithms: *C*, *Y*
- 1. Check whether *C* and *^Y* are non-stationary, results in

 $C \sim I(1), Y \sim I(1)$

- 2. Lag order with minimal AIC: *p* = 4
- 3. Restricted constant: *C* and *^Y* without deterministic trend, cointegrating relation with intercept
- 4. Johansen test for cointegration:

r = 1 (*^p* < 0.05)

5. The cointegrating relationship is

C = 8.55 – 1.61*^Y*

with *t*(*Y*) = 18.2

Income and Consumption: VEC(1) Model, cont'd

6. VEC(1) model (same specification, *p*=4, *r*=1) with *Z* = (*Y*, *C*)'

$$
\Delta Z_t = -\gamma(\beta' Z_{t-1} + \delta) + \Gamma \Delta Z_{t-1} + \varepsilon_t
$$

The model explains growth rates of *PCR* and *PYR*; AIC = -15.41 is smaller than that of the VAR(1)-Modell (AIC = -14.45)

VEC Models in GRETL

Model > Time Series > Multivariate > VAR lag selection

- Calculates information criteria like AIC and BIC for VARs of order 1 to the chosen maximum order of the VAR; helps to choose the order *p*
- Model > Time Series > Multivariate > Cointegration test (Johansen), Model > … > Cointegration test (Engle-Granger)
- $\mathcal{L}^{\text{max}}_{\text{max}}$ Calculate eigenvalues, test statistics for the trace and max tests, and estimates of the matrices γ, β, and Π = γβ'; helps to choose *^r*

Model > Time Series > Multivariate > VECM

■ Estimates the specified VEC model for given *p* and *r*: (1) cointegrating vectors and standard errors, (2) adjustment vectors, (3) coefficients and various criteria for each of the equations of the VEC model

Your Homework

- 1. Verbeek's data set "money": US data 1:54 4:1994 (*T*=164) with *^m*: log of real M1 money stock, *infl*: quarterly inflation rate (change in log prices, % per year), *cpr*: commercial paper rate (% per year), *y*: log real GDP (billions of 1987 dollars), and *tbr*: treasury bill rate. Answer the following questions for the three equations for *m* with regressors *^y* and *tbr*, *infl* with regressor *tbr*, and *cpr* with regressor *tbr*.
	- a. What order of integration apply to the five variables?
	- b. Which indications (i) for spurious regressions and (ii) for cointegrating relationships do you see from analyses of the three equations?
	- c. For a VAR model for the vector *Y* = (*^m*, *infl*, *cpr*, *y*, *tbr*)', determine the number *p* of lags in the cointegration test.
	- d. Estimate an VAR(1) model for the vector *Y* = (*^m*, *infl*, *cpr*, *y*, *tbr*)'.
	- e. Estimate an VEC model for the vector $Y = (m, infl, cpr, y, tbr)$ ' with $p = 2$ and (i) *r* = 1 and (ii) *^r* = 2. Compare the AICs for the two VEC models and the VAR model; compare the equation for *d*_*^m* in the two VEC models.

Your Homework

2. For the VAR(2) model

*Y*_t = δ + Θ₁*Y*_{t-1} + Θ₂*Y*_{t-2} + ε_t

assuming a *k*-vector *Y*t and appropriate orders of the other vectors and matrices, derive the VEC form $\Delta Y_t = \delta + \Gamma_1 \Delta Y_{t-1} + \Pi Y_{t-1} + \varepsilon_t;$ indicate $\mathsf{\Gamma}_1$ and $\mathsf{\Pi}$ as functions of the parameters Θ_1 and Θ_2 .