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Multiple Dependent Variables
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Economic processes: Simultaneous and interrelated development of 
a multiple set of variables 

Examples:

� Households consume a set of commodities (food, durables, etc.); 
the demanded quantities depend on the prices of commodities, the 
household income, the number of persons living in the household, 
etc.; a consumption model includes a set of dependent variables 
and a common set of explanatory variables. 

� The market of a product is characterized by (a) the demanded and 
supplied quantity and (b) the price of the product; a model for the 
market consists of equations representing the development and 
interdependencies of these variables.

� An economy consists of markets for commodities, labour, finances, 
etc.; a model for a sector or the full economy contains descriptions 
of the development of the relevant variables and their interactions.



Systems of Regression 
Equations
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Economic processes encompass the simultaneous developments as 
well as interrelations of a set of dependent variables

� For modelling economic processes: system of relations, typically in 
the form of regression equations: multi-equation model

Example: Two dependent variables yt1 and yt2 are modelled as

yt1 = x‘t1β1 + εt1

yt2 = x‘t2β2 + εt2

with V{εti} = σi
2 for i = 1, 2, Cov{εt1, εt2} = σ12 ≠ 0

Typical situations:

1. The set of regressors xt1 and xt2 coincide

2. The set of regressors xt1 and xt2 differ, may overlap 

3. Regressors contain one or both dependent variables

4. Regressors contain lagged variables



Types of Multi-equation Models
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Multivariate regression or multivariate multi-equation model

� A set of regression equations, each explaining one of the 
dependent variables

� Possibly common explanatory variables 

� Seemingly unrelated regression (SUR) model: each equation is a 
valid specification of a linear regression, related to other equations 
only by the error terms

� See cases 1 and 2 of “typical situations” (slide 4) 

Simultaneous equations models

� Describe the relations within the system of economic variables 

� in form of model equations

� See cases 3 and 4 of “typical situations” (slide 4)

Error terms: dependence structure is specified by means of second 
moments or as joint probability distribution



Capital Asset Pricing Model
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Capital asset pricing (CAP) model: describes the return Ri of asset i

Ri - Rf = βi(E{Rm} – Rf) + εi

with 

� Rf: return of a risk-free asset

� Rm: return of the market’s optimal portfolio

� βi: indicates how strong fluctuations of the returns of asset i are 

determined by fluctuations of the market as a whole

� Knowledge of the return difference Ri - Rf will give information on 

the return difference Rj - Rf of asset j, at least for some assets

� Analysis of a set of assets i = 1, …, s
� The error terms εi, i = 1, …, s, represent common factors, e.g., inflation 

rate, have a common dependence structure 

� Efficient use of information: simultaneous analysis



A Model for Investment

Grunfeld investment data [Greene, (2003), Chpt.13; Grunfeld & 

Griliches (1960)]: Panel data set on gross investments Iit of firms i = 

1, ..., 6 over 20 years and related data 

� Investment decisions are assumed to be determined by

Iit = βi1 + βi2Fit + βi3Cit + εit

with 

� Fit: market value of firm i at the end of year t-1

� Cit: value of stock of plant and equipment at the end of year t-1

� Simultaneous analysis of equations for the various firms: efficient 

use of information 

� Error terms for the firms include common factors such as economic 

climate 

� Coefficients may be the same for the firms
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The Hog Market
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Model equations:

Qd = α1 + α2P + α3Y + ε1 (demand equation)

Qs = β1 + β2P + β3Z + ε2 (supply equation)

Qd = Qs (equilibrium condition)

with Qd: demanded quantity, Qs: supplied quantity, P: price, Y: 

income, and Z: cost of production, or

Q = α1 + α2P + α3Y + ε1 (demand equation)

Q = β1 + β2P + β3Z + ε2 (supply equation)

� Model describes quantity and price of the equilibrium transactions 

� Model determines simultaneously Q and P, given Y and Z

� Error terms 

� May be correlated: Cov{ε1, ε2} ≠ 0 

� Simultaneous analysis necessary for efficient use of information



Klein‘s Model I
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1. Ct = α1 + α2Pt + α3Pt-1 + α4(Wt
p+ Wt

g) + εt1 (consumption)

2. It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investment)

3. Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (wages)

4. Xt = Ct + It + Gt

5. Kt = It + Kt-1

6. Pt = Xt – Wt
p – Tt

with C (consumption), P (profits), Wp (private wages), Wg

(governmental wages), I (investment), K-1 (capital stock), X (national 

product), G (governmental demand), T (taxes) and t [time (year-

1936)] 

� Model determines simultaneously C, I, Wp, X, K, and P 

� Simultaneous analysis necessary in order to take dependence 

structure of error terms into account: efficient use of information 



Examples of Multi-equation 
Models
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Multivariate regression models

� Capital asset pricing (CAP) model: for all assets, return Ri (or risk 
premium Ri – Rf) is a function of E{Rm} – Rf; dependence structure 
of the error terms caused by common variables 

� Model for investment: firm-specific regressors, dependence 
structure of the error terms like in CAP model 

� Seemingly unrelated regression (SUR) models

Simultaneous equations models

� Hog market model: endogenous regressors, dependence structure 
of error terms

� Klein’s model I: endogenous regressors, dynamic model, 
dependence of error terms from different equations and possibly 
over time



Single- vs. Multi-equation 
Models
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Complications for estimation of parameters of multi-equation models: 

� Dependence structure of error terms

� Violation of exogeneity of regressors

Example: Hog market model, demand equation 

Q = α1 + α2P + α3Y + ε1

� Covariance matrix of ε = (ε1, ε2)’

� P is not exogenous: Cov{P,ε1} = (σ1
2 - σ12)/(β2 - α2) ≠ 0

Statistical analysis of multi-equation models requires methods 
adapted to these features
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Analysis of Multi-equation 
Models
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Issues of interest: 

� Estimation of parameters

� Interpretation of model characteristics, prediction, etc. 

Estimation procedures 

� Multivariate regression models 

� GLS , FGLS, ML

� Simultaneous equations models 

� Single equation methods: indirect least squares (ILS), two stage least 
squares (TSLS), limited information ML (LIML)

� System methods of estimation: three stage least squares (3SLS), full 
information ML (FIML)

� Dynamic models: estimation methods for vector autoregressive (VAR) 
and vector error correction (VEC) models
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Example: Income and 
Consumption
Model for income (Y) and consumption (C) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t

with (possibly correlated) white noises ε1t and ε2t

Notation: Zt = (Yt, Ct)‘, 2-vectors δ and ε, and (2x2)-matrix Θ = (θij), the 
model is

in matrix notation

Zt = δ + ΘZt-1 + εt

� Represents each component of Z as a linear combination of lagged 
variables

� Extension of the AR-model to the 2-vector Zt: vector autoregressive 
model of order 1, VAR(1) model

April 20, 2018
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The VAR(p) Model for the k-
Vector
VAR(p) model for the k-vector Yt: generalization of the AR(p) model

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

with k-vectors Yt, δ, and εt and kxk-matrices Θ1, …, Θp

� Using the lag-operator L: 

Θ(L)Yt = δ + εt

with matrix lag polynomial Θ(L) = I – Θ1L - … - ΘpLp

� Θ(L) is a kxk-matrix 

� Each matrix element of Θ(L) is a lag polynomial of order p
� Error terms εt

� have covariance matrix Σ (for all t); allows for contemporaneous 
correlation 

� are independent of Yt-j, j > 0, i.e., of the past of the components of Yt

April 20, 2018
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The VAR(p) Model, cont’d

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

� Vector of expectations of Yt: assuming stationarity

E{Yt} = δ + Θ1 E{Yt} + … + Θp E{Yt}

gives 
E{Yt} = µ = (Ik – Θ1 - … - Θp)

-1δ = Θ(1)-1δ

i.e., stationarity requires that the kxk-matrix Θ(1) is invertible

� In deviations yt = Yt – µ, the VAR(p) model is
Θ(L)yt = εt

� MA representation of the VAR(p) model, given that Θ(L) is invertible 

Yt = µ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + … 

April 20, 2018
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VAR(p) Model: Extensions

of the VAR(p) model

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

for the k-vector Yt

� VARMA(p,q) Model: Extension of the VAR(p) model by multiplying εt

(from the left) with a matrix lag polynomial MA(L) of order q
� VARX(p) model with m-vector Xt of exogenous variables, kxm-matrix Γ

Yt = Θ1Yt-1 + … + ΘpYt-p + ΓXt + εt

April 20, 2018
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Reasons for Using a VAR Model

VAR model represents a set of univariate AR(MA) models, one for each 
component

� Reformulation of simultaneous equations models as dynamic models

� To be used instead of simultaneous equations models: 
� No need to distinct a priori endogenous and exogenous variables

� No need for a priori identifying restrictions on model parameters

� Simultaneous analysis of the components: More parsimonious, fewer 
lags, simultaneous consideration of the history of all included 
variables 

� Allows for non-stationarity and cointegration

Attention: The number of parameters to be estimated increases with k
and p

Number of parameters

in Θ(L) 

April 20, 2018

p 1 2 3

k=2 4 8 12

k=4 16 32 48
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Example: Income and 
Consumption
Model for income (Yt) and consumption (Ct) 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t

with (possibly correlated) white noises ε1t and ε2t

� Matrix form of the simultaneous equations model: 

A (Yt, Ct)‘ = Γ (1, Yt-1, Ct-1)‘ + (ε1t, ε2t)’ 

with

� VAR(1) form: Zt = δ + ΘZt-1 + εt or 

April 20, 2018
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Simultaneous Equations Model 
in VAR Form
Model with m endogenous variables (and equations), K regressors

Ayt = Γzt + εt = Γ1 yt-1 + Γ2 xt + εt

with m-vectors yt and εt, K-vector zt, (mxm)-matrix A, (mxK)-matrix Γ, 

and (mxm)-matrix Σ = V{εt}; 

� zt contains lagged endogenous variables yt-1 and exogenous 

variables xt

� Rearranging gives

yt = Θ yt-1 + δt + vt

with Θ = = = = A-1 Γ1, δt = A-1 Γ2 xt, and vt = A-1 εt

� Extension of the set of variables by regressors xt: the matrix δt

becomes a vector of deterministic components (intercepts)

April 20, 2018
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VAR Model: Estimation

VAR(p) model for the k-vector Yt

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt, V{εt} = Σ

� Components of Yt: linear combinations of lagged variables

� Error terms: Possibly contemporaneously correlated, covariance 

matrix Σ, uncorrelated over time

Estimation, given the order p of the VAR model

� OLS estimates of parameters in Θ(L) are consistent 

� Estimation of Σ based on residual vectors et = (e1t, …, ekt)’: 

� GLS estimator coincides with OLS estimator: same explanatory 

variables for all equations

Cf. with estimation of SUR model

April 20, 2018
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VAR Model: Estimation, cont’d

Choice of the order p of the VAR model 

� Estimation of VAR models for various orders p

� Choice of p based on Akaike or Schwarz information criterion

April 20, 2018
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Income and Consumption: 
Estimation of VAR-System
AWM data base, 1971:1-2003:4: PCR (real private consumption), PYR

(real disposable income of households); respective annual growth 
rates of logarithms: C, Y

Fitting Zt = δ + ΘZt-1 + εt with Z = (Y, C)‘ gives

with AIC = -14.60 

VAR(2) model: AIC = -14.55 

� LR-test of H0: VAR(1) against H1: VAR(2): p-value 0.51

April 20, 2018

δ Y-1 C-1 adj.R2

Y
θij 0.001 0.815 0.106 0.82

t(θij) 0.39 11.33 1.30

C
Θij 0.003 0.085 0.796 0.78

t(θij) 2.52 1.23 10.16
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Income and Consumption: 
Other Estimation Methods
Alternative estimation methods 

� OLS equation-wise

� SUR

VAR estimation, SUR 

estimation, and OLS 

equation-wise estimation 

give very similar results

April 20, 2018

δ Y-1 C-1 adj.R2

OLS

Y
0.001 0.815 0.106 0.82

0.39 11.33 1.30

C
0.003 0.085 0.796 0.79

2.52 1.23 10.16

SUR

Y
0.001 0.815 0.106 0.82

0.39 11.47 1.31

C
0.003 0.085 0.796 0.79

2.55 1.25 10.28
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VAR Model Estimation in 
GRETL
VAR systems

Model > Time Series > Multivariate > Vector 
Autoregression

� Estimates the specified VAR system for the chosen lag order; 

calculates information criteria like AIC and BIC, F-tests for various 

zero restrictions for the equations and for the system as a whole

SUR model

Model > Simultaneous equations 

� Allows for various estimation methods, among them OLS and SUR; 

estimates the specified equations

April 20, 2018
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Impulse-response Function

MA representation of the VAR(p) model 

Yt = Θ(1)-1δ + εt + A1εt-1 + A2εt-2 + … 

� Interpretation of As: the (i,j)-element of As represents the effect of a 
one unit increase of εjt upon the i-th variable Yi,t+s in Yt+s

� Dynamic effects of a one unit increase of εjt upon the i-th component 
of Yt are corresponding to the (i,j)-th elements of Ik, A1, A2, …

� The plot of these elements over s represents the impulse-response 
function of the i-th variable in Yt+s on a unit shock to εjt

April 20, 2018
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AR(1) Process: Stationarity

AR(1) process Yt = θYt-1 + εt

� is stationary, if the root z of the characteristic polynomial

Θ(z) = 1 - θz = 0

fulfils |z| > 1, i.e., |θ| < 1; 

� Θ(z) is invertible, i.e., Θ(z)-1 can be derived such that Θ(z)-1Θ(z) = 1 

� Yt can be represented by an MA(∞) process: Yt = Θ(L)-1εt

� is non-stationary, if 

z = 1, i.e., θ = 1

i.e.,Yt ~ I(1), Yt has a stochastic trend

April 20, 2018
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VAR(1) Model, Non-stationarity, 
and Cointegration 
VAR(1) model for the k-vector Yt = (Y1t, ..., Ykt)'

Yt = δ + Θ1Yt-1 + εt

� If Θ(L) = I – Θ1L is invertible, 

Yt = Θ(1)-1δ + Θ(L)-1εt = µ + εt + A1εt-1 + A2εt-2 + …

i.e., each variable in Yt is a linear combination of white noises, is a 
stationary I(0) variable 

� If Θ(L) is not invertible, not all variables in Yt can be stationary I(0) 
variables: at least one variable must have a stochastic trend
� If all k variables have independent stochastic trends, all k variables are 

I(1) and no cointegrating relation exists; e.g., for k = 2:

i.e., θ11 = θ22 = 1, θ12 = θ21 = 0 and ∆Y1t = δ1 + ε1t, ∆Y2t = δ2 + ε2t

� The more interesting case: at least one cointegrating relation; number of 
cointegrating relations equals the rank r{Θ(1)} of matrix Θ(1)

April 20, 2018
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Example: A VAR(1) Model

VAR(1) model Yt = δ + Θ1Yt-1 + εt for k-vector Y

∆Yt = – Θ(1)Yt-1 + δ + εt

with (kxk) matrix Θ(L) = I – Θ1L and Θ(1) = Ik - Θ1

r = r{Θ(1)}: rank of Θ(1), 0 ≤ r ≤ k

1. r = 0: implies ∆Yt = δ + εt, i.e., Y is a k-dimensional random walk, 

each component is I(1), no cointegrating relationship

2. r < k: (k – r)-fold unit root, (kxr)-matrices γ and β can be found, both 

of rank r, with

Θ(1) = γβ'

the r columns of β are the cointegrating vectors of r cointegrating 

relations β'Yt (β in normalized form, i.e., the main diagonal elements 

of β being ones)

3. r = k: VAR(1) process is stationary, all components of Y are I(0)

April 20, 2018
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Cointegrating Space

Yt: k-vector with Yt ~ I(1)

Cointegrating space: 

� Among the k variables, r ≤ k-1 independent linear relations βj'Yt, j = 1, 

…, r, are possible so that βj'Yt ~ I(0)

� Individual relations can be combined with others and these are again 

I(0), i.e., not the individual cointegrating relations are identified but 

only the r-dimensional space

� Cointegrating relations should have an economic interpretation 

Cointegrating matrix β from ∆Yt = - Θ(1)Yt-1 + δ + εt = - γ β'Yt-1 + δ + εt

� The kxr matrix β = (β1, …, βr) of vectors βj, j = 1, …, r, that state the 

cointegrating relations βj'Yt ~ I(0), j = 1, …, r

� Cointegrating rank: the rank of matrix β: r{β} = r

April 20, 2018
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Granger‘s Representation 
Theorem
Granger’s Representation Theorem (Engle & Granger, 1987): If a set of 

I(1) variables is cointegrated, then an error-correction (EC) relation of 

the variables exists.

Extends to VAR models: If the I(1) variables of the k-vector Yt are 

cointegrated, then an error-correction (EC) relation of the variables 

exists.

April 20, 2018
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Granger‘s Representation 
Theorem for VAR(p) Models
VAR(p) model for the k-vector Yt with Yt ~ I(1) 

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt (A)

� Π = – Θ(1) = – (Ik – Θ1 – … – Θp): „long-run matrix“, kxk, determines the 
long-run dynamics of Yt

� Γ1, …, Γp-1 (kxk)-matrices, functions of Θ1,…, Θp

� ΠYt-1 is stationary: ∆Yt and εt are I(0)

� Three cases

1. r{Π} = r with 0 < r < k: there exist r stationary linear combinations of Yt, 
i.e., r cointegrating relations

2. r{Π} = 0: Π = 0, no cointegrating relation, equation (A) is a VAR(p) model 
for stationary variables ∆Yt

3. r{Π} = k: all variables in Yt are stationary, Π = - Θ(1) is invertible 

April 20, 2018
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Vector Error-Correction Form

VAR(p) model for the k-vector Yt with Yt ~ I(1) 

Yt = δ + Θ1Yt-1 + … + ΘpYt-p + εt

transformed into 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

with r{Π} = r and Π = γβ' gives 

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

� r cointegrating relations β'Yt-1

� Adaptation parameters γ measure the portion or speed of adaptation 

of Yt in compensation of the “equilibrium errors” Zt-1 = β'Yt-1

� Equation (B) is called the vector error-correction (VEC) form of the 

VAR(p) model

April 20, 2018
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Example: Bivariate VAR(1) 
Model
VAR(1) model for the 2-vector Yt = (Y1t, Y2t)'

Yt = ΘYt-1 + εt; and ∆Yt = (I2 - Θ)Yt-1 + εt = ΠYt-1 + εt

� Long-run matrix

� Π = 0, if θ11 = θ22 = 1, θ12 = θ21 = 0, i.e., Y1t, Y2t are random walks

� r{Π} < 2, if (θ11 – 1)(θ22 – 1) – θ12 θ21 = 0; cointegrating vector: β' = 
(θ11 – 1, θ12), long-run matrix

� The error-correction form is 

April 20, 2018
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Example: Bivariate VAR Model, 
cont’d

� The equilibrium error 

Zt = (Θ11 – 1)Y1t + Θ12Y2t

is stationary:

∆Zt = (Θ11 – 1, Θ12) ∆Yt

= (Θ11 – 1, Θ12)[1,Θ21/(Θ11 – 1)]’ Zt-1 + (Θ11 – 1, Θ12) εt

= (Θ11 – 1 + Θ22 – 1) Zt-1 + (Θ11 – 1, Θ12) εt

or

Zt = (Θ11 + Θ22 – 1)Zt-1 + vt

with vt = (Θ11 – 1) ε1t + Θ12 ε2t; i.e., Zt is I(0)

April 20, 2018
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Deterministic Components

VEC(p) model for the k-vector Yt

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt (B)

� Expectation gives

(Ik – Γ1 – … – Γp-1)E{∆Yt} = Γ E{∆Yt} = δ + γ E{β'Yt-1}

The deterministic component (intercept) δ:

1. No deterministic trend in any component of Yt, i.e., E{∆Yt} = 0: given 

that Γ = Ik – Γ1 – … – Γp-1 has full rank: 

� Γ E{∆Yt} = δ + γE{β'Yt-1} = 0 with equilibrium error β'Yt-1 = Zt-1

� E{Zt-1} corresponds to the intercepts of the cointegrating relations; with r-
dimensional vector E{Zt-1} = α (and hence δ = - γ E{Zt-1} = - γα)

∆Yt = Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt (C)

� Intercepts only in the cointegrating relations

� „Restricted constant“ case

April 20, 2018
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Deterministic Component, cont’d

2. Variables with deterministic trend: addition of a k-vector λ with 

identical components to (C)

∆Yt = λ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γ(- α + β'Yt-1) + εt

� Long-run equilibrium: steady state growth path with growth rate E{∆Yt} = 

Γ-1λ

� Deterministic trends are assumed to cancel out in the long run: no 

deterministic trend in the error-correction term; cf. (B)

� Addition of k-vector λ can be repeated: up to k-r separate deterministic 

trends can cancel out in the error-correction term 

� The general notation is equation (B) with δ containing r intercepts of the 

long-run relations and k-r deterministic trends in the variables of Yt

� „Unrestricted constant“ case

3. „No constant“ case: λ = α = 0
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Choice of Constants

Choice between the three cases: visual inspection, economic reasoning 

Example 1: Income and consumption

� Both processes are I(1)

� Both appear to follow a deterministic linear trend

� Equilibrium relation may show an intercept

� Unrestricted constant case

Example 2: Interest rates

� Generally not trended

� Difference between two rates might be stationary around a non-zero 

mean due to, e.g., rate-specific risk premia

� Restricted constant case 
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The Five Cases

Based on empirical observation and economic reasoning, model 

specification has to choose between:

1) Unrestricted constant: variables show deterministic linear trends

2) Restricted constant: variables not trended but mean distance 

between them not zero; intercept in the error-correction term

3) No constant

Generalization: deterministic component contains intercept and trend

4) Constant + restricted trend: cointegrating relations include a trend 

but the first differences of the variables in question do not

5) Constant + unrestricted trend: trend in both the cointegrating 

relations and the first differences, corresponding to a quadratic trend 

in the variables (in levels)
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Treatment of VEC Models

The following steps

1. Test of the k variables in Yt for stationarity

2. Determination of the number p of lags

3. Specification of 

� deterministic trends of the variables in Yt

� intercept in the cointegrating relations

4. Determination of the number r of cointegrating relations

5. Estimation of the coefficients β of the cointegrating relations and the 

adjustment coefficients γ

6. Estimation of the VEC model
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Choice of the Cointegrating 
Rank 
The k-vector Yt obeys Yt ~ I(1) 

Yt follows the process

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + γβ'Yt-1 + εt

Estimation procedure needs as input the cointegrating rank r , i.e., the 

rank r = r{γβ‘}

Testing for cointegration

� Engle-Granger approach

� Johansen‘s R3 method
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The Engle-Granger Approach

Two non-stationary processes Yt ~ I(1), Xt ~ I(1); the model is 

Yt = α + βXt + εt

� Step 1: OLS-fitting 

� Test for cointegration based on residuals, e.g., DF test with special 

critical values; H0: residuals are I(1), no cointegration 

� If H0 is rejected: 

� OLS fitting in Step 1 gives consistent estimate of the cointegrating vector

� Step 2: OLS estimation of the EC model based on the cointegrating 

vector from Step 1

Can be extended to k-vector Yt = (Y1t, ..., Ykt)': 

� Step 1 applied to Y1t = α + β1Y2t + ... + βkYkt + εt

� DF test of H0: residuals are I(1), no cointegration 
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Engle-Granger Cointegration 
Test: Problems 
Residual based cointegration tests can be misleading

� Test results depend on specification 

� Which variables are included

� Normalization of the cointegrating vector, i.e., which variable on left hand 

side

� Test may be inappropriate due to wrong specification of cointegrating 

relation

� Power of the test may suffer from inefficient use of information 

(dynamic interactions not taken into account)

� Test gives no information about the rank r
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Johansen‘s R3 Method

Reduced rank regression (R3) method, also called Johansen's test: a 

method for specifying the cointegrating rank r

� The test is based on the k eigenvalues λi (λ1> λ2>…> λk) of

Y1'Y1 – Y1'∆Y(∆Y'∆Y)-1∆Y'Y1

with ∆Y: (Txk) matrix of differences ∆Yt, Y1: (Txk) matrix of Yt-1

� Has the same rank as the kxk long run matrix γβ' = Π

� Eigenvalues λi fulfil 0 ≤ λi < 1 for all i

� If r{γβ'} = r, the k-r smallest eigenvalues obey 

log(1 – λj) = λj = 0,  j = r+1, …, k

� Johansen’s iterative test procedures, based on estimates Îj of λj

� Trace test

� Maximum eigenvalue test or max test
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Max Test

LR test, based on the assumption of normally distributed errors

� Counts the number of non-zero eigenvalues 

� For r0 = 0, 1, 2, …, the null-hypothesis H0: λr0 = 0 is tested; stops 

when H0 is not rejected for the first time, number of cointegrating 

relations is the number of rejections

� For r0 = 0, 1, …: 

� Test of H0: r ≤ r0 against H1: r = r0+1 

� Test statistic

λmax(r0) = - T log(1 - Îr0+1)

� Stops when H0 is not rejected for the first time

� Critical values from simulations

� Rejection of H0: r = 0 in favour of H1: r = 1: Test of no cointegrating 

relation 
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Trace Test

LR tests, based on the assumption of normally distributed errors

� For r0 = 1, 2, …, the null-hypothesis is tested that the sum of the 

eigenvalues λj, j≥r0, is zero; stops when H0 is not rejected for the first 

time, number of cointegrating relations is the number of rejections

� For r0 = 0, 1, …: 

� Test of H0: r ≤ r0 against H1: r > r0 (r0 < r ≤ k)

λtrace(r0) = - T Σk
j=r0+1log(1- Îj) 

� Tests whether the k-r0 smallest λj are zero

� H0 is rejected for large values of λtrace(r0)

� Stops when H0 is not rejected for the first time

� Critical values from simulations
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Trace and Max Test: Critical 
Limits
Critical limits are shown in Verbeek’s Table 9.9 for both tests

� Depend on presence of trends and intercepts

� Case 1: no deterministic trends, intercepts in cointegrating relations 

(“restricted constant”)

� Case 2: k unrestricted intercepts in the VAR model, i.e., k - r deterministic 

trends, r intercepts in cointegrating relations (“unrestricted constant”)

� Depend on k – r0
� Small sample correction, e.g., factor (T-pk)/T for the test statistic: 

avoids too large values of r
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Example: Purchasing Power 
Parity
Verbeek’s dataset PPP: Price indices and exchange rates for France 

and Italy, T = 186 (1:1981-6:1996)

� Variables: LNIT (log price index Italy), LNFR (log price index 

France), LNX (log exchange rate France/Italy) 

Purchasing power parity (PPP): exchange rate between the currencies 

(Franc, Lira) equals the ratio of price levels of the countries 

LNXt = LNPt (A)

� Relative PPP: equality fulfilled only in the long run 

LNXt = α + β LNPt (B)

with LNPt = LNITt – LNFRt, i.e., the log of the price index ratio 

France/Italy

� Generalization:

LNXt = α + β1 LNITt – β2 LNFRt (C)

April 20, 2018



PPP: Cointegrating Rank r

As discussed by Verbeek: Johansen test for k = 3 variables, based on 
a VEC(3) model; cf. equation (C)

H0 not rejected that smallest eigenvalue equals zero: series are non-

stationary

Both the trace and the max test suggest r = 2, two cointegrating

relations are identified among the variables LNIT, LNFR, and LNX 
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r0
eigen-

value
H0 H1 λtr(r0) p-value H1 λmax(r0) p-value

0 0.301 r = 0 r ≥ 1 93.9 0.0000 r = 1 65.5 0.0000

1 0.113 r  ≤ 1 r ≥ 2 28.4 0.0023 r = 2 22.0 0.0035

2 0.034 r  ≤ 2 r = 3 6.4 0.169 r = 3 6.4 0.1690
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Identification of Cointegrating 
Vectors
After determining the number r, identification of the cointegrating vectors 

of

∆Yt = δ + Γ1∆Yt-1 + … + Γp-1∆Yt-p+1 + ΠYt-1 + εt

requires finding (kxr)-matrices γ and β with Π = γβ' 

� β: matrix of cointegrating vectors 

� γ: matrix of adjustment coefficients

� Identification problem: linear combinations of cointegrating vectors 

are also cointegrating vectors 

� Unique solutions for γ and β require restrictions 

� Minimum number of restrictions which guarantee identification is r2

� Normalization

� Phillips normalization 

� Manual normalization 

April 20, 2018



Hackl, Econometrics 2, Lecture 5 54

Phillips Normalization

Cointegrating vectors 

β' = (β1', β2') 

β1: (rxr)-matrix with rank r, β2: [(k-r)xr]-matrix

� Normalization consists in transforming the (kxr)-matrix β into

with matrix B of unrestricted coefficients

� The r cointegrating relations express the first r variables as functions 

of the remaining k - r variables 

� Fulfils the condition that at least r2 restrictions are needed to 

guarantee identification

� Resulting equilibrium relations may be difficult to interpret 

� Alternative: manual normalization 
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Example: Money Demand

Verbeek’s data set “money”: US data 1:54 – 4:1994 (T=164) 

� m: log of real M1 money stock

� infl: quarterly inflation rate (change in log prices, % per year)

� cpr: commercial paper rate (% per year)

� y: log real GDP (billions of 1987 dollars)

� tbr: treasury bill rate

All variables are I(1)
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Money Demand: Cointegrating 
Relations
Intuitive choice of long-run behaviour relations

� Money demand 

mt = α1 + β14 yt + β15 tbrt + ε1t

Expected: β14 ≈ 1, β15 < 0

� Fisher equation (stationary real interest rate)

inflt = α2 + β25 tbrt + ε2t

Expected: β25 ≈ 1

� Stationary risk premium 

cprt = α3 + β35 tbrt + ε3t

Stationarity of difference between cpr and tbr; expected: β35 ≈ 1
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Money Demand: Cointegrating 
Vectors
ML estimates, lag order p = 6, cointegration rank r = 2, restricted 

constant

� Cointegrating vectors β1 and β2 and standard errors (s.e.), Phillips 
normalization

April 20, 2018

m infl cpr y tbr const

β1
1.00 0.00 0.61 -0.35 -0.60 -4.27

(s.e.) (0.00) (0.00) (0.12) (0.12) (0.12) (0.91)

β2
0.00 1.00 -26.95 -3.28 -27.44 39.25

(s.e.) (0.00) (0.00) (4.66) (4.61) (4.80) (35.5)
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Estimation of VEC Models

Estimation procedure consists of the following steps

1. Test of the k variables in Yt for stationarity: ADF test; VEC models 

need I(1) variables

2. Determination of the number p of lags in the cointegration test (order 

of VAR): AIC or BIC

3. Specification of

� deterministic trends of the variables in Yt

� intercept in the cointegrating relation

4. Cointegration test: Determination of the number r of cointegrating

relations: trace and/or max test

5. Estimation of the coefficients β of the cointegrating relations and the 

adjustment coefficients γ; normalization

6. Estimation of the VEC model
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Example: Income and 
Consumption
Model: 

Yt = δ1 + θ11Yt-1 + θ12Ct-1 + ε1t

Ct = δ2 + θ21Ct-1 + θ22Yt-1 + ε2t

With Z = (Y, C)', 2-vectors δ and ε, and (2x2)-matrix Θ, the VAR(1) 
model is

Zt = δ + ΘZt-1 + εt

Represents each component of Z as a linear combination of lagged 
variables
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Income and Consumption: 
VEC(1) Model
AWM data base: PCR (real private consumption), PYR (real disposable 

income of households); logarithms: C, Y

1. Check whether C and Y are non-stationary, results in 

C ~ I(1), Y ~ I(1)

2. Lag order with minimal AIC: p = 4

3. Restricted constant: C and Y without deterministic trend, 

cointegrating relation with intercept

4. Johansen test for cointegration: 

r = 1 (p < 0.05) 

5. The cointegrating relationship is

C = 8.55 – 1.61Y 

with t(Y) = 18.2
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Income and Consumption: 
VEC(1) Model, cont’d

6. VEC(1) model (same specification, p=4, r=1) with Z = (Y, C)'

∆Zt = - γ(β'Zt-1 + δ) + Γ∆Zt-1 + εt

The model explains growth rates of PCR and PYR; AIC = -15.41 is 

smaller than that of the VAR(1)-Modell (AIC = -14.45)
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coint ∆∆∆∆Y-1 ∆∆∆∆C-1 adj.R2 AIC

∆Y
γij -0.029 0.167 0.059 0.14 -7.42

t(γij) 5.02 1.59 0.49

∆C
γij -0.047 0.226 -0.148 0.18 -7.59

t(γij) 2.36 2.34 1.35
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VEC Models in GRETL

Model > Time Series > Multivariate > VAR lag select ion

� Calculates information criteria like AIC and BIC for VARs of order 1 to 

the chosen maximum order of the VAR; helps to choose the order p
Model > Time Series > Multivariate > Cointegration 

test (Johansen), Model > … > Cointegration test 
(Engle-Granger) 

� Calculate eigenvalues, test statistics for the trace and max tests, and 

estimates of the matrices γ, β, and Π = γβ‘; helps to choose r
Model > Time Series > Multivariate > VECM

� Estimates the specified VEC model for given p and r: (1) cointegrating 

vectors and standard errors, (2) adjustment vectors, (3) coefficients 

and various criteria for each of the equations of the VEC model
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Your Homework

1. Verbeek’s data set “money”: US data 1:54 – 4:1994 (T=164) with m: 

log of real M1 money stock, infl: quarterly inflation rate (change in log 

prices, % per year), cpr: commercial paper rate (% per year), y: log 

real GDP (billions of 1987 dollars), and tbr: treasury bill rate. Answer 

the following questions for the three equations for m with regressors y
and tbr, infl with regressor tbr, and cpr with regressor tbr. 
a. What order of integration apply to the five variables?

b. Which indications (i) for spurious regressions and (ii) for cointegrating 

relationships do you see from analyses of the three equations? 

c. For a VAR model for the vector Y = (m, infl, cpr, y, tbr)’, determine the 

number p of lags in the cointegration test.

d. Estimate an VAR(1) model for the vector Y = (m, infl, cpr, y, tbr)’. 

e. Estimate an VEC model for the vector Y = (m, infl, cpr, y, tbr)’ with p = 2 

and (i) r = 1 and (ii) r = 2. Compare the AICs for the two VEC models and 

the VAR model; compare the equation for d_m in the two VEC models. 
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Your Homework

2. For the VAR(2) model 

Yt = δ + Θ1Yt-1 + Θ2Yt-2 + εt

assuming a k-vector Yt and appropriate orders of the other vectors 

and matrices, derive the VEC form ∆Yt = δ + Γ1 ∆Yt-1 + ΠYt-1 + εt; 

indicate Γ1 and Π as functions of the parameters Θ1 and Θ2.
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