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Example: Individual Wages

Verbeek’s data set “males” 

� Sample of 

� 545 full-time working males, end of schooling in 1980

� from each person: yearly data collection from 1980 till 1987

� Variables

� wage: log of hourly wage (in USD)

� school: years of schooling

� exper: age – 6 – school

� dummies for union membership, married,  black, Hispanic, public 

sector

� others
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Types of Data

Populations of interest: individuals, households, companies, 

countries

Types of observations

� Cross-sectional data: Observations of all units of a population, or of a 

(representative) subset, at one specific point in time; e.g., wages in 1980

� Time series data: Series of observations on units of the population over 

a period of time; e.g., wages of a worker in 1980 through 1987

� Panel data (longitudinal data): Repeated observations of (the same) 

population units collected over a number of periods; data set with both a 

cross-sectional and a time series aspect; multi-dimensional data

Cross-sectional and time series data are one-dimensional, special 

cases of panel data

Pooling independent cross-sections: (only) similar to panel data
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Data in GRETL

Three types of data structure

� Cross-sectional data: Matrix of observations, variables over the columns, 

each row corresponding to the set of variables observed for one unit

� Time series data: Matrix of observations, each column a time series, rows 

correspond to observation periods (annual, quarterly, etc.)

� Panel data: Matrix of observations with special data structure

� Stacked time series: each column one variable, with stacked time 

series corresponding to cross-sectional units

� Stacked cross sections: each column one variable, with stacked cross 

sections corresponding to observation periods

� Use of index variables: index variables defined for units and 

observation periods
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Stacked Data: Examples

Index variables 

Stacked time series

Stacked cross sections
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Tento 
obrázek nyní 
nelze  
zobrazit.

unit Year x1 x2

1:1 1 2009 1.197 252

1:2 1 2010 1.369 269

1:3 1 2011 1.675 275

... ... ... ... ...

2:1 2 2009 1.220 198

2:2 2 2010 1.397 212

2:3 2 2011 1.569 275

... ... ... ... ...

unit year x1 x2

1:1 1 2009 1.197 252

2:1 2 2009 1.220 198

3:1 3 2009 1.173 167

... ... ... ... ...

1:2 1 2010 1.369 269

2:2 2 2010 1.397 212

3:2 3 2010 1.358 201

... ... ... ... ...



Panel Data Files

� Files with one record per observation

� For each cross-sectional unit (individual, company, country, etc.) T

records

� Stacked time series or stacked cross sections

� Allows easy differencing

� Time-constant variable: on each record the same value

� Files with one record per unit

� Each record contains all observations for all T periods

� Time-constant variables are stored only once
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Panel Data Files: Examples

Verbeek’s data set “males” 

Stacked time series

Stacked time series

One record 

per unit

Stacked cross sections
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Tento 
obrázek nyní 
nelze  
zobrazit.

unit Year wage school black …

1 1980 1.197 14 0 …

… … … … … …

1 1987 1.669 14 0 …

2 1980 1.676 13 0 …

... ... ... ... … …unit wage80 ... wage87 school black …

1 1.197 … 1.669 14 0 …

2 1.676 … 1.820 13 0 …

3 1.516 --- 2.873 12 1 …

... ... ... … … … …

unit Year wage school black …

1 1980 1.197 14 0 …

… … … … … …

545 1980 1.131 9 0 …

1 1981 1.676 14 0 …

... ... ... ... … …

545 1981 1.312 9 0 …

… … … … … …



Panel Data

Typically data at micro-economic level (individuals, households, 

firms), but also at macro-economic level (e.g., countries)

Notation:

� N: Number of cross-sectional units 

� T: Number of time periods

Types of panel data:

� Large T, small N: “long and narrow” 

� Small T, large N: “short and wide”

� Large T, large N: “long and wide” 

Example: Data set “males”: short (T = 8) and wide (N = 545) panel 

(N » T) 

April 27, 2018 Hackl, Econometrics 2, Lecture 6 9



Panel Data: Some Examples

Verbeek’s data set “males”: Wages  and related variables

� short and wide panel (N = 545, T = 8) 

� rich in information (~40 variables)

Grunfeld investment data: Investments in plant and equipment by

� N = 10 firms 

� for each of T = 20 yearly observations for 1935-1954

Penn World Table: Purchasing power parity and national income 

accounts for

� N = 189 countries/territories

� for some or all of the years 1950-2011 (T ≤ 62)

April 27, 2018 Hackl, Econometrics 2, Lecture 6 10



Use of Panel Data

Econometric models for describing the behaviour of cross-sectional 

units over time 

Panel data models 

� Allow controlling individual differences, comparing behaviour, analysing 

dynamic adjustment, measuring effects of policy changes 

� More realistic models than cross-sectional and time-series models

� Allow more detailed or sophisticated research questions   

Methodological implications

� Dependence of sample units in time-dimension 

� Some variables might be time-constant (e.g., variable school in “males”, 

population size in the Penn World Table dataset)

� Missing values
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Example: Wages and 
Experience
Verbeek’s data set “males” 

� Independent random samples for 1980 and 1987

� N80 = N87 = 100

� Variables: wage (log of hourly wage), exper (age – 6 – years of 

schooling)
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1980 1987

Full set sample Full set sample

wage mean 1.39 1.37 1.87 1.89

st.dev. 0.558 0.598 0.467 0.475

exper mean 3.01 2.96 10.02 9.99

st.dev. 1.65 1.29 1.65 1.85

exp(wage) 4.01 3.94 6.49 6.62



Pooling of Samples

Independent random samples: 

� Pooling gives an independently pooled cross section

� OLS estimates with higher precision, tests with higher power

� Requires 

� the same distributional properties of sampled variables

� the same relation between variables in the samples
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Example: Wage and 
Experience
Some wage equations (coefficients in bold letters: p<0.05):

� 1980 data 

wage = 1.315 + 0.026*exper, R2 = 0.006

� 1987 data 

wage = 2.441 – 0.057*exper, R2 = 0.041

� pooled 1980 and 1987 data 

wage = 1.289 + 0.052*exper, R2 = 0.128

� pooled data with dummy d87

wage = 1.441 – 0.016*exper + 0.583*d87, R
2 = 0.177

� pooled sample with dummy d87 and interaction

wage = 1.315 + 0. 026*exper + 1.126*d87 – 0.083*d87*exper

d87: dummy for observations from 1987
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Wage Equations

Wage equations, dependent variable: wage (log of hourly wage)

Coefficients in bold letters: p<0.05
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1980 1987 80+87 80+87 80+87

Interc. coeff 1.315 2.441 1.289 1.441 1.315

s.e. 0.050 0.120 0.031 0.036 0.045

exper coeff 0.026 -0.057 0.052 -0.016 0.026

s.e. 0.014 0.012 0.004 0.009 0.013

d87 coeff 0.583 1.126

s.e. 0.073 0.141

d87*exper coeff -0.083

s.e. 0.019

R2 (%) 0.6 4.1 12.8 17.7 19.2



Pooled Independent Cross-
sectional Data
Pooling of two independent cross-sectional samples

yit = β1 + β2xit + εit for i = 1,...,N (units), t = 1,2 (time points)

� Implicit assumption: identical β1, β2 for i = 1,...,N, t = 1,2

� OLS-estimation: requires 

� homoskedastic and uncorrelated εit

E{εit} = 0, Var{εit} = σ2 for i = 1,...,N, t = 1,2

Cov{εi1, εj2} = 0 for all i, j with i ≠ j

� exogenous xit

For the analysis of panel data, often a more realistic model is 

needed, taking into consideration

� changing coefficients

� correlated error terms

� endogenous regressors
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Model with Time Dummy

Model for pooled independent cross-sectional data in 

presence of changes: 

� Dummy variable d: indicator for t = 2 (dt=0 for t=1, dt=1 for t=2)

yit = β1 + β2 xit + β3 dt + β4 dt*xit + εit

allows changes (from t =1 to t = 2)

� of intercept from β1 to β1 + β3

� of coefficient of x from β2 to β2 + β4

� Tests for constancy of (1) the intercept or (2) the intercept and slope 

over time (cf. Chow test) 

H0
(1): β3 = 0 or H0

(2): β3 = β4 = 0

� Similarly testing for constancy of σ2 over time 

Generalization to more than two time periods 
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Example: Wages and 
Experience
Wage equation 

wageit = β1 + β2 experit + β3 dt + εit

Wages might depend also on other variables; omitted variables are 

covered by the error term

� black: time-constant variable, omission may cause autocorrelation 

of error terms; similar other time-constant factors like hisp

� mar (married): (not for all) units time-constant variable, similar 

rural, union, ne (living in north east), etc.; omission may cause 

autocorrelation

� school: omission may cause endogeneity of exper; Corr(school, 

exper) = -0.34

� Unobserved and unobservable variables can have similar effects, 

e.g., parental background, attitudes, etc.

April 27, 2018 Hackl, Econometrics 2, Lecture 6 19



Problems with Sample Pooling 

The analysis of the data (yit, xit), i = 1,...,N, t = 1,2, by OLS 

estimation of the parameters of model

yit = β1 + β2 xit + εit

(or extensions based on a year dummy for t=2) may not fulfil 

usual requirements 

� The independence assumption across time may be unrealistic 

� Main reason: effects of non-measured and non-measurable 

variables are only covered by the error terms

� Exogeneity of regressors may be unrealistic 

Consequences: OLS-estimates

� biased and inconsistent

� not efficient 

Panel data models allow more adequate analyses 
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Models for Panel Data

Model for y, based on panel data from N cross-sectional units and T

periods

yit = β0 + xit'β1 + εit

i = 1, ..., N: sample unit 

t = 1, ..., T: time period of sample

xit and β1: K-vectors

� β0 and β1: represent intercept and K regression coefficients; are 

assumed to be identical for all units and all time periods

� εit: represents unobserved factors that may affect yit

� Assumption that εit are uncorrelated over time not realistic; refer to 

the same unit or individual

� Standard errors of OLS estimates misleading, OLS estimation not 

efficient relative to estimators that exploit the dependence structure 

of εit over time
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Composite Errors

Error εit of the model yit = β0 + xit'β1 + εit is assumed to be a 

composite error: 

εit = αi + uit

i.e., the sum of the error terms

� uit ~ IID(0, σu
2); homoskedastic, uncorrelated over time

� αi: represents all unit-specific, time-constant factors

� εit and xit are assumed to be uncorrelated, i.e., xit is assumed to 

be exogenous; this assumption may berelaxed

The error terms are specific for the model type which can be

� random effects model

� fixed effects model
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Random Effects Model

Starting point is the general model

yit = β0 + xit'β1 + εit

with composite error εit = αi + uit

� Specification for the error terms:

� uit ~ IID(0, σu
2); homoskedastic, uncorrelated over time

� αi ~ IID(0, σa
2); represents all unit-specific, time-constant factors; 

correlation of error terms over time only via the αi

� αi and uit are assumed to be mutually independent; uit is assumed to 

be independent of xjt; αi and xit may be correlated

� Random effects (RE) model

yit = β0 + xit'β1 + αi + uit

� Unbiased and consistent (N → ∞) estimation of β0 and β1

� Efficient estimation of β0 and β1: takes error covariance structure 

into account; GLS estimation
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Fixed Effects Model

Starting point is the general model

yit = β0 + xit'β1 + εit

with composite error εit = αi + uit

� Specification for the error terms: 

� αi fixed, unit-specific, time-constant factors, also called unobserved 

(individual) heterogeneity 

� uit ~ IID(0, σu
2); homoskedastic, uncorrelated over time; represents 

unobserved factors that change over time, also called idiosyncratic or 

time-varying error

� Fixed effects (FE) model

yit = Σj αi dij + xit'β1 + uit

dij: dummy variable for unit i: dij = 1 if i = j, otherwise dij = 0 

� Overall intercept β0 omitted; unit-specific intercepts αi
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Examples for Fixed and 
Random Effects
Grunfeld investment data: Investment model

Iit = αi + βi1Fit + βi2Cit + uit

with Fit: market value, Cit: value of stock of plant and equipment, both of 

firm i at the end of year t-1

� N = 10 firms, T = 20 yearly observations 

� Fixed effects αi allow for firm-specific, time-constant factors

Wage equation

wageit = β1 + β2 experit + β3 exper2it + β4 schoolit + β5 unionit

+ β6 marit + β7 blackit + β8 ruralit + αi + uit

with composite error εit = αi + uit

� αi: unit-specific parameter for each of 545 units

� Time-constant factors αi: stochastic variables with identical distribution

� Regressors are uncorrelated with uit
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Fixed Effects (FE) Model

Model for y, based on panel data for T periods and N sample units

yit = αi + xit'β + uit , uit ~ IID(0, σu
2)

i = 1, ..., N: sample unit 

t = 1, ..., T: time period of sample

� αi: fixed parameter, represents all unit-specific, time-constant 

factors, unobserved (individual) heterogeneity

� xit: K-vector, all K components are assumed to be independent of 

all uit; strictly exogenous 

Regression model with dummies dij = 1 for i = j and 0 otherwise:

yit = Σj αi dij + xit'β + uit

� Number of coefficients (α1,..., αN and β): N + K

� Main interest: estimators for β
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Estimation of FE Model 
Parameters
FE model with dummy dij = 1 for i = j and 0 otherwise:

yit = Σj αi dij + xit'β + uit

Number of coefficients: N + K

Various  estimation procedures

� Least squares dummy variable (LSDV) estimator

� Within or fixed effects estimator

� First-difference estimator 

A special case

� Differences-in-differences (DD or DID or D-in-D) estimator
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Least Squares Dummy Variable 
(LSDV) Estimator
Estimation procedure for N + K parameters β and αi of the FE model

yit = Σj αi dij + xit'β + uit

OLS estimation of α1,..., αN and β

� NT observations for estimating N + K coefficients

� Numerically costly, not attractive

� Estimates for αi usually not of interest

Fixed effects and first-difference estimators are more attractive
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Example: Data Set “males”

Verbeek’s data set “males”: Panel data set 

� Number of cross-sectional units N = 545

� Number of time periods T = 8

Number of parameters in a FE model: 

� αi, i = 1, ..., 545: unit-specific fixed parameters 

� βi, i = 1, ..., K: coefficients of regressors

For the model 

wageit = β1 + β2 experit + β3 exper2it + β4 schoolit + β5 unionit

+ β6 marit + β7 blackit + β8 ruralit + εit

553 coefficients need to be estimated on the basis of 4360 

observations
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Fixed Effects Estimation

“Within transformation”: transforms yit into time-demeaned ÿit by 

subtracting the average ӯi = (Σt yit )/T: 

ÿit = yit - ӯi

analogously ẍit and üit, for i = 1,...,N, t = 1, ..., T

Substracting from yit = αi + xit’β + uit the model in averages,

ӯi = αi + ẋi'β + ūi

with averages ẋi and ūi gives the model in time-demeaned variables

ÿit = ẍit'β + üit

� Pooled OLS estimator bFE for β

� bFE: “fixed effects estimator”, also called “within estimator”

� Uses time variation in y and x within each cross-sectional unit; 

explains deviations of yit from ӯi (not of ӯi from ӯj!)

GRETL: Model > Panel > Fixed or random effects
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The Fixed Effects Estimator

FE model 

yit = αi + xit'β + uit , uit ~ IID(0, σu
2)

xit are assumed to be independent of all uit

Estimation of β from the model in time-demeaned variables

ÿit = ẍit'β + üit

gives 

bFE = (Σj Σt ẍit ẍit')
-1Σj Σt ẍit ÿit

� Time-demeaning differences away time-constant factors αi

� Under the assumption that xit are independent of all uit, i.e., for all i

and t: bFE is unbiased and consistent

� bFE coincides with LSDV estimator
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Wage Equations

Wage equations, dependent variable: wage (log of hourly wage)
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Pooled

80+87

FE

80+87

FE

80+87

FE

80+87

FE

80...87

Interc. coeff 1.289 1.285 1.432 1.307 1.237

s.e. 0.031 0.031 0.036 0.045 0.016

exper coeff 0.052 0.053 -0.013 0.029 0.063

s.e. 0.004 0.004 0.009 0.013 0.002

d87 coeff 0.564 1.107

s.e. 0.073 0.141

d87*exper coeff -0.083

s.e. 0.019

adjR2 (%) 12.8 13.7 18.1 19.5 55.6



Properties of Fixed Effects 
Estimator
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bFE = (ΣiΣt ẍit ẍit')
-1 ΣiΣt ẍit ÿit

� Unbiased if all xit are independent of all uit

� Normally distributed if normality of uit is assumed

� Consistent (for N → ∞) if xit are strictly exogenous, i.e., E{xit uis} = 0 
for all s, t

� Asymptotically normally distributed 

� Covariance matrix  

V{bFE} = σu
2(ΣiΣt ẍit ẍit')

-1

� Estimated covariance matrix: substitution of σu
2 by 

su
2 = (ΣiΣt ῦitῦit)/[N(T-1)]

with the residuals ῦit = ÿit - ẍit'bFE

� Attention! The standard OLS estimate of the covariance matrix 
underestimates the true values



Estimator for αi

Time-constant factors αi, i = 1, ..., N

Estimates based on the fixed effects estimator bFE

ai = ӯi - ẋi'bFE

with averages over time ӯi and ẋi for the i-th unit

� Consistent (for T → ∞) if xit are strictly exogenous 

� Potentially interesting aspects of estimates ai

� Distribution of the ai , i = 1, ..., N

� Value of ai for unit i of special interest
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Wage Equations, 1980-1987

Dependent variable: wage (log of hourly wage)
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F.E. OLS

Intercept 1.072 1.177

exper 0.118*** 0.115***

exper2 -0.004*** -0.006***

mar 0.047*** 0.186***

rural 0.051* -0.181***

adjR2 (%) 56.33 9.30
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The First-Difference Estimator
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Elimination of time-constant factors αi by differencing 

∆yit = yit – yi,t-1 = ∆xit'β + ∆uit

∆xit and ∆uit analogously defined to ∆yit = yit – yi,t-1

First-difference estimator: OLS estimation  

bFD = (ΣiΣt ∆xit ∆xit')
-1 ΣiΣt ∆xit ∆yit

Properties

� Consistent (for N → ∞) under slightly weaker conditions than bFE

� Slightly less efficient than bFE due to serial correlations of the ∆uit

� For T = 2, bFD and bFE coincide 



Wage Difference and Ethnicity

Effect of ethnicity

� wage (log of hourly wage) : from 1.419 (1980) to 1.892 (1987)

� i.e., increase of hourly wage from USD 4.13 (1980) to 6.63 (1987), 

i.e., 60.5% 

Does the wage increase depend on ethnicity? 

� Dummy blackit = 1 if i-th person is afro-american, blackit = 0 

otherwise; 63 afroamericans

� Model for wage: 

wageit = µt + αi + uit, i =1,...,N, t = 1980, 1987

� αi: time-constant factors, e.g., schooling, rural, industry, etc.

� Model for differences with µ0 = µ1987 – µ1980

∆wageit = µ0 + δ blackit + ∆uit
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Wage Difference, cont’d

Increase of wage (log of hourly wage)

∆wageit = µ0 + δ blackit + ∆uit

OLS-estimation gives (N = 545, 63 afro-americans)

Increase in wage (log of hourly wage) and in hourly wages
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µ0 δ adj R2

Estimate 0.491 -0.154 0.47

Std.err. 0.027 0.081

µ0 µ0+ δ all

black = 0 black = 1

Increase in wage (average) 0.491 0.337 0.473

Ratio of hourly wages 1.634 1.401 1.605

Increase of hourly wages (%) 63.4 40.1 60.5



Differences-in-Differences 
Estimator
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Natural experiment or quasi-experiment: 

� Exogenous event or treatment, e.g., a training, a new law, a 
change in operating conditions

� Treatment group, control group 

� Assignment to groups not (like in a true experiment) at random 

� Data: before treatment, after treatment

Assessment of treatment based on response variable y

� Compare y of treatment group with y of control group

� Compare y before and after treatment 

� Panel data allow both comparisons at once



Differences-in-Differences 
Estimator, cont’d
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Model for response yit of unit i (=1,...,N) before (t = 1) and after (t = 2) 
the treatment

yit = δrit + µt + αi + uit

� dummy ri = 1 if i-th unit receives treatment in t, ri = 0 otherwise

� δ: treatment effect, the parameter in focus

� αi: time-constant factors of i-th unit 

� µt: time-specific fixed effects

Fixed effects model (for differencing away time-constant factors):

∆yi = yi2 – yi1 = δri + µ0 + vi

with

� vi = ui2 – ui1: error term

� µ0 = µ2 – µ1, the time-specific fixed effects



Estimator of Treatment Effect
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Effect of treatment (event) by comparing units

� with and without treatment 

� before and after treatment 

Model for panel data yit

yit = δrit + µt + αi + uit, i =1,...,N, t = 1 (before), 2 (after event)

Differences-in-differences (DD or DID or D-in-D) estimator of 
treatment effect δ 

dDD = ∆ӯtreated - ∆ӯuntreated

∆ӯtreated: average difference yi2 – yi1 of treatment group units

∆ӯcontrol: average difference yi2 – yi1 of control group units

� Treatment effect δ measured as difference between changes of y
with and without treatment 

� Allows for correlation between time-constant factors αi and rit
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Random Effects Model
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Model

yit = β0 + xit'β + αi + uit, uit ~ IID(0, σu
2) 

� Time-constant factors αi: stochastic variables, independently and 
identically distributed over all units, may show correlation over time

αi ~ IID(0, σa
2) 

� Attention! More information about αi than in the fixed effects model

� αi + uit: error term with two components

� Unit-specific component αi, time-constant

� Remainder uit, assumed to be uncorrelated over time

� αi, uit: uncorrelated, independent of xjs for all j and s

� OLS estimators for β0 and β are unbiased, consistent, not efficient 
(see next slide)



Remember the GLS Estimator
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Model 

y = Xβ + ε 

with 

E{ε|X} = 0

V{ε|X} = σ2 Ω

GLS estimator 

bGLS = (X ' Ω-1 X)-1 X ' Ω-1 y 

with

V{bGLS} = (X ' Ω-1X)-1



GLS Estimator
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αi iT + ui: T-vector of error terms uit for i-th unit, T-vector iT = (1, ..., 1)’

Ω = Var{αiiT + ui}: Covariance matrix of αiiT + ui

Ω = σa
2 iT iT' + σu

2IT
Inverted covariance matrix for data from i-th unit

Ω-1 = σu
-2{[IT – σa

2/(σu
2+Tσa

2)(iTiT')} = σu
-2{[IT –(iTiT')/T]+ψ (iTiT')/T} 

with ψ = σu
2/(σu

2 + Tσa
2)

(iTiT')/T: transforms into averages; e.g., (iTiT') (yi1, ..., yiT)'/T = ӯi iT
IT – (iTiT')/T: transforms into deviations from average

GLS estimator

bGLS = [ΣiΣtẍitẍit'+ψTΣi(ẋi –ẋ)(ẋi –ẋ)']-1[ΣiΣtẍitÿit+ψTΣi(ẋi –ẋ)(ӯi –ӯ)]
with 

� deviations from average ÿit = yit – ӯi, analogous ẍit

� averages ӯi over all t, analogous ẋi

� averages ӯ over all t and i, analogous ẋ



GLS Estimator, cont’d
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GLS estimator

bGLS = [ΣiΣtẍitẍit'+ψTΣi(ẋi –ẋ)(ẋi –ẋ)']-1[ΣiΣtẍitÿit+ψTΣi(ẋi –ẋ)(ӯi –ӯ)]

with the average ӯ over all i and t, analogous ẋ

� ψ = 0: bGLS coincides with bFE

bFE = (ΣiΣt ẍit ẍit')
-1 ΣiΣt ẍit ÿit

� for growingT, ψ → 0: bGLS and bFE equivalent for large T

� ψ = 1 (σa
2= 0): bGLS coincides with the OLS estimators for β0 and β 



Between Estimator
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Model for individual means ӯi and ẋi:

ӯi = β0 + ẋi'β + αi + ūi , i = 1, ..., N

OLS estimator

bB = [Σi(ẋi –ẋ)(ẋi –ẋ)']-1Σi(ẋi –ẋ)(ӯi –ӯ)

is called the between estimator

� Consistent if xit strictly exogenous, uncorrelated with αi

� Describes the relation between the units, discarding the time 

series information of the data

� Variance of the regression error terms αi + ūi is 

σB
2 = σa

2 + (1/T)σu
2



GLS Estimator: A Linear 
Combination
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GLS estimator

bGLS = [ΣiΣtẍitẍit'+ψTΣi(ẋi –ẋ)(ẋi –ẋ)']-1[ΣiΣtẍitÿit+ψTΣi(ẋi –ẋ)(ӯi –ӯ)]

can be written as

bGLS = ∆bB + (IK - ∆)bFE

i.e., a matrix-weighted average of between estimator bB and within 

estimator bFE

∆: (KxK) weighting matrix, proportional to the inverse of Var{bB}

� The more accurate bB the more weight has bB in bGLS

� bGLS: optimal combination of bB and bFE, more efficient than bB and bFE



GLS Estimator: Properties
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GLS estimator

bGLS = [ΣiΣtẍitẍit'+ψTΣi(ẋi –ẋ)(ẋi –ẋ)']-1[ΣiΣtẍitÿit+ψTΣi(ẋi –ẋ)(ӯi –ӯ)] 

� Unbiased, if xit are independent of all αi and uit

� Consistent for N or T or both tending to infinity if

� E{ẍit αi} = 0 

� E{ẍit uit} = 0, E{ẋi uit} = 0 

� These conditions are required also for consistency of bB

� More efficient than the between estimator bB and the within 

estimator bFE; also more efficient than the OLS estimator

� OLS estimator: also a linear combination of between estimator bB

and within estimator bFE, not efficient



Random Effects Estimator
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Calculation of bGLS from the transformed model

yit – ϑӯi = β0(1 – ϑ) + (xit – ϑẋi)'β + vit

with ϑ = 1 – ψ1/2, ψ = σu
2/(σu

2 + Tσa
2)

� quasi-demeaned yit – ϑӯi and xit – ϑẋi

� vit ~ IID(0, σv
2) over units and time

Feasible GLS or EGLS or Balestra-Nerlove estimator



Balestra-Nerlove Estimator
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The model

yit – ϑӯi = β0(1 – ϑ) + (xit – ϑẋi)'β + vit, vit ~ IID(0, σv
2) 

with ϑ = 1 – ψ1/2 fulfils Gauss-Markov conditions

Two step estimator:

1. Step 1: Transformation parameter ψ calculated from (method by 
Swamy & Arora)

� within estimation: su
2 = (ΣiΣt ῦitῦit)/[N(T-1)] 

� between estimation: sB
2 = (1/N)Σi (ӯi – b0B – ẋi'bB)2 = sa

2+(1/T)su
2

� sa
2 = sB

2 – (1/T)su
2

2. Step 2:

� Calculation of d =1 – [su
2/(su

2 + Tsa
2)]1/2 for parameter ϑ

� Transformation of yit and xit into yit – dӯi and xit – dẋi

� OLS estimation gives the random effect estimator bRE for β 



Random Effects Estimator bRE: 
Properties
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EGLS estimator of β from

yit – ϑӯi = β0(1 – ϑ) + (xit – ϑẋi)'β + vit

� Covariance matrix

Var{bRE} = σu
2[ΣiΣt ẍit ẍit' + ψTΣi(ẋi –ẋ)(ẋi –ẋ)']-1

� More efficient than the within estimator bFE (if ψ > 0)

� Asymptotically normally distributed under weak conditions



Wage Equations, 1980-1987

Dependent variable: wage (log of hourly wage)
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Between Fixed 

Effects

Random 

Effects

Pooled

OLS

Intercept 0.511 1.053 -0.079 0.049

school 0.089*** -- 0.100*** 0.095***

exper -0.032 0.118*** 0.111*** 0.087***

exper2 0.004 -0.004*** -0.004*** -0.003***

union 0.262*** 0.082*** 0.109*** 0.179***

mar 0.184*** 0.045** 0.064*** 0.126***

black -0.141*** -- -0.149*** -0.150***

rural 0.188*** 0.049* -0.026 -0.138***

adjR2 (%) 23.7 56.5 -- 19.6
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Summary of Estimators
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� Between estimator

� Fixed  effects (within) estimator 

� Combined estimators

� OLS estimator

� Random effects (EGLS) estimator

� First-difference  estimator

Estimator Consistent, if

Between bB xit strictly exog, xit and αi uncorr

Fixed effects bFE xit strictly exog

OLS b xit and αi uncorr, xit and uit contemp. uncorr

Random effects bRE conditions for bB and bFE are met

First-difference bFD E{xit – xi,t-1,uit – ui,t-1} = 0



Fixed Effects or Random 
Effects?
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Random effects model

E{yit | xit} = xit'β 

� Large values N; of interest: population characteristics (β), not 
characteristics of individual units (αi)

� More efficient estimation of β, given adequate specification of the 
time-constant model characteristics

Fixed  effects model

E{yit | xit,αi} = xit'β + αi

� Of interest: besides population characteristics (β), also 
characteristics of individual units (αi), e.g., of countries or 
companies; rather small values N

� Large values of N, if xit and αi correlated: estimator bFE are 
consistent 



Diagnostic Tools

April 27, 2018 Hackl, Econometrics 2, Lecture 6 60

� Test of common intercept of all units

� Applied to pooled OLS estimation: Rejection indicates 
preference for fixed or random effects model

� Applied to fixed effects estimation: Non-rejection indicates 
preference for pooled OLS estimation

� Hausman test (of correlation between xit and αi); H0: xit and αi are 
uncorrelated 

� Null-hypothesis implies that GLS estimates are consistent

� Rejection indicates preference for fixed effects model

� Test of non-constant variance σa
2, Breusch-Pagan test; H0: σa

2 = 0

� Rejection indicates preference for fixed or random effects model

� Non-rejection indicates preference for pooled OLS estimation



Hausman Test 
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Tests of correlation between xit and αi

H0: xit and αi are uncorrelated

Random effects model requires H0 for consistency of bRE, fixed 
effects model does not require H0

Test statistic: 

ξH = (bFE - bRE)' [Ṽ{bFE} - Ṽ{bRE}]-1 (bFE - bRE)

with estimated covariance matrices Ṽ{bFE} and Ṽ{bRE}

� bRE: consistent only if xit and αi are uncorrelated 

� bFE: consistent also if xit and αi are correlated 

Under H0: plim(bFE - bRE) = 0

� ξH asymptotically chi-squared distributed with K d.f.

� K: dimension of xit and β

Hausman test may indicate also other types of misspecification 



Robust Inference
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Consequences of heteroskedasticity and autocorrelation of the error 
terms: 

� Standard errors and related tests are incorrect

� Inefficiency of estimators

Robust covariance matrix for estimator b of β from yit = xit'β + εit

b = (ΣiΣt xitxit')
-1 ΣiΣt xityit

� Adjustment of covariance matrix similar to Newey-West: assuming 
uncorrelated error terms for different units (E{εit εjs} = 0 for all i ≠ j)

V{b} = (ΣiΣt xitxit')
-1 ΣiΣtΣs eiteis xitxis' (ΣiΣt xitxit')

-1

eit: OLS residuals

� Corrects for heteroskedasticity and autocorrelation within units

� Called panel-robust estimate of the covariance matrix; cf. HAC s.e.

Analogous variants of the Newey-West estimator for robust covariance 
matrices of random effects and fixed effects estimators



Testing for Autocorrelation and 
Heteroskedasticity
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Tests for heteroskedasticity and autocorrelation in random effects 
model error terms

� Computationally cumbersome

Tests based on fixed effects model residuals 

� Easier to conduct 

� Applicable for testing in both fixed and random effects case



Test for Autocorrelation
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Durbin-Watson test for autocorrelation in the fixed effects model

� Error term uit = ρui,t-1 + vit

� Same autocorrelation coefficient ρ for all units

� vit iid across time and units

� Test of H0: ρ = 0 against ρ > 0

� Adaptation of Durbin-Watson statistic

� Tables with critical limits dU and dL for K, T, and N; e.g., Verbeek’s 
Table 10.1

∑ ∑

∑ ∑

= =

= = −−
=

N

i

T

t it

N

i

T

t tiit

p

u

uu
dw

1 1

2

1 2

2

1,

ˆ
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Test for Heteroskedasticity
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Breusch-Pagan test for heteroskedasticity of fixed effects model error 
terms

� V{uit} = σ2h(zit'γ); unknown function h(.) with h(0)=1, J-vector z

� H0: γ = 0, homoskedastic uit

� Auxiliary regression of squared residuals on intercept and 
regressors z

� Test statistic: N(T-1) times R2 of auxiliary regression 

� Chi-squared distribution with J d.f. under H0



Wage Equations, 1980-1987

Fixed effects estimation, standard and HAC standard errors

q: ratio of HAC s.e. to s.e.
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Coeff. s.e. HAC s.e. q

Intercept 1.053 0.0276 0.0384 1.39

exper 0.118 0.0084 0.0108 1.29

exper2 -0.004 0.0006 0.0007 1.17

union 0.082 0.0193 0.0227 1.18

mar 0.045 0.0183 0.0210 1.15

rural 0.049 0.0290 0.0391 1.35



Goodness-of-Fit
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Goodness-of-fit measures for panel data models: different from 
measures for OLS estimated regression models

� Focus may be on within or between variation in the data

� The usual R2 measure relates to OLS-estimated models

Definition of goodness-of-fit measures: squared correlation coefficients 
between actual and fitted values 

� R2
within: squared correlation between within time-demeaned actual 

and fitted yit; maximized by within estimator 

� R2
between: based upon individual averages of actual and fitted yit; 

maximized by between estimator 

� R2
overall: squared correlation between actual and fitted yit; maximized 

by OLS 

Corresponds to the decomposition

[1/TN]ΣiΣt(yit – ӯ)2 = [1/TN]ΣiΣt(yit – ӯi)
2 + [1/N]Σi(ӯi – ӯ)2



Goodness-of-Fit, cont’d
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Fixed effects estimator bFE

� Explains the within variation

� Maximizes R2
within

R2
within(bFE) = corr2{ŷit

FE – ŷi
FE, yit – ӯi}

Between estimator bB

� Explains the between variation

� Maximizes R2
between

R2
between(bB) = corr2{ŷi

B, ӯi}



Wage Equations, 1980-1987

Dependent variable: wage (log of hourly wage)
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Between F.E. R.E. OLS

Intercept 0.511 1.053 -0.079 0.049

school 0.089*** -- 0.100*** 0.095***

exper -0.032 0.118*** 0.111*** 0.087***

exper2 0.004 -0.004*** -0.004*** -0.003***

union 0.262*** 0.082*** 0.109*** 0.179***

mar 0.184*** 0.045** 0.064*** 0.126***

black -0.141*** -- -0.149*** -0.150***

rural 0.188*** 0.049* -0.026 -0.138***

overall R2 (%) 16.07 5.66 18.42 19.70



Extensions of Panel Data 
Models

April 27, 2018 Hackl, Econometrics 2, Lecture 6 70

Dynamic linear models

yit = xit'β + γyi,t-1 + αi + uit , uit ~ IID(0, σu
2)

� Fixed or random effects αi

� Complication due to dependence between yi,t-1 and αi

� GMM estimation

Unit root and cointegration

� Panel data unit root tests 

� Panel data cointegration tests 

Models for limited dependent variables

� Binary choice models

� Tobit models 

Incomplete panels, pseudo panels
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Panel Data and GRETL
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Estimation of panel models

Pooled OLS 

� Model > Ordinary Least Squares

� Special diagnostics on the output window: Tests > Panel 
diagnostics

Fixed and random effects models

� Model > Panel > Fixed or random effects 

� Provide diagnostic tests

� Fixed effects model: Test for common intercept of all units

� Random effects model: Breusch-Pagan test, Hausman test

Further estimation procedures

� Between estimator

� Dynamic panel model

� Panel IV model
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Your Homework

1. Use Verbeek’s data set MALES which contains panel data for 545 

full-time working males over the period 1980-1987. Estimate a wage 

equation which explains the individual log wages (wage) by the 

variables years of schooling (school), years of experience (exper) 

and its squares (exper2), and dummy variables for union membership 

(union), being married (mar), black (black), and working in the public 

sector (PUB). Use (a) pooled OLS, (b) the between and (c) the within 

estimator, and (d) the random effects estimator. Compare the 

resulting models.
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