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The principle

Assume that we have the following observations available.
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Assume that we know the true values (not contaminated by noise),
are at the red line:
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Sample splitting

You want to estimate the relationship between x and y. Using the
estimated model, you would like to make predictions into future.

A common strategy is to split the sample first into two parts:

Testing sample - allow the model to learn.

Validation sample - test the out-of-sample performance.

Different splitting strategies are possible. This is a basic one.
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Both samples visualized:
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Using data from the testing sample, let’s fit a linear line model:

yi,test = β0 + β1xi,test + ui,test

The estimated coefficients are:
yi,test = 1.37 + 0.65xi,test + ûi,test

We know that the model is ill specified, no way a line is going
to fit these data very well. But for prediction purposes, it might a
good-enough approximation to the reality.
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This is how the line looks like:
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Using data from the testing sample, let’s fit a polynomial model:

Yi,test = β0 +
∑5

p=1 βpX
p
i,test + ui,test

Yi,test = β0+β1Xi,test+β2X
2
i,test+β3X

3
i,test+β4X

4
i,test+β5X

5
i,test+

ui,test

The estimated coefficients are:
Yi,test = −24.33 + 75.59Xi,test − 85.93X2

i,test + 48.28X3
i,test −

13.28X4
i,test − 1.41X5

i,test + ûi,test

This polynomial is going to fit the data much better.
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This is how the curve looks like:
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Model comparison

We can compare which model fits the data better, e.g. R2. Instead,
we calculate a related measure, teh mean square error for the
first model:

MSE1 = N−1
test

∑
i(Yi,test − Ŷi,1)2 = 0.06676

The smaller the value, the better the fit. Now for the second model:

MSE2 = N−1
test

∑
i(Yi,test − Ŷi,2)2 = 0.05401

The second model has better fit, by approx. 19%!
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Model comparison

The first model fit the data poorly. It is linear. The data are curved.
It is a biased model. The second model fits the data better. The
higher the order of the polynomial, the better the fit and lower the
bias (in-sample).

Is the model with better fit on the testing sample going to be
better in the validation sample?
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Model comparison

Using coefficients from model 1 and model 2, and given new x
from validation sample, we can predict y. Next we compare which
model forecasts better using the MSE, but now we use predicted
values. This is called the Mean Forecasted Squared Error:

MSFE1 = N−1
validation

∑
i(Yi,validation − Ŷi,1)2 = 0.0802

Now for the second model:
MSFE2 = N−1

validation

∑
i(Yi,validation − Ŷi,2)2 = 0.2357
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The forecasts are less accurate on the validation sample.
The linear model (although biased) performs much better.

Why? The polynomial model is over-fitting the data, e.g. fits too
well on the expense of parameters. Parameters are not estimated
with certainty - they suffer from variance. This leads to an increase
in the variance of the predictions.
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The goal of the Machine learning is to find an optimum between
model bias and the variance of predictions. Many strategies, two
standard ones:

Regularization (Ridge regression, Lasso, Elastic net).

Boosting (Regression trees, Random forest,...).

One strategy is to allow small bias (e.g. less parameters in the
model) while lowering the variance. The accuracy of predictions
might improve.
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The common theme is to sacrifice in-sample fit in hope for a better
out-of-sample prediction. Recall a multiple linear regression model:

Yi = β0 + β1Xi,1 + β2Xi,2 + ...+ βpXi,p + ui

Using OLS, parameters of interest are estimated by minimizing the
sum of squared residuals:

min
β̂0,...β̂p

→
n∑
i=1

ûi
2 =

n∑
i=1

(Yi − β̂0 − β̂1Xi,1 − ...− β̂pXi,p)
2

In short:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2
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OLS approach:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2

Ridge regression:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2 + λ
p∑
j=1

β2
j

λ > 0,

X are standardized (0 mean, 1 variance),

Y is centered around 0.
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Ridge regression:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2 + λ
p∑
j=1

β2
j

The higher the λ the lower the β coefficients, i.e. stronger the
penalty.

Why might Ridge regression actually work? The higher the λ, the
less sensitive is Y , the dependent variable, to the changes in the
Xj explanatory variable(s). The Ridge regression model is more
’robust’ to changes in explanatory variables.

How to find λ? Standard approach is to use 10-fold cross-validation
technique. See the next Case study.
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Case study 4

What factors drive the rate of return on a loan? We use the same
model as in the Case study 3. Now, instead of OLS, we estimate
it via penalized ’Ridge’ estimator.

Can Ridge out-perform (out-of-sample) the OLS model?

RR2i = β0 + β1newi + β2ver3i + ...+ βpnrodepi + ui
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1 Split the sample into two. Leave last 100 observations for
out-of-sample (validation).

2 Estimate OLS and calculate MSFE using the out-of-sample
data.

3 Perform k − fold cross-validation to estimate λ for the
Ridge regression models.

4 Calculate MSFE using the out-of-sample data.
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Sample split

• NF = 100

• N = dim(DT)[1]

• tst = DT[1:(N-NF),]

• val = DT[((N-NF)+1):N,]

Oleg Deev & Štefan Lyócsa FinTech
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k-fold Cross validation

We need to prepare the data for the glmnet functions. See the
codes....
• CV = cv.glmnet(x=indep,y=dep,nfolds=30,alpha=0)

• plot(CV)

• CV$lambda.min

• CV$lambda.1se

• round(cbind(coefficients(m7),coef(CV,s=’lambda.min’),

coef(CV,s=’lambda.1se’)),4)
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OLS estimation and prediction

• m7 = lm(RR2 ∼ new+ver3+ver4+lfi+lee+luk+lrs+lsk+age+undG+

female+lamt+int+durm+educprim+educbasic+educvocat+

educsec+msmar+msco+mssi+msdi+nrodep+espem+esfue+

essem+esent+esret+dures+exper+linctot+noliab+ lliatot+norli+noplo+lamountplo+lamntplr+

lamteprl+nopearlyrep,data=tst)

• yOLS = predict(m7,new=val)

• ytrue = val[,"RR2"]

• MSEOLS = mean((yOLS-ytrue)2)
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How λ (actually log(λ)) and MSE are related. Increasing pena-
lization is very expensive as it increases MSE considerably.

Oleg Deev & Štefan Lyócsa FinTech



Introduction to Machine Learning
Ridge regression
Lasso regression

Elastic-net regression

Prediction and evaluation

We need to prepare the data for the glmnet functions. See the
codes....
• yRIDGEmin=predict(CV,newx=pred,s=CV$lambda.min)

• MSER1 = mean((ytrue-yRIDGEmin)2)

• yRIDGE1se=predict(CV,newx=pred,s=CV$lambda.1se)

• MSER2 = mean((ytrue-yRIDGE1se)2)

• cbind(MSEOLS, MSER1, MSER2)
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OLS approach:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2

Ridge regression:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2 + λ
p∑
j=1

β2
j

Least Absolute Shrinkage and Selection Operator (LASSO):

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2 + λ
p∑
j=1

|βj|

As before:

λ > 0,

X are standardized (0 mean, 1 variance),

Y is centered around 0.
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Least Absolute Shrinkage and Selection Operator (LASSO):

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2 + λ
p∑
j=1

|βj|

As with Ridge, the higher the λ, the lower the β coefficients, i.e.
stronger the penalty.

With LASSO, coefficients might be reduced to 0. This is useful
as LASSO reduces the model complexity, which in turn is known
to be helpful for forecasting purposes.
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Which to use? LASSO or Ridge?

Ridge is useful when many variables are supposed to be
useful (they might be highly correlated as well).

LASSO is useful when only few variables are useful.

Why not to select only useful variables and run OLS?
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Case study 5

What factors drive the rate of return on a loan? We use the same
model as in the Case study 3 and 4. Now, instead of OLS and
Ridge, we estimate it via penalized ’LASSO’ estimator.

Can LASSO out-perform (out-of-sample) the OLS and Ridge
model?

RR2i = β0 + β1newi + β2ver3i + ...+ βpnrodepi + ui
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1 Split the sample into two. Leave last 100 observations for
out-of-sample (validation).

2 Estimate OLS and calculate MSFE using the out-of-sample
data.

3 Perform k − fold cross-validation to estimate λ for the
Ridge regression models.

4 Calculate MSFE using the out-of-sample data.

5 Perform k − fold cross-validation to estimate λ for the
LASSO regression models.

6 Calculate MSFE using the out-of-sample data.
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k-fold Cross validation

We need to prepare the data for the glmnet functions. See the
codes....
• CV = cv.glmnet(x=indep,y=dep,nfolds=30,alpha=1)

• plot(CV)

• CV$lambda.min

• CV$lambda.1se

• round(cbind(coefficients(m7),coef(CV,s=’lambda.min’),

coef(CV,s=’lambda.1se’)),4)
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How λ (actually log(λ)) and MSE are related.
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Prediction and evaluation

We need to prepare the data for the glmnet functions. See the
code in Case study 3. Next, we can run the predictions:
• yLASSOmin=predict(CV,newx=pred,s=CV$lambda.min)

• MSEL1 = mean((ytrue-yLASSOmin)2)

• yLASSO1se=predict(CV,newx=pred,s=CV$lambda.1se)

• MSEL2 = mean((ytrue-yLASSO1se)2)

• cbind(MSEOLS, MSER1, MSER2, MSEL1, MSEL2)
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OLS approach:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2

Ridge regression:

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2 + λ
p∑
j=1

β2
j

Least Absolute Shrinkage and Selection Operator (LASSO):

min
β̂0,...β̂p

→
n∑
i=1

(Yi − Ŷi)2 + λ
p∑
j=1

|βj|

Elastic net:

min
β̂0,...β̂p

→ 1
2n

n∑
i=1

(Yi − Ŷi)2 + λ(1−α
2

p∑
j=1

β2
j + α

p∑
j=1

|βj|)
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Elastic net:

min
β̂0,...β̂p

→ 1
2n

n∑
i=1

(Yi − Ŷi)2 + λ(1−α
2

p∑
j=1

β2
j + α

p∑
j=1

|βj|)

It gives a combined penalization of Ridge and LASSO. The new
parameter α shows which of the two penalization forms gets higher
weight.

If α = 1 it is a LASSO model.

If α = 0 it is a Ridge model.

With 0 ≤ α ≤ 1, we have the Elastic net.

As before, the optimal α and λ is determined via cross-validation.
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Case study 6

What factors drive the rate of return on a loan? We use the same
model as in the Case study 3, 4 and 5. Now, instead of OLS, Ridge,
LASSO we estimate it via ’Elastic net’ estimator.

Can Elastic net out-perform (out-of-sample) the OLS, Ridge,
LASSO model?

RR2i = β0 + β1newi + β2ver3i + ...+ βpnrodepi + ui
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For α = 0.25 • CV = cv.glmnet(x=indep,y=dep,nfolds=30,alpha=0.25)

• yNET025min=predict(CV,newx=pred,s=CV$lambda.min)

• MSEEN1.1 = mean((ytrue-yNET025min)2)

• yNET0251se=predict(CV,newx=pred,s=CV$lambda.1se)

• MSEEN1.2 = mean((ytrue-yNET0251se)2)
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For α = 0.50 • CV = cv.glmnet(x=indep,y=dep,nfolds=30,alpha=0.50)

• yNET050min=predict(CV,newx=pred,s=CV$lambda.min)

• MSEEN2.1 =mean((ytrue-yNET050min)2)

• yNET0501se=predict(CV,newx=pred,s=CV$lambda.1se)

• MSEEN2.2 =mean((ytrue-yNET0501se)2)
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For α = 0.75 • CV = cv.glmnet(x=indep,y=dep,nfolds=30,alpha=0.75)

• yNET075min=predict(CV,newx=pred,s=CV$lambda.min)

• MSEEN3.1 = mean((ytrue-yNET075min)2)

• yNET0751se=predict(CV,newx=pred,s=CV$lambda.1se)

• MSEEN3.2 = mean((ytrue-yNET0751se)2)
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We can compare results:
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