Instructions Grading Introduction to Portfolio Theory Portfolio Theory Lecture 1 Luděk Benada Department of Finance - 402, benada.esf@gmail.com February 23, 2016 Luděk Benada MPF_APOT Q Instructions Q Grading Q Introduction to Portfolio Theory Luděk Benada MPF_APOT 1.. Active work at seminar (max. 3 absence) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Instructions • 1.. Active work at seminar (max. 3 absence) • 2.. Bloomberg 5 Stocks—)>Covar and Correl Matrix ) / V— r^i r\ I -\ i— f-sL f~ r\ O / /04/2016. 2nd test - lo/05/2016 Luděk Benada MPF_APOT □ iS1 Instructions Grading Introduction to Portfolio Theory Instructions • 1.. Active work at seminar (max. 3 absence) • 2.. Bloomberg 5 Stocks—)>Covar and Correl Matrix • 3.. Two tests (Z30 p., each 15 p., v0 min. 60 %) ivi , ■ r |B_i_B "1 O '' P~ 7 | 1st test 4/04/2016, 2nd test 16/05/2016 Luděk Benada MPF_APOT □ iS1 Instructions Grading Introduction to Portfolio Theory Instructions • 1.. Active work at seminar (max. 3 absence) • 2.. Bloomberg 5 Stocks—)>Covar and Correl Matrix • 3.. Two tests (Z30 p., each 15 p., v0 min. 60 %) • No satisfy condition 1-3—^"F" 1st test - 4/04/2016, 2nd test - 16/05/2016 Luděk Benada MPF_APOT □ iS1 Instructions Grading Introduction to Portfolio Theory Instructions • 1.. Active work at seminar (max. 3 absence) • 2.. Bloomberg 5 Stocks—)>Covar and Correl Matrix • 3.. Two tests (Z30 p., each 15 p., v0 min. 60 %) • No satisfy condition 1-3—^"F" • 1st test - 4/04/2016, 2nd test - 16/05/2016 Luděk Benada MPF_APOT □ iS1 Instructions Grading Introduction to Portfolio Theory Instructions • 1.. Active work at seminar (max. 3 absence) • 2.. Bloomberg 5 Stocks—)>Covar and Correl Matrix • 3.. Two tests (Z30 p., each 15 p., v0 min. 60 %) • No satisfy condition 1-3—^"F" • 1st test - 4/04/2016, 2nd test - 16/05/2016 o Correction test (30 points) Luděk Benada MPF_APOT □ iS1 • 1.. Active work at seminar (max. 3 absence) • 2.. Bloomberg 5 Stocks—)>Covar and Correl Matrix • 3.. Two tests (Z30 p., each 15 p., v0 min. 60 %) • No satisfy condition 1-3—^"F" • 1st test - 4/04/2016, 2nd test - 16/05/2016 o Correction test (30 points) 9 Literature:ELTON, E.; Modern portfolio theory and investment analysis Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Marks Prerequisite 1 + 2y/ — 5, ^ ) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Marks • Prerequisite 1 + 2y/ 9 Score of both tests: • A: [27,30) • B: [25,27) • C: [23,25) • D: [21,23) • E: [18,21) • F: [0,18) □ i5> Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Introduction to Portfolio Theory History: • HICKS, J. application of Mathematical Methods of the Theory of Risk (1934) iv a a r*» i x\ a li —i—7 i i i~\ i r i' / ." f -\ r\x~r\\ \A/ F " C / V (1976) 'o Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Introduction to Portfolio Theory History: • HICKS, J. application of Mathematical Methods of the Theory of Risk (1934) * MARKOWITZ, H.;Portfolio Selection (1952) -Founder of MPT(inovative rA<7^>Efficient frontier) cpiAppp \A/ p 'C^nif^l AEfficient frontier) • SHARPE, W., F.; Capital Asset Prices: A Theory of Market Equilibrium under Condition of Risk (1964) - (Discoverer of CAPM) 9 ROSS S ■ The Arbitrage Theory of Caoital Asset Pricing (1976) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Introduction to Portfolio Theory • History: • HICKS, J. application of Mathematical Methods of the Theory of Risk (1934) • MARKOWITZ, H.;Portfolio Selection (1952) -Founder of MPT(inovative rA<7^>Efficient frontier) • SHARPE, W., F.; Capital Asset Prices: A Theory of Market Equilibrium under Condition of Risk (1964) - (Discoverer of CAPM) • ROSS, S.; 77?e Arbitrage Theory of Capital Asset Pricing (1976) Luděk Benada MPF_APOT Portfolio • Portfolio:£"=1 i/V/A'/L/Li w;= 1; Xw;... weigh;A;... asset , oUdldUl I Ly y[J\ IL-cJ f >*"V I/-* I -I— I >""V I/-* >-v J- «—v x"* -I— ■ X"* 1/-* I ^ I <—V ■ I ■ - Assuming a investor. The aim of building; a portfolio is Luděk Benada MPF_AP0T Portfolio • Portfolio:!^ w;A;L"=i wi= v- Xw> • ■ • weiShrandom variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio /______.___' . ;__„ r .____ Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean a // — JLv^ y. •—\ J ' * 1 a "=VAJ -2^/=ix/ Plx/J Characteristics of msan' Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean 9 t^AJ ~Li=lXl P\Xl) Characteristics of msan' Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean • E(X) =ip=1X/l * E(x) =L/Lix' p( Characteristics of mean. Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean • E(X) =iEiLiX/i • E(X) =E?=iX/*p(x/) Characteristics of msan' Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean • E(X) =iEf=iX/i • E(X) =ir=1x/*p(x/) • Characteristics of mean: (c) = c.b (1 (X + Y) E(X) + E(Y) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean • E(X) =iEf=iX/i • E(X) =Ef=iX/*p(x/) • Characteristics of mean: • E(c) = c, where c is a constant E(c*X) = c.E(X) • E(X + Y) = E(X) + E(Y) ~ V / ~ V / ■ ~ V / □ iS> ► 4 S ► 4 > Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean • E(X) =iEf=iX/i • E(X) =Ef=iX/*p(x/) • Characteristics of mean: • E(c) = c, where c is a constant • E(c*X) = c.E(X) • E(X + Y) = E(X) + E(Y) ~ V / ~ V / ■ ~ V / □ [51 ► 4 S ► 4 > Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean • E(X) =iEf=iX/i • E(X) =ir=1x/*p(x/) • Characteristics of mean: • E(c) = c, where c is a constant • E(c*X) = c.E(X) • E(X + Y) = E(X) + E(Y) V / V / ■ V / □ iS> ► 4 S ► 4 > Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Return as random variable • Uncertainty in the future development=4>random variable X (discreet random variable) ^Characteristic of RV E(X),cr2(X)=4>Mean Variance Portfolio Mean • E(X) =iEf=iX/i • E(X) =Ef=iX/*p(x/) • Characteristics of mean: • E(c) = c, where c is a constant • E(c*X) = c.E(X) • E(X + Y) = E(X) + E(Y) • E(X*Y) = E(X).E(Y) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Dispersion of RV Variace(discete case... (D, var,<72, s2) D(X) = E[X - E(X)]2= E(X)2- [E(X)]2 D(X) =LtiE[X/ - E(X)]2*p(X() > n > ( VM [Xj E n < 30 Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Dispersion of RV • Variace(discete case... (D, var,<72, s2) D(X) = E[X - E(X)]2= E(X)2- [E(X)]2 D(X) =E?=1E[X, - E(X)]2*p(X,) • Property of var: D(c+X) = D(X), D(c) = D(c /x) — c D(/x) . D(X+Y) = D(X) + D(Y). V / V / V / • • i 0*rnx/fv vi HpnpnHpnt RV =4> n > 30=>* er = - y"/_i E\X; E( / 1 J ^^^^ i_i i n < 30=4>Sample variance ~ n—i^/=l L ' '-v'vJ Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Dispersion of RV • Variace(discete case... (D, var,<72, s2) D(X) = E[X - E(X)]2= E(X)2- [E(X)]2 D(X) =E?=1E[X, - E(X)]2*p(X,) • Property of var: • D(c+X) = D(X), D(c) = 0 D(c*X) = c2*D(X) • D(X+Y) = D(X) + D(Y)... r\/y i \y\ DfX^ -1- DfY^ -1- 9*rn\/fX HpnpnHpnt RV =4> n > 30=^> G = - Y!i=i E[X, — E{ n < 30=4>Sample variance v. J1 ' n2_ 1 Yn Ffy ■ FfX^l^ ~ n—1^/=1 i i '-v'vJ «□►•«[^►«^►•«^^ j Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Dispersion of RV • Variace(discete case... (D, var,<7 , s ) D(X) = E[X - E(X)]2= E(X)2- [E(X)]2 D(X) =LtiE[X/ - E(X)]2*p(X() • Property of var: • D(c+X) = D(X), D(c) = 0 • D(c*X) = c2*D(X) • D(X+Y) = D(X) + D(Y)... > n > ' VM [Xj E( Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Dispersion of RV • Variace(discete case... (D, var,<7 , s ) D(X) = E[X - E(X)]2= E(X)2- [E(X)]2 D(X) =LtiE[X/ - E(X)]2*p(X() • Property of var: • D(c+X) = D(X), D(c) = 0 • D(c*X) = c2*D(X) • D(X+Y) = D(X) + D(Y)... independet RV > n > ' VM [Xj E( Luděk Benada MPF_AP0T Instructions Grading Introduction to Portfolio Theory Dispersion of RV Variace(discete case... (D, var,<72, s2) D(X) = E[X - E(X)]2= E(X)2- [E(X)]2 D(X) =LtiE[X/ - E(X)]2*p(X() Property of var: • D(c+X) = D(X), D(c) = 0 • D(c*X) = c2*D(X) • D(X+Y) = D(X) + D(Y)... independet RV » D(X+Y) = D(X) + D(Y) + 2*cov(X,Y)... dependent RV > n > ' VM [X; E( n < 30 1 rn Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Dispersion of RV • Variace(discete case... (D, var,<7 , s ) D(X) = E[X - E(X)]2= E(X)2- [E(X)]2 D(X) =LtiE[X/ - E(X)]2*p(X() • Property of var: • D(c+X) = D(X), D(c) = 0 • D(c*X) = c2*D(X) • D(X+Y) = D(X) + D(Y)... independet RV » D(X+Y) = D(X) + D(Y) + 2*cov(X,Y)... dependent RV • ! Statistical population !=4> n > 30=^a2 = iEi'=1£[X/-E(X)]2, n < 30^Sample variancecT2=^Ii:^1E[X/ - E(X)]2 Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Risk ... the change in expected return - standard deviation^/D(X) ((7,s) r, - - r)2... n > 30, °i=\jlh*l 30, ai=J7^I*Z"=i{n-ř)2... n < 30, V a it-- /Vn (r- * n- • • • L i i v.* i \j u Ct u 111 u y i 30, • 30, • 30, 0// = -^rLLirri—/Vl*fr,—ňl...n < 30, Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory The relation between RVs • Covariance.. .(cov(X,Y),öx y) cov (X,Y) = E{[X-E(X)][Y-E(Y)]}; • °x,y =^=i[X,-E(X)]*[Y,-E(Y)] • 30, • 30, • S Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory The relation between RVs • Covariance.. .(cov(X,Y),öx y) cov (X,Y) = E{[X-E(X)][Y-E(Y)]}; • °x,y =^=i[X-E(X)]*[Y,-E(Y)] • 30, • criy=^LiLi[r/-ö]*[0-ö]...n < 30, • Property of covariance: • cov(X,Y) = 0; E (X+Y) = OAE(X) = 0 = E(Y) = 0 cov(X,Y) = cov(Y,X) • cov(X+a,Y+b) = cov(X,Y) • cov(X*a,Y*b) = a*b*cov(X,Y) range of covar (-oo;oo) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory The relation between RVs • Covariance.. .(cov(X,Y),öx y) cov (X,Y) = E{[X-E(X)][Y-E(Y)]}; • °x,y =^=i[X-E(X)]*[Y,-E(Y)] • 30, • 30, • ) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory The relation between RVs • Covariance.. .(cov(X,Y),öx y) cov (X,Y) = E{[X-E(X)][Y-E(Y)]}; • °x,y =^=i[X;-E(X)]*[Y-E(Y)] • 30, • 30, • ) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory The relation between RVs • Covariance.. .(cov(X,Y),öx y) cov (X,Y) = E{[X-E(X)][Y-E(Y)]}; • °x,y =^=i[X-E(X)]*[Y,-E(Y)] • 30, • ) • ^^standardization Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Pearosn 's correlation coefficient • The absolut dimension of covar is relativized «_____c°v(X,Y) PA Y ^\ 1 n ^ 1 ^"^^ ^ ^ ^ 1 ^™ J ■ ^ ^^21 Iii n ^ i ^51 n £C ^ determination from OLS) ^ £ C i i Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Pearosn 's correlation coefficient • The absolut dimension of covar is relativized Ä ^ cov(X,Y) • Oyy —--—-—-ry\r o~x*0~y ^\ f\ 1 n ^ 1 ^"^^ ^ ^ ^ 12| i \^ " 1 (f"t^i Iii n ^ i ^51 n £C ^ determination from OLS) ^ f i i Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Pearosn's correlation coefficient • The absolut dimension of covar is relativized _ ^ cov(X,Y) • Oyy —--—-—- • Reflect the degree oflinear dependence ,-1- Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Pearosn's correlation coefficient • The absolut dimension of covar is relativized _ ^ cov(X,Y) • Oyy —--—-—- • Reflect the degree oflinear dependence o Interval for correlation <-l;l> (falling/rising) *j I I ^\ if f*\ f\ f^ f\ if if f*\ I ^\ i f\ f^ f\ f*\ P i f^ i f*\ ( f | | Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Pearosn's correlation coefficient • The absolut dimension of covar is relativized _ ^ cov(X,y) • Oyy —--—-—- • Reflect the degree oflinear dependence o Interval for correlation <-l;l> (falling/rising) 9 Pxy— points lie on a straight line determination from OLS) Luděk Benada MPF_APOT Instructions Grading Introduction to Portfolio Theory Pearosn's correlation coefficient • The absolut dimension of covar is relativized _ ^ cov(x,y) • Oyy —--—-—- ry\r o~x*0~y • Reflect the degree oflinear dependence o Interval for correlation <-l;l> (falling/rising) 9 Pxy— points lie on a straight line • Square of correlation coefficient.. .r2(coefficient of determination from OLS) Luděk Benada MPF_APOT □ iS1