Sensitivity of Bond Prices to Interest Rate Movements

Bond Valuation Process

PV of bond =
$$\frac{C}{(1+k)^1} + \frac{C}{(1+k)^2} + \cdots + \frac{C+Par}{(1+k)^n}$$

where

C = coupon payment provided in each period

Par = par value

k = required rate of return per period used to discount the bond

$$n =$$
 number of periods to maturity

Source: Madura, J.: Financial Markets and Institutions, 9th Edition

Relations between Coupon Rate, Required Return and Bond Price

- 1.Discount bonds: Bonds Selling below Par (1000)
 - Coupon rate is below required rate, the price of the bond is below par (P < 1000)
- 2. Par Bonds: Bonds Selling at Par (1000)
 - Coupon rate equals the required rate, the price of the bond is equal to par value (P = 1000)
- Premium Bonds: Bonds Selling above Par (1000)
 - Coupon rate is above the required rate, the price of the bond is above the par (P > 1000)

Excel Sheet

- Sheet 1
- Sheet 2

Sensitivity of Bond Prices to Interest Rate Movements

- Depends on the bond's characteristics
- Indicates the potential to bond holdings in response to and increase in interest rates
- Measures:
 - BOND PRICE ELASTICITY
 - DURATION
 - CONVEXITY

Bond Risk Premium over Time

Source: Madura, J.: Financial Markets and Institutions, 9th Edition

Framework for Explaining Changes in Bond Prices over Time

Bond Price Elasticity

- Bond Price Elasticity = Bond price sensitivity for any % change in market interest rates
- Bond Price Elasticity =
 (% Change In Price)/(% Change In Interest Rates)
- Increased elasticity means greater price risk
- Compute for two points represented by yields (r)

$$P_b^e = \frac{\text{percentage change in } P_b}{\text{percentage change in r}}$$

Sensitivity of Bonds with Different Coupon Rates to Interest Rate Changes

EFFECTS OF A DECLINE IN THE REQUIRED RATE OF RETURN								
(1) BONDS WITH A COUPON RATE OF:	(2) INITIAL PRICE OF BONDS WHEN k = 10%	(3) PRICE OF BONDS WHEN k = 8%	(4) = [(3) - (2)]/(2) PERCENTAGE CHANGE IN BOND PRICE	(5) PERCENTAGE CHANGE IN <i>k</i>	(6) BOND PRICE ELASTICITY (<i>P</i> ^e _b)			
0%	\$ 386	\$ 463	+19.9%	-20.0%	995			
5	693	799	+15.3	-20.0	765			
10	1,000	1,134	+13.4	-20.0	670			
15	1,307	1,470	+12.5	-20.0	625			
EFFECTS OF A DECLINE IN THE REQUIRED RATE OF RETURN								
(1) BONDS WITH A COUPON RATE OF:	(2) INITIAL PRICE OF BONDS WHEN <i>k</i> = 10%	(3) PRICE OF BONDS WHEN k = 12%	(4) = [(3) - (2)]/(2) PERCENTAGE CHANGE IN BOND PRICE	(5) PERCENTAGE CHANGE IN <i>k</i>	(6) BOND PRICE ELASTICITY (<i>P</i> ^e _b)			
0%	\$ 386	\$ 322	-16.6%	+20.0%	830			
5	693	605	-12.7	+20.0	635			
10	1,000	887	-11.3	+20.0	565			
15	1,307	1,170	-10.5	+20.0	525			

Source: Madura, J.: Financial Markets and Institutions, 9th Edition

© Cengage Learning 2012

Sensitivity of Bond Prices to Interest Rate Movements

- a. Influence of Coupon Rate on Bond Price Sensitivity
 - i. A zero-coupon bond is most sensitive to changes in the required rate of return.
 - ii. The price of a bond that pays all of its yield in the form of coupon payments is less sensitive to changes in the required rate of return.
- b. Influence of Maturity on Bond Price Sensitivity As interest rates decrease, long-term bond prices increase by a greater degree than short-term bond prices.

Excel Sheet

• Sheet 3

Duration (Macaulay Duration)

- Measure of bond price sensitivity
- Measures the life of bond on a PV/FV basis
- Duration = Sum of discounted, time-weighted cash flows divided by price
- The longer a bond's duration, the greater its sensitivity to interest rate changes
- The duration of a zero-coupon bond = bond's term to maturity
- The duration of any coupon bond is always less than the bond's term to maturity

Duration in years

$$DUR = \frac{\sum_{t=1}^{n} \frac{C_t(t)}{(1+k)^t}}{\sum_{t=1}^{n} \frac{C_t}{(1+k)^t}}$$

where

 C_t = coupon or principal payment generated by the bond

t = time at which the payments are provided

k =bond's yield to maturity (reflects investors' required rate of return

Calculating the macaulay duration

Example: A 6% annual payment bond (FV = 100) matures in 6 years. The YTM is 4%. Calculate the bond's Macaulay duration (actual/actual convention):

Period	CF (cash flow)	PV of CF	Time-Weighted PV of CF
1	6	6/(1 + 0.04)^1 = 5.76	1 × 5.76 = 5,76
2	6	5.58	11.16
3	6	5.54	16.62
4	6	5.33	21.32
5	6	4.93	24.65
6	106	83.77	502.62
		110.91	582.13

D = 582.13/110.91 = 5.25 years

14

Properties of bond duration

Bond duration is the basic measure of interest rate risk on a fixed-rate bond.

The duration for a fixed-rate bond is a function of these input variables.

- Coupon rate or payment per period
- Yield-to-maturity per period
- Time-to-maturity (as of the beginning of the period)

Time-to-maturity and fraction of the period relation to macaulay duration

Time-to-maturity is typically directly related to the Macaulay duration.

16

Coupon rate and yield-to-maturity relation to macaulay duration

The coupon rate is inversely related to the Macaulay duration.

- A lower-coupon bond has a higher duration and more interest rate risk than a highercoupon bond.
- The Macaulay duration of a zerocoupon bond is equal to its timeto-maturity.

The yield-to-maturity is inversely related to the Macaulay duration.

• A higher yield-to-maturity reduces the weighted average of the time to receipt of cash flow.

Modified duration in %

 Modified Duration (DUR*): Can be used to estimate the percentage change in the bond's price in response to a 1 percentage point change in bond yields

Modified duration

PRICE APPROXIMATION USING MODIFIED DURATION

Source: Frank J. Fabozzi, Gerald Buetow, and Robert R. Johnson, "Measuring Interest Rate Risk" in the *Handbook of Fixed-Income Securities*, 6th ed. (New York: McGraw-Hill, 2001). Reproduced with permission from The McGraw-Hill Companies.

Convexity statistic

- The true relationship between the bond price and the yieldto-maturity is the curved (convex) line, which shows the actual bond price given its market discount rate.
- The convexity statistic for the bond is used to improve the estimate of the percentage price change provided by modified duration alone. There are various ways to estimate convexity:

Conv =
$$\frac{1}{(1+k)^2} \times \frac{\sum_{t=1}^{T} \frac{CF_t}{(1+k)^t} \times (t^2+t)}{P_0}$$

20

Convexity calculation

Example: 3-Year Bond, 12% Coupon, 9% YTM

(1)	(2)	(3)	(4)	(5)	
YEAR	CF_{τ}	PV @ 9%	PV CF	$t^2 + t$	(4) × (5)
1	120	0.9174	\$ 110.09	2	\$ 220.18
2	120	0.8417	101.00	6	606.00
3	120	0.7722	92.66	12	1,111.92
3	1,000	0.7722	772.20	12	9,266.40
			Price = $$1,075.95$		\$11,204.50

Conv =
$$\frac{1}{(1+k)^2} \times \frac{\sum_{t=1}^{T} \frac{CF_t}{(1+k)^t} \times (t^2+t)}{P_0}$$

 $Convexity = \frac{9,411.78}{1,075.95} = 8.75$

- Effect of Convexity = ½*Convexity*(△ yield)^2
- Price Change = +/- Effect of Duration (Modified Duration)+Effect of Convexity

Excel Sheet

• Sheet 4