CASE 3.1 AUTO ASSEMBLY Automobile Alliance, a large automobile manufacturing company, organizes the vehicles it manufactures into three families: a family of trucks, a family of small cars, and a family of midsized and luxury cars. One plant outside Detroit, MI, assembles two models from the family of midsized and luxury cars. The first model, the Family Thrillseeker, is a four-door sedan with vinyl seats, plastic interior, standard features, and excellent gas mileage. It is marketed as a smart buy for middle-class families with tight budgets, and each Family Thrillseeker sold generates a modest profit of \$3,600 for the company. The second model, the Classy Cruiser, is a two-door luxury sedan with leather seats, wooden interior, custom features, and navigational capabilities. It is marketed as a privilege of affluence for upper-middle-class families, and each Classy Cruiser sold generates a healthy profit of \$5,400 for the company. Rachel Rosencrantz, the manager of the assembly plant, is currently deciding the production schedule for the next month. Specifically, she must decide how many Family Thrillseekers and how many Classy Cruisers to assemble in the plant to maximize profit for the company. She knows that the plant possesses a capacity of 48,000 laborhours during the month. She also knows that it takes 6 labor-hours to assemble one Family Thrillseeker and 10.5 labor-hours to assemble one Classy Cruiser. Because the plant is simply an assembly plant, the parts required to assemble the two models are not produced at the plant. They are instead shipped from other plants around the Michigan area to the assembly plant. For example, tires, steering wheels, windows, seats, and doors all arrive from various supplier plants. For the next month, Rachel knows that she will be able to obtain only 20,000 doors (10,000 left-hand doors and 10,000 right-hand doors) from the door supplier. A recent labor strike forced the shutdown of that particular supplier plant for several days, and that plant will not be able to meet its production schedule for the next month. Both the Family Thrillseeker and the Classy Cruiser use the same door part. In addition, a recent company forecast of the monthly demands for different automobile models suggests that the demand for the Classy Cruiser is limited to 3,500 cars. There is no limit on the demand for the Family Thrillseeker within the capacity limits of the assembly plant. (a) Formulate and solve a linear programming problem to determine the number of Family Thrillseekers and the number of Classy Cruisers that should be assembled. Before she makes her final production decisions, Rachel plans to explore the following questions independently except where otherwise indicated. - **(b)** The marketing department knows that it can pursue a targeted \$500,000 advertising campaign that will raise the demand for the Classy Cruiser next month by 20 percent. Should the campaign be undertaken? - (c) Rachel knows that she can increase next month's plant capacity by using overtime labor. She can increase the plant's labor-hour capacity by 25 percent. With the new assembly plant capacity, how many Family Thrillseekers and how many Classy Cruisers should be assembled? - (d) Rachel knows that overtime labor does not come without an extra cost. What is the maximum amount she should be willing to pay for all overtime labor beyond the cost of this labor at regular time rates? Express your answer as a lump sum. - (e) Rachel explores the option of using both the targeted advertising campaign and the overtime labor-hours. The advertising campaign raises the demand for the Classy Cruiser by 20 percent, and the overtime labor increases the plant's labor-hour capacity by 25 percent. How many Family Thrillseekers and how many Classy Cruisers should be assembled using the advertising campaign and overtime labor-hours if the profit from each Classy Cruiser sold continues to be 50 percent more than for each Family Thrillseeker sold? - (f) Knowing that the advertising campaign costs \$500,000 and the maximum usage of overtime labor-hours costs \$1,600,000 beyond regular time rates, is the solution found in part (*e*) a wise decision compared to the solution found in part (*a*)? - (g) Automobile Alliance has determined that dealerships are actually heavily discounting the price of the Family Thrillseekers to move them off the lot. Because of a profit-sharing agreement with its dealers, the company is therefore not making a profit of \$3,600 on the Family Thrillseeker but is instead making a profit of \$2,800. Determine the number of Family Thrillseekers and the number of Classy Cruisers that should be assembled given this new discounted price. - (h) The company has discovered quality problems with the Family Thrillseeker by randomly testing Thrillseekers at the end of the assembly line. Inspectors have discovered that in over 60 percent of the cases, two of the four doors on a Thrillseeker do not seal properly. Because the percentage of defective Thrillseekers determined by the random testing is so high, the floor supervisor has decided to perform quality control tests on every Thrillseeker at the end of the line. Because of the added tests, the time it takes to assemble one Family Thrillseeker has increased from 6 to 7.5 hours. Determine the number of units of each model that should be assembled given the new assembly time for the Family Thrillseeker. - (i) The board of directors of Automobile Alliance wishes to capture a larger share of the luxury sedan market and therefore would like to meet the full demand for Classy Cruisers. They ask Rachel to determine by how much the profit of her assembly plant would decrease as compared to the profit found in part (a). They then ask her to meet the full demand for Classy Cruisers if the decrease in profit is not more than \$2,000,000. - (j) Rachel now makes her final decision by combining all the new considerations described in parts (f), (g), and (h). What are her final decisions on whether to undertake the advertising campaign, whether to use overtime labor, the number of Family Thrillseekers to assemble, and the number of Classy Cruisers to assemble? ## **CASE 3.2 CUTTING CAFETERIA COSTS** A cafeteria at All-State University has one special dish it serves like clockwork every Thursday at noon. This supposedly tasty dish is a casserole that contains sautéed onions, boiled sliced potatoes, green beans, and cream of mushroom soup. Unfortunately, students fail to see the special quality of this dish, and they loathingly refer to it as the Killer Casserole. The students reluctantly eat the casserole, however, because the cafeteria provides only a limited selection of dishes for Thursday's lunch (namely, the casserole). Maria Gonzalez, the cafeteria manager, is looking to cut costs for the coming year, and she believes that one sure way to cut costs is to buy less expensive and perhaps lower-quality ingredients. Because the casserole is a weekly staple of the cafeteria menu, she concludes that if she can cut costs on the ingredients purchased for the casserole, she can significantly reduce overall cafeteria operating costs. She therefore de- cides to invest time in determining how to minimize the costs of the casserole while maintaining nutritional and taste requirements. Maria focuses on reducing the costs of the two main ingredients in the casserole, the potatoes and green beans. These two ingredients are responsible for the greatest costs, nutritional content, and taste of the dish. Maria buys the potatoes and green beans from a wholesaler each week. Potatoes cost \$0.40 per pound, and green beans cost \$1.00 per pound. All-State University has established nutritional requirements that each main dish of the cafeteria must meet. Specifically, the total amount of the dish prepared for all the students for one meal must contain 180 grams (g) of protein, 80 milligrams (mg) of iron, and 1,050 mg of vitamin C. (There are 453.6 g in 1 lb and 1,000 mg in 1 g.) For simplicity when planning, Maria assumes that only the potatoes and green beans contribute to the nutritional content of the casserole. Because Maria works at a cutting-edge technological university, she has been exposed to the numerous resources on the World Wide Web. She decides to surf the Web to find the nutritional content of potatoes and green beans. Her research yields the following nutritional information about the two ingredients: | | Potatoes | Green Beans | |-----------|------------------|------------------------| | Protein | 1.5 g per 100 g | 5.67 g per 10 ounces | | Iron | 0.3 mg per 100 g | 3.402 mg per 10 ounces | | Vitamin C | 12 mg per 100 g | 28.35 mg per 10 ounces | (There are 28.35 g in 1 ounce.) Edson Branner, the cafeteria cook who is surprisingly concerned about taste, informs Maria that an edible casserole must contain at least a six to five ratio in the weight of potatoes to green beans. Given the number of students who eat in the cafeteria, Maria knows that she must purchase enough potatoes and green beans to prepare a minimum of 10 kilograms (kg) of casserole each week. (There are 1,000 g in 1 kg.) Again for simplicity in planning, she assumes that only the potatoes and green beans determine the amount of casserole that can be prepared. Maria does not establish an upper limit on the amount of casserole to prepare, since she knows all leftovers can be served for many days thereafter or can be used creatively in preparing other dishes. (a) Determine the amount of potatoes and green beans Maria should purchase each week for the casserole to minimize the ingredient costs while meeting nutritional, taste, and demand requirements. Before she makes her final decision, Maria plans to explore the following questions independently except where otherwise indicated. (b) Maria is not very concerned about the taste of the casserole; she is only concerned about meeting nutritional requirements and cutting costs. She therefore forces Edson to change the recipe to allow for only at least a one to two ratio in the weight of potatoes to green beans. Given the new recipe, determine the amount of potatoes and green beans Maria should purchase each week. - (c) Maria decides to lower the iron requirement to 65 mg since she determines that the other ingredients, such as the onions and cream of mushroom soup, also provide iron. Determine the amount of potatoes and green beans Maria should purchase each week given this new iron requirement. - (d) Maria learns that the wholesaler has a surplus of green beans and is therefore selling the green beans for a lower price of \$0.50 per lb. Using the same iron requirement from part (c) and the new price of green beans, determine the amount of potatoes and green beans Maria should purchase each week. - (e) Maria decides that she wants to purchase lima beans instead of green beans since lima beans are less expensive and provide a greater amount of protein and iron than green beans. Maria again wields her absolute power and forces Edson to change the recipe to include lima beans instead of green beans. Maria knows she can purchase lima beans for \$0.60 per lb from the wholesaler. She also knows that lima beans contain 22.68 g of protein per 10 ounces of lima beans, 6.804 mg of iron per 10 ounces of lima beans, and no vitamin C. Using the new cost and nutritional content of lima beans, determine the amount of potatoes and lima beans Maria should purchase each week to minimize the ingredient costs while meeting nutritional, taste, and demand requirements. The nutritional requirements include the reduced iron requirement from part (c). - (f) Will Edson be happy with the solution in part (e)? Why or why not? - (g) An All-State student task force meets during Body Awareness Week and determines that All-State University's nutritional requirements for iron are too lax and that those for vitamin C are too stringent. The task force urges the university to adopt a policy that requires each serving of an entrée to contain at least 120 mg of iron and at least 500 mg of vitamin C. Using potatoes and lima beans as the ingredients for the dish and using the new nutritional requirements, determine the amount of potatoes and lima beans Maria should purchase each week. ## CASE 3.3 STAFFING A CALL CENTER¹ California Children's Hospital has been receiving numerous customer complaints because of its confusing, decentralized appointment and registration process. When customers want to make appointments or register child patients, they must contact the clinic or department they plan to visit. Several problems exist with this current strategy. Parents do not always know the most appropriate clinic or department they must visit to address their children's ailments. They therefore spend a significant amount of time on the phone being transferred from clinic to clinic until they reach the most appropriate clinic for their needs. The hospital also does not publish the phone numbers of all clinic and departments, and parents must therefore invest a large amount of time in detective work to track down the correct phone number. Finally, the various clinics and departments do not communicate with each other. For example, when a doctor schedules a referral with a colleague located in another department or clinic, that department or clinic almost never receives word of the referral. The parent must contact the correct department or clinic and provide the needed referral information. ¹This case is based on an actual project completed by a team of master's students in the Department of Engineering-Economic Systems and Operations Research at Stanford University. In efforts to reengineer and improve its appointment and registration process, the children's hospital has decided to centralize the process by establishing one call center devoted exclusively to appointments and registration. The hospital is currently in the middle of the planning stages for the call center. Lenny Davis, the hospital manager, plans to operate the call center from 7 A.M. to 9 P.M. during the weekdays. Several months ago, the hospital hired an ambitious management consulting firm, Creative Chaos Consultants, to forecast the number of calls the call center would receive each hour of the day. Since all appointment and registration-related calls would be received by the call center, the consultants decided that they could forecast the calls at the call center by totaling the number of appointment and registration-related calls received by all clinics and departments. The team members visited all the clinics and departments, where they diligently recorded every call relating to appointments and registration. They then totaled these calls and altered the totals to account for calls missed during data collection. They also altered totals to account for repeat calls that occurred when the same parent called the hospital many times because of the confusion surrounding the decentralized process. Creative Chaos Consultants determined the average number of calls the call center should expect during each hour of a weekday. The following table provides the forecasts. | Work Shift | Average Number of Calls | |----------------|-------------------------| | 7 а.м.–9 а.м. | 40 calls per hour | | 9 а.м.–11 а.м. | 85 calls per hour | | 11 A.M1 P.M. | 70 calls per hour | | 1 р.м.–3 р.м. | 95 calls per hour | | 3 P.M5 P.M. | 80 calls per hour | | 5 P.M7 P.M. | 35 calls per hour | | 7 p.m.–9 p.m. | 10 calls per hour | After the consultants submitted these forecasts, Lenny became interested in the percentage of calls from Spanish speakers since the hospital services many Spanish patients. Lenny knows that he has to hire some operators who speak Spanish to handle these calls. The consultants performed further data collection and determined that on average, 20 percent of the calls were from Spanish speakers. Given these call forecasts, Lenny must now decide how to staff the call center during each 2 hour shift of a weekday. During the forecasting project, Creative Chaos Consultants closely observed the operators working at the individual clinics and departments and determined the number of calls operators process per hour. The consultants informed Lenny that an operator is able to process an average of six calls per hour. Lenny also knows that he has both full-time and part-time workers available to staff the call center. A full-time employee works 8 hours per day, but because of paperwork that must also be completed, the employee spends only 4 hours per day on the phone. To balance the schedule, the employee alternates the 2-hour shifts between answering phones and completing paperwork. Full-time employees can start their day either by answering phones or by completing paperwork on the first shift. The full-time em- ployees speak either Spanish or English, but none of them are bilingual. Both Spanish-speaking and English-speaking employees are paid \$10 per hour for work before 5 p.m. and \$12 per hour for work after 5 p.m. The full-time employees can begin work at the beginning of the 7 a.m. to 9 a.m. shift, 9 a.m. to 11 a.m. shift, 11 a.m. to 1 p.m. shift, or 1 p.m. to 3 p.m. shift. The part-time employees work for 4 hours, only answer calls, and only speak English. They can start work at the beginning of the 3 p.m. to 5 p.m. shift or the 5 p.m. to 7 p.m. shift, and like the full-time employees, they are paid \$10 per hour for work before 5 p.m. and \$12 per hour for work after 5 p.m. For the following analysis consider only the labor cost for the time employees spend answering phones. The cost for paperwork time is charged to other cost centers. - (a) How many Spanish-speaking operators and how many English-speaking operators does the hospital need to staff the call center during each 2-hour shift of the day in order to answer all calls? Please provide an integer number since half a human operator makes no sense. - (b) Lenny needs to determine how many full-time employees who speak Spanish, full-time employees who speak English, and part-time employees he should hire to begin on each shift. Creative Chaos Consultants advise him that linear programming can be used to do this in such a way as to minimize operating costs while answering all calls. Formulate a linear programming model of this problem. - (c) Obtain an optimal solution for the linear programming model formulated in part (b) to guide Lenny's decision. - (d) Because many full-time workers do not want to work late into the evening, Lenny can find only one qualified English-speaking operator willing to begin work at 1 P.M. Given this new constraint, how many full-time English-speaking operators, full-time Spanish-speaking operators, and part-time operators should Lenny hire for each shift to minimize operating costs while answering all calls? - (e) Lenny now has decided to investigate the option of hiring bilingual operators instead of monolingual operators. If all the operators are bilingual, how many operators should be working during each 2-hour shift to answer all phone calls? As in part (a), please provide an integer answer. - (f) If all employees are bilingual, how many full-time and part-time employees should Lenny hire to begin on each shift to minimize operating costs while answering all calls? As in part (b), formulate a linear programming model to guide Lenny's decision. - (g) What is the maximum percentage increase in the hourly wage rate that Lenny can pay bilingual employees over monolingual employees without increasing the total operating costs? - (h) What other features of the call center should Lenny explore to improve service or minimize operating costs?