Static and dynamic games 000 Entry deterrence and predation 00000000

Static and dynamic games, preventing the entry and predation

Industrial organization - lecture 2

Static and dynamic games 000

Cournot model

Pepall et al. (2014, pp. 222-228)

2 firms with

- the same marginal cost $c_1 = c_2 = c$
- zero fixed cost $F_1 = F_2 = 0$

Inverse demand function: $p = A - (q_1 + q_2)$

What is the Cournot equilibrium? What is the profit?

- $T_{1} = (A q_{1} q_{2})$ $T_{i_q} = P$
- TL c = 0

~C

Static and dynamic games OOO

Stackelberg model

Pepall et al. (2014, pp. 265–268)

2 firms: $(I_n = p \cdot q_n)$ • firm 1 is the leader Th= (A-9-9) firm 2 is the follower Both firms have • the same marginal cost $c_1 = c_2 = c$ Π.=(• zero fixed cost $F_1 = F_2 = 0$ Inverse demand function: $p = A - (q_1 + q_2) \prod_{n \in A} A_n$ What is the Stackelberg equilibrium? What is the profit? What is the reason for the dominance of the leader? leader knows: $\frac{A-c}{c} - \frac{A-c}{b} - c$ · - - =

Static and dynamic games

Entry deterrence and predation 00000000

Stackelberg model – graph

Limit output and limit price models

Pepall et al. (2014, pp. 289–291)

Limit output and limit price models

Pepall et al. (2014, pp. 289–291)

When does the leader choose the quantity q_L^d ?

Capacity expansion as a credible entry-deterring commitment

Pepall et al. (2014, pp. 291–299)

Dixit, A. (1980). The role of investment in entry-deterrence. *The economic journal*, 90(357), 95–106.

A dynamic two-stage game between two firms:

- 1. The incumbent chooses the capacity level $\overline{K_1}$ at a cost $r\overline{K_1}$.
- 2. Cournot game:

The incumbent's costs are

$$c_1(q_1) = egin{cases} wq_1 + r\overline{K_1} + F_1 & ext{for } q_1 \leq \overline{K_1} \ (w+r)q_1 + F_1 & ext{for } q_1 > \overline{K_1} \end{cases}$$

The entrant's costs are

$$c_2(q_2) = (w + r)q_2 + F_2$$

The effect of previously acquired capacity

Entry deterrence and predation 00000000

The incumbent's best response in stage 2

Entry deterrence and predation 00000000

The rational bounds on the incumbent's choice of $\overline{K_1}$

Possible locations of the entrant's break-even point

Evidence on predatory capacity expansion

Pepall et al. (2014, pp. 304–309)

- Alcoa case increased capacity 8x between 1912 and 1934
- Weiman and Levin (1994) preemptive investment in SBT
- Safeway in Edmonton in 1960s and 1970s
- DuPont production of titanium dioxide
- Excess capacity expansion in Texas hotels