
Inverse matrix
Definition: A square matrix 𝑨 such that |𝑨| ≠ 𝟎, is called regular. 
Otherwise, if it has a zero determinant, we call it singular.

Theorem: If 𝑨 is a regular matrix then there exists a matrix 𝑩 for which
𝑨 ⋅ 𝑩 = 𝑩 ⋅ 𝑨 = 𝑬.

We call the matrix 𝑩 an inverse of 𝑨. Inverse matrix  is always unique. 
We denote it by 𝑨−𝟏. 

Example: 

Show that the matrix 𝑩 =
3 1
5 2

is an inverse of 𝑨 =
2 −1
−5 3

Solution: 

𝑩 ⋅ 𝑨 =
3 1
5 2

⋅
2 −1
−5 3

=
1 0
0 1

𝑨 ⋅ 𝑩 =
2 −1
−5 3

⋅
3 1
5 2

=
1 0
0 1



Direct solution of a linear system 
using an inverse matrix

If the system 𝑨 ⋅ 𝒙 = 𝒃 has a regular coefficient matrix 𝑨 then it has an
unique solution given by

𝒙 = 𝑨−𝟏 ⋅ 𝒃.

Example: Find the solution to the system using the inverse matrix.
2𝑥1 − 𝑥2 = 2

−5𝑥1 + 3𝑥2 = −3

Solution: The coefficient matrix is 𝑨 =
2 −1
−5 3

, and the vector of right-

hand sides is 𝒃 =
2
−3

.

We know from the previous example that 𝑨−𝟏 =
3 1
5 2

, thus

𝒙 = 𝑨−𝟏 =
3 1
5 2

⋅
2
−3

=
3
4

Check: 𝐿1 = 2 ⋅ 3 − 4 = 2 = 𝑅1, 𝐿2 = −5 ⋅ 3 + 3 ⋅ 4 = −3 = 𝑅2.



Direct solution of the linear
system using determinants

Cramer‘s rule: Let 𝑨 be a regular matrix of order 𝑛, and 𝒃 vector of right-hand 
sides. Then solution of the system 𝑨 ⋅ 𝒙 = 𝒃 is unique, and 𝑥𝑖 =

𝑩𝒊

𝑨
, 𝑖 = 1,… , 𝑛,

where 𝑩𝒊 is the matrix obtained by replacing the 𝑖-th column in 𝑨 with a vector 𝒃.

Problem: Use Cramer’s rule to solve the system
2𝑥1 − 𝑥2 = 4
𝑥1 + 3𝑥2 − 5 𝑥3 = 4

2𝑥2 + 𝑥3 = 5

Solution: 𝑨 =
2 −1 0
1 3 −5
0 2 1

, 𝒃 =
4
4
5

, 𝑨 = 27.

|𝑩𝟏| =
4 −1 0
4 3 −5
5 2 1

= 81, |𝑩𝟐| =
2 4 0
1 4 −5
0 5 1

= 54, |𝑩𝟑| =
2 −1 4
1 3 4
0 2 5

= 27,

So 𝑥1 =
81

27
= 3, 𝑥2 =

54

27
= 2, 𝑥3 =

27

27
= 1.



Using determinants to find the 
inverse matrix

By applying Cramer's rule to the solution of a matrix equation 𝑨 ⋅ 𝑿 = 𝑬
we get a formula for the elements of the matrix 𝑿 inverse to the regular 

matrix 𝑨 of order 𝑛: 𝑥𝑖𝑗 = −1 𝑖+𝑗 ⋅
𝑨𝑗𝑖

𝑨
, 𝑖, 𝑗 = 1,… , 𝑛,

where 𝑨𝑗𝑖 is a matrix obtained from 𝑨 by deleting its 𝑗-th row and 𝑖-th
column.

Comment: For 𝑛 = 2 we have

𝑨−𝟏 =
𝟏

|𝑨|

|𝑨11| −|𝑨21|
−|𝑨12| |𝑨22|

=
𝟏

|𝑨|

𝑎22 −𝑎12
−𝑎21 𝑎11

.

Problem: Find the inverse of the matrix 𝑨 =
7 4
5 3

. Check the solution. 

Solution :|𝑨| = 1, 𝑨−𝟏 =
𝟏

𝟏

3 −4
−5 7

.

Check: 𝑨 ⋅ 𝑨−𝟏 = 𝑬 ,𝑨−𝟏 ⋅ 𝑨 = 𝑬.



Equivalent systems of equations

Two linear systems 𝑨 ⋅ 𝒙 = 𝒃 and 𝑪 ⋅ 𝒙 = 𝒅 are called
equivalent, if any solution of the system 𝑨 ⋅ 𝒙 = 𝒃 is at the same
time the solution of 𝑪 ⋅ 𝒙 = 𝒅 and vice versa.

Theorem: If 𝑨 𝒃) is augmented matrix of a system 𝑨 ⋅ 𝒙 = 𝒃
and 𝑪 𝒅) is obtained from 𝑨 𝒃) using elementary row
operations then the system 𝑪 ⋅ 𝒙 = 𝒅 is equivalent to 𝑨 ⋅ 𝒙 = 𝒃.

We write 𝑨 𝒃) ∼ 𝑪 𝒅).

Elimination methods of solving linear systems: Use elementary row
operations to convert 𝑨 ⋅ 𝒙 = 𝒃 to solving equivalent system 𝑪 ⋅
𝒙 = 𝒅 with matrix 𝑪 in a special shape. 



Solution of the system with
upper triangular matrix

The system 𝑪 ⋅ 𝒙 = 𝒅, where 𝑪 =

𝑐11 𝑐12 …
0 𝑐22 …
⋮
0

⋮
0

⋱
…

𝑐1𝑛
𝑐2𝑛
⋮

𝑐𝑛𝑛

is solved by a back substitution: we obtain 𝑥𝑛 =
𝑑𝑛

𝑐𝑛𝑛
from the last equation

and insert it to the second to last and compute 𝑥𝑛−1 , etc...

Problem: Solve the system
𝑥1 − 2𝑥2 + 3𝑥3 = 7

−𝑥2 + 4𝑥3 = 5
2𝑥3 = 6

Solution: 

From the last equation: 𝑥3 =
6

2
= 3, so 𝑥2 = 4𝑥3 − 5 = 12 − 5 = 7,

then we have 𝑥1 = 7 + 2𝑥2 − 3𝑥3 = 7 + 14 − 9 = 12.



Elimination methods for
systems with regular matrix
Gaussian elimination
Matrix 𝑨 𝒃) is transformed to a staircase matrix 𝑪 𝒅) using
elemetary row operations and then we proceed with the method of 
back substitution.
http://demonstrations.wolfram.com/PlanesSolutionsAndGaussianElimi
nationOfA33LinearSystem/
Jordan‘s elimination
Matrix 𝑨 𝒃) is transformed to a diagonal matrix 𝑪 𝒅) using
elemetary row operations , so we obtain a system

𝑐11𝑥1 = 𝑑1
𝑐22𝑥2 = 𝑑2

⋱
𝑐𝑛𝑛𝑥𝑛 = 𝑑𝑛

We directly compute 𝑥1 =
𝑑1

𝑐11
, 𝑥2 =

𝑑2

𝑐22
, … 𝑥𝑛 =

𝑑𝑛

𝑐𝑛𝑛
. 

http://demonstrations.wolfram.com/PlanesSolutionsAndGaussianEliminationOfA33LinearSystem/


Jordan‘s elimination in matrix 
equation
By matrix equation we mean 𝑚 systems with the same coefficient
matrix 𝑨 of order 𝑛 and right-hand sides 𝒃𝟏, 𝒃𝟐, … , 𝒃𝒎 written as 
𝑨 ⋅ 𝑿 = 𝑩, where 𝑩 is a matrix consisting of the columns
𝒃𝟏, 𝒃𝟐, … , 𝒃𝒎 and 𝑿 is an unknown matrix of the order (𝑛,𝑚). The 
columns of the solution to the matrix equation are solutions of 
individual 𝑚 systems. When solving the matrix equation by the 
Jordan's method, we transform the extended matrix 𝑨 𝑩) with 
elementary row operations to obtain 𝑬 𝑫). Then unknown matrix 𝑿
satisfies 𝑬 ⋅ 𝑿 = 𝑫, so 𝑿 = 𝑫.

Jordan's method for determining the inverse matrix

Finding the inverse of 𝑨 is a problem of solving the matrix equation 
𝑨 ⋅ 𝑿 = 𝑬. We determine the unknown matrix 𝑿 = 𝑨−𝟏 using Jordan's 
method by modifying the extended matrix 𝑨 𝑬) with elementary 
row operations to obtain 𝑬 𝑫). Then 𝑨−𝟏 = 𝑫.



Jordan's method for 
determining the inverse matrix
Problem:  Find the inverse to 𝑨 =

2 3 −2
5 0 6
0 −2 3

Solution:

𝑨 𝑬 =

2 3 −2|
5 0 6 |
0 −2 3 |

1 0 0
0 1 0
0 0 1

∼

2 3 −2|
0 −15 22 |
0 −2 3 |

1 0 0
−5 2 0
0 0 1

∼

2 3 −2|
0 −15 22 |
0 0 1 |

1 0 0
−5 2 0
10 −4 15

∼

10 0 12|
0 −15 22 |
0 0 1 |

0 2 0
−5 2 0
10 −4 15

∼

10 0 0 |
0 −15 22 |
0 0 1 |

−120 50 −180
−5 2 0
10 −4 15

∼

10 0 0 |
0 −15 0 |
0 0 1 |

−120 50 −180
−225 90 330
10 −4 15

So the inverse is 𝑨−𝟏 =
−12 5 −18
15 −6 −22
10 −4 15

.



Solution of the system with
matrix of rank r(A)<n

If the order of the matrix 𝑨 is (𝑚, 𝑛) and at the same time r = r (𝑨) <𝑛, we transform
the extended matrix to a staircase form and we get an equivalent system of only ℎ
equations for 𝑛 unknowns. It is possible to select 𝑛 − r unknowns, which we consider 
as parameters, and convert them to the right-hand side, so that the coefficients of the 
unknowns on the left side form the upper triangular matrix. Then we solve the 
problem using the back substitution method.
Problem: Find all solutions to the system of equations

3𝑥1 + 5𝑥2 + 𝑥3 + 𝑥4 − 2𝑥5 = 0
3𝑥2 + 6𝑥3 + 4𝑥4 − 𝑥5 = 0

−2𝑥4 + 2𝑥5 = 0

Solution: The coefficient matrix is already staircase, and we can see thatthe rank
𝑟 𝑨 = 3 < 𝑛. when searching for a solution, we can therefore choose 𝑛 − 𝑟 = 2 
unknowns as parameters and calculate the remaining three. We want the coefficients 
forming the upper triangular matrix on the left side, so let‘s keep here the unknown 
corresponding to the "beginnings of the stairs", ie 𝑥1, 𝑥2 and 𝑥4. The rest, namely 𝑥3
and 𝑥5, is converted to the right and set to parameters:
𝑥3 = 𝑝, 𝑥5 = 𝑞, where 𝑝, 𝑞 ∈ ℝ. 



Solution of the system with
matrix of rank r(A)<n

We get the system
3𝑥1 + 5𝑥2 + 𝑥4 = −𝑝 + 2𝑞

3𝑥2 + 4𝑥4 = −6𝑝 + 𝑞
−2𝑥4 = −2𝑞

From the last equation we have 𝑥4 = 𝑞. We insert it into the second 
equation and we obtain 3𝑥2 + 4𝑞 = −6𝑝 + 𝑞, so 𝑥2 = −2𝑝 − 𝑞. 
Finally, we substitute for 𝑥2and 𝑥4 to the first equation, 3𝑥1 + 5(−2𝑝 −
𝑞) + 𝑞 = −𝑝 + 2𝑞, after simplifying: 𝑥1 = 3𝑝 + 2𝑞.

Conclusion: The set of all solutions, the so-called general solution, 
depends on two parameters. If we substitute arbitrary numbers for 𝑝, 𝑞,
we get some so-called particular solution of the system, for example for 
𝑝 = 1, 𝑞 = 1 we get 𝒙 = 5,−3, 1,1,1 ⊤. At the same time, each 
particular solution can be written in the form 𝒙 = (

)
3𝑝 + 2𝑞,−2𝑝 −

𝑞, 𝑝, 𝑞, 𝑞 ⊤ for some 𝑝, 𝑞 ∈ ℝ. 

Comment: Systems with zero right-hand side are called homogeneous 
systems. These systems are always solvable (They have always at least the 
zero vector solution).



Solvability of the linear system

Frobenius theorem:

Let  𝑨. 𝒙 = 𝒃 be a systém of 𝑚 equations in 𝑛 unknowns. Then if:

• 𝑟( 𝑨) < 𝑟( 𝑨|𝒃), the system has no solution

• 𝑟 𝑨 = 𝑟 𝑨 𝒃 = 𝑛, the system has a unique solution

• 𝑟 𝑨 = 𝑟 𝑨 𝒃 = ℎ < 𝑛, then the system has infinitely many 
solutions depending on 𝑛 − ℎ parameters.

Comment: If the system contains an equation

0 ⋅ 𝑥1 + 0 ⋅ 𝑥2 +⋯+ 0 ⋅ 𝑥𝑛 = 𝑐, 𝑐 ≠ 0, then it has no solution (as 
the extended coefficient matrix containes a row (0 0 … 0|𝑐),  
and ℎ( 𝑨) < ℎ( 𝑨|𝒃).) In these cases, there are methods for the 
approximate solution of the system, often using the least squares 
method.

http://demonstrations.wolfram.com/LinearEquationsRowAndColumnV
iew/

http://demonstrations.wolfram.com/LinearEquationsRowAndColumnView/

