Derivatives in use

l'Hôpital's rule

l'Hôpital's rule for the limit $\lim \frac{f(x)}{g(x)}$ of the type $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$ says that

if there is $\lim \frac{f'(x)}{g'(x)} = \alpha \in \mathbb{R}^*$ then $\lim \frac{f(x)}{g(x)}$ also exists, and:

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)} = \alpha$$

Here, the symbol "lim" represents an arbitrary limit $x \to a \in \mathbb{R}^*$ or onesided limit $x \to a + \text{ or } x \to a -$.

Problem: Find the limit $\lim_{x \to 0} \frac{\sin x}{x}$. **Solution:** $\lim_{x \to 0} \frac{\sin x}{x} = "\frac{0}{0}"$. We use l'Hôpital's rule : $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{x'} = \lim_{x \to 0} \frac{\cos x}{1} = 1$. **Comment:** Sometimes we have to apply the rule repeatedly.

Problem: Find the limit
$$\lim_{x \to 0} \frac{\sin^2 x}{x^2}$$
.
Solution: $\lim_{x \to 0} \frac{\sin^2 x}{x^2} = "\frac{0}{0}" = \lim_{x \to 0} \frac{2\sin x \cos x}{2x} = "\frac{0}{0}" = \lim_{x \to 0} \frac{2(\cos^2 x - \sin^2 x)}{2} = 1$

More complicated limits

Comment: Some limits must first be converted to a quotient before the calculation.

Problem: Find the limit $\lim_{x \to 0^+} \sqrt{x} \cdot \ln x$. **Solution:** $\lim_{x \to 0^+} \sqrt{x} \cdot \ln x = "0 \cdot (-\infty)"$. We write the limit as: $\lim_{x \to 0^+} \frac{\ln x}{x^{-\frac{1}{2}}}$. In this form, it's a " $\frac{-\infty}{x}$ " type limit. We can use l'Hôpital's rule: $\lim_{x \to 0^+} \frac{\ln x}{x^{-\frac{1}{2}}} = \lim_{x \to 0^+} \frac{1/x}{\frac{-1}{2}x^{-\frac{3}{2}}} = \lim_{x \to 0^+} -2\sqrt{x} = 0$.

Warning: Do not confuse the L'H rule with the quotient rule

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Tangent to the graph

Problem: Find the equation of the tangent to the graph of the function $f(x) = e^{1-x}$ at the point T = [1, f(1)].

Solution: According to the definition of derivative, the slope of the tangent is equal to the number f'(1). We know that the equation of the line passing through the point T = [1, f(1)]

with the slope f'(1) is

$$y - f(1) = f'(1) \cdot (x - 1)$$

Now it remains to determine the numbers f(1), f'(1): $f(1) = e^0 = 1$, $f'(x) = e^{1-x} \cdot (1-x)' = -e^{1-x}$, so $f'(1) = -e^0 = -1$. The equation of the line: y - 1 = -(x - 1), i.e. y = -x + 2. http://demonstrations.wolfram.com/CarTravelingAtNight/

Tangent to the graph

Differential

Consider the function f(x), which has a derivative f'(a) at the point a. If we construct a tangent to the graph of the function f(x) at the point a, t: y = f(a) + f'(a). (x - a), we can estimate the value of f (x) as $f(x) \approx f(a) + f'(a) \cdot (x - a)$. The term $df(a) = f'(a) \cdot (x - a)$ is called differential of the function f(x) at a, $df(a) = f'(a) \cdot dx.$ y=f(x)y=f(a)+f'(a).(x-a)df(a)=f'(a).dxf(a) dx=x-a а Х

Warning: df(a) is not a function increment, it only approximates it!

Differential and approximation

Differentials can be used for linear approximations.

Problem: Let's have a function $f(x) = \sqrt{x}$ and the point a = 4.

- Find the differential of the function f(x) at the point a.
- Use the differential to estimate $\sqrt{5}$.

Solution:

•
$$f'(x) = \frac{1}{2\sqrt{x}}$$
, and $f'(4) = \frac{1}{4}$. So $df(4) = \frac{dx}{4}$.

•
$$\sqrt{5} = f(5) \approx f(a) + f'(a) \cdot (5-a) = \sqrt{4} + \frac{5-4}{4} = 2.25$$

Comment: The true value rounded to 3 decimal places is $\sqrt{5} = 2.236$.

Taylor polynomial

Approximations can be improved using higher-order terms. If the function f(x) has derivative at a up to the order n then we can construct here n th-order Taylor polynomial:

$$T_n(x) = f(a) + f'(a).(x - a) + \frac{f''(a)}{2!}.(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}.(x - a)^n$$

For x "close to a" we have $f(x) \approx T_n(x)$. There are many ways how to express the error term $R_n(x) = f(x) - T_n(x)$.

Taylor's formula

Problem: Let's have a function $f(x) = \sqrt{x}$ and the point a = 4.

- Find the Taylor polynomial $T_3(x)$.
- Use the polynomial to estimate $\sqrt{5}$. Solution:

• $f'(x) = \frac{1}{2\sqrt{x}}, f''(x) = \frac{-1}{4\sqrt{x^3}}, f'''(x) = \frac{3}{8\sqrt{x^5}}.$ We have: $f'(4) = \frac{1}{4}, f''(4) = \frac{-1}{32}, f'''(4) = \frac{3}{256}.$ So $T_3(x) = 2 + \frac{1}{4}(x-4) + \frac{1}{2} \cdot \frac{-1}{32} \cdot (x-4)^2 + \frac{1}{6} \cdot \frac{3}{256} \cdot (x-4)^3$ • $\sqrt{5} = f(5) \approx 2 + \frac{1}{4} + \frac{1}{2} \cdot \frac{-1}{32} + \frac{1}{6} \cdot \frac{3}{256} = 2.236328125.$ Comment: The true value rounded to 4 decimal places is $\sqrt{5} = 2.2361.$

http://demonstrations.wolfram.com/TaylorSeries/