Derivatives in use

l'Hôpital's rule

l'Hôpital's rule for the limit $\lim \frac{f(x)}{g(x)}$ of the type $\frac{0}{0}$ $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$ $\frac{1}{\pm}$ says that

if there is $\lim \frac{f'(x)}{g'(x)} = \alpha \in \mathbb{R}^*$ then $\lim \frac{f(x)}{g(x)}$ also exists, and:

$$
\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)} = \alpha
$$

Here, the symbol "lim" represents an arbitrary limit $x \to a \in \mathbb{R}^*$ or onesided limit $x \to a +$ or $x \to a -$.

Problem: Find the limit lim $x \rightarrow 0$ $\sin x$ $\frac{\pi x}{x}$. **Solution:** lim $x \rightarrow 0$ $\sin x$ $\frac{\ln x}{x} = \frac{0}{0}$ $\frac{0}{0}$ ". We use l'Hôpital's rule : lim $x \rightarrow 0$ $\sin x$ $\frac{\pi x}{x} = \lim_{x \to 0}$ $x \rightarrow 0$ $(\sin x)$ $\frac{\lim_{x \to 0^+}}{x} = \lim_{x \to 0^-}$ $x \rightarrow 0$ $cos x$ $\frac{1}{1}$ = 1. **Comment:** Sometimes we have to apply the rule repeatedly.

Problem: Find the limit
$$
\lim_{x \to 0} \frac{\sin^2 x}{x^2}
$$
.
\n**Solution:** $\lim_{x \to 0} \frac{\sin^2 x}{x^2} = \lim_{x \to 0} \frac{0}{x} = \lim_{x \to 0} \frac{2 \sin x \cos x}{2x} = \lim_{x \to 0} \frac{1}{0} = \lim_{x \to 0} \frac{2(\cos^2 x - \sin^2 x)}{2} = 1$

More complicated limits

Comment: Some limits must first be converted to a quotient before the calculation.

Problem: Find the limit lim $x \rightarrow 0+$ \overline{x} · ln x. **Solution:** lim $x \rightarrow 0+$ \overline{x} · ln $x = "0 \cdot (-\infty)$ ". We write the limit as: lim $x \rightarrow 0+$ $ln x$ $\frac{1}{x^{-\frac{1}{2}}}$ 2 . In this form, it's a " −∞ ∞ " type limit. We can use l'Hôpital's rule: lim $x \rightarrow 0+$ $ln x$ $\frac{1}{x^{-\frac{1}{2}}}$ 2 $=$ \lim $x \rightarrow 0+$ $1/x$ −1 $\frac{-1}{2}x^{-\frac{3}{2}}$ 2 $=$ \lim $x \rightarrow 0+$ $-2\sqrt{x} = 0$.

Warning: Do not confuse the L'H rule with the quotient rule

$$
\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}
$$

Tangent to the graph

Problem: Find the equation of the tangent to the graph of the function $f(x) = e^{1-x}$ at the point $T = [1, f(1)].$

Solution: According to the definition of derivative, the slope of the tangent is equal to the number $f'(1)$. We know that the equation of the line passing through the point $T = [1, f(1)]$

with the slope $f'(1)$ is

$$
y - f(1) = f'(1) \cdot (x - 1)
$$

Now it remains to determine the numbers $f(1)$, $f'(1)$: $f(1) = e^0 = 1, f'(x) = e^{1-x} \cdot (1-x)' = -e^{1-x},$ so $f'(1) = -e^0 = -1$. The equation of the line: $y - 1 = -(x - 1)$, i.e. <http://demonstrations.wolfram.com/CarTravelingAtNight/> $y = -x + 2.$

Tangent to the graph

Differential

Consider the function $f(x)$, which has a derivative $f'(a)$ at the point a . If we construct a tangent to the graph of the function $f(x)$ at the point a, t: $y = f(a) + f'(a)$. $(x - a)$, we can estimate the value of f (x) as $f(x) \approx f(a) + f'(a)$. $(x - a)$. The term $df(a) = f'(a)$. $(x - a)$ is called differential of the function $f(x)$ at a , $df(a) = f'(a) \cdot dx.$ $y=f(x)$ $y = f(a) + f'(a) (x-a)$ $df(a)=f'(a).dx$ $f(a)$ $dx = x - a$ \boldsymbol{x} a

Warning: $df(a)$ is not a function increment, it only approximates it!

Differential and approximation

Differentials can be used for linear approximations.

Problem: Let's have a function $f(x) = \sqrt{x}$ and the point $a = 4$.

- Find the differential of the function $f(x)$ at the point a.
- Use the differential to estimate $\sqrt{5}$.

Solution:

•
$$
f'(x) = \frac{1}{2\sqrt{x}}
$$
, and $f'(4) = \frac{1}{4}$. So $df(4) = \frac{dx}{4}$.

•
$$
\sqrt{5} = f(5) \approx f(a) + f'(a)
$$
. $(5 - a) = \sqrt{4} + \frac{5 - 4}{4} = 2.25$

Comment: The true value rounded to 3 decimal places is $\sqrt{5}$ = 2.236.

Taylor polynomial

Approximations can be improved using higher-order terms. If the function $f(x)$ has derivative at α up to the order n then we can construct here n th-order Taylor polynomial:

$$
T_n(x) = f(a) + f'(a). (x - a) + \frac{f''(a)}{2!} . (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} . (x - a)^n
$$

For x "close to a" we have $f(x) \approx T_n(x)$. There are many ways how to express the error term $R_n(x) = f(x) - T_n(x)$.

Taylor's formula

Problem: Let's have a function $f(x) = \sqrt{x}$ and the point $a = 4$.

- Find the Taylor polynomial $T_3(x)$.
- Use the polynomial to estimate $\sqrt{5}$. **Solution:**

• $f'(x) = \frac{1}{2}$ $2\sqrt{x}$, $f''(x) = \frac{-1}{\sqrt{x}}$ $\frac{-1}{4\sqrt{x^3}}$, $f'''(x) = \frac{3}{8\sqrt{x^3}}$ $\frac{3}{8\sqrt{x^5}}$. We have: $f'(4) = \frac{1}{4}$ 4 $, f''(4) = \frac{-1}{33}$ 32 , $f'''(4) = \frac{3}{35}$ 256 . So $T_3(x) = 2 + \frac{1}{4}$ 4 $(x-4)+\frac{1}{2}$ 2 $\frac{-1}{22}$ 32 $(x-4)^2 + \frac{1}{6}$ 6 $\frac{3}{25}$ 256 $(x-4)^3$ • $\sqrt{5} = f(5) \approx 2 + \frac{1}{4}$ 4 $+\frac{1}{2}$ 2 $\frac{-1}{22}$ 32 $+\frac{1}{6}$ 6 $\frac{3}{25}$ 256 $= 2.236328125.$ **Comment:** The true value rounded to 4 decimal places is $\sqrt{5}$ = 2.2361.

<http://demonstrations.wolfram.com/TaylorSeries/>