Linear combination

Let $x_1, x_2, ..., x_m$ vectors of length n, and $c_1, c_2, ..., c_m \in \mathbb{R}$ then vector $c_1 x_1 + c_2 x_2 + \cdots + c_m x_m$

Is called the linear combination of vectors $x_1, x_2, ..., x_m$. **Problem:** Is vector $x = (4, -1, 10, 12)$ a linear combination of vectors $y = (1, 0, 5, 7)$, and $z = (2, -1, 0, -2)$? **Solution:** Coefficients c_1 , c_2 must satisfy the equations $1 \cdot c_1 + 2 \cdot c_2 = 4$ $0 \cdot c_1 - 1 \cdot c_2 = -1$ $5 \cdot c_1 + 0 \cdot c_2 = 10$ $7 \cdot c_1 - 2 \cdot c_2 = 12$ Apparently, the values $c_1 = 2$, $c_2 = 1$ are the solution to this system. So

 $x = 2 \cdot y + z$ <http://demonstrations.wolfram.com/HeadToToeVectorAddition/>

Linear independence

We say that vectors $x_1, x_2, ..., x_m$ are linearly dependent, if there is at least one vector among them that is a combination of the others. Otherwise, we say that vectors $x_1, x_2, ..., x_m$ are linearly independent.

Example: Vectors $x = (4, -1, 10, 12)$, $y = (1, 0, 5, 7)$, $z =$ $(2, -1, 0, -2)$ from the previous example are linearly dependent. Vectors y and z are linearly independent.

Remark: Vectors $x_1, x_2, ..., x_m$ are linearly independent if, and only if the vector equation $c_1 x_1 + c_2 x_2 + \cdots + c_m x_m = 0$

has one solution $c_1 = 0, c_2 = 0, ..., c_m = 0.$

Vectors are linearly dependent if there is also a non-zero solution.

Rank of the matrix

Definition: If $X = (x_1, x_2, ..., x_m)$ is the set of vectors of length *n*, then the maximum number of linearly independent vectors in the group X is called rank X and we denote it $r(X)$.

Comment: Let's have a matrix A of size (m, n) . If we consider X to be the rows of a matrix A, then we call $r(X)$ the row rank of A; for the columns of the matrix A we speak of the column rank.

Problem: Determine the row and column rank of the matrix

$$
C = \begin{pmatrix} 6 & -4 & 2 & 0 & 1 \\ 0 & 5 & 3 & 1 & 0 \end{pmatrix}.
$$

Solution:

The rows are apparently linearly independent (neither is a multiple of the other), so the row rank is 2. The column rank is also 2, because the last two columns are obviously linearly independent and the others are a linear combination.

Rank of the matrix

Theorem: For A of the order (m, n) is its column rank equal to the row rank, so we don't distinguish between these two characteristics, we call it just rank of A and denote it by $r(A)$.

Corollary:

• $r(A) = r(A^{\top})$ $r(A) \leq \min(m, n)$

Problem: Find the rank of the matrix
$$
A = \begin{pmatrix} 6 & -4 & 2 & 0 & 1 \\ 0 & 5 & 3 & 1 & 0 \\ 0 & 0 & 0 & 3 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

Solution: The first three lines are obviously linearly independent, but the fourth is zero (ie dependent on the others). So the rank is 3.

Theorem: The staircase matrix has a rank equal to the number of its nonzero rows.

Elementary row operations

Let's have a matrix A of size (m, n) . If we change the matrix A using one of these:

- Interchange any pair of rows, or
- Multiply any row by a non-zero scalar, or
- Add any multiple of one row to a different row,

we say that we have performed elementary row operation. By applying a sequence of elemetary operations on A , we obtain a new matrix \bm{B} that is said to be equivalent to \bm{A} , and we write:

$A \sim B$.

Comment: Elementary transformations have a wide range of uses, for example in determining the rank of a matrix, solving systems of equations, finding an inverse matrix or calculating a determinant.

Elementary operations: application

Problem: Use elementary transformations to convert $A =$ −4 2 0 −3 to a staircase matrix

Solution: First, we swap the first and third rows

$$
\begin{pmatrix}\n-4 & 2 & 0 & 1 \\
5 & -3 & 1 & 0 \\
1 & 0 & 3 & 7\n\end{pmatrix} \sim \begin{pmatrix}\n1 & 0 & 3 & 7 \\
5 & -3 & 1 & 0 \\
-4 & 2 & 0 & 1\n\end{pmatrix}
$$
\nBy adding a multiple of the first line, we reset the first number on the other lines:
\n
$$
\begin{pmatrix}\n5 & -3 & 1 & 0 \\
5 & -3 & 1 & 0 \\
0 & 2 & 12 & 29\n\end{pmatrix} \sim \begin{pmatrix}\n1 & 0 & 3 & 7 \\
5 & -3 & 1 & 0 \\
0 & -3 & -14 & -35 \\
0 & 2 & 12 & 29\n\end{pmatrix}
$$

Now just add 2 times the second line to the third row multiplied by 3:

∼ 0 3 −3 −14 −35 We have obtained the staircase matrix.

Elementary operations and the rank

Theorem: Elementary operations do not change the rank of a matrix. **Example:** For a matrix from the −4 2 0 \blacktriangleleft \blacktriangle

previous slide
$$
A = \begin{pmatrix} -4 & 2 & 0 & 1 \\ 5 & 3 & 1 & 0 \\ 1 & 0 & 3 & 7 \end{pmatrix}
$$

we have $r(A) = 3$.

Note: To find the rank of a matrix, we always convert it to a staircase matrix using elementary operations, and then determine the rank as the number of nonzero rows.

Determinant

Definition: Let A be a square matrix of order n. Determinant of the matrix \bm{A} is a number $|\bm{A}|$ defined as

- a_{11} for $n = 1$
- $a_{11} \cdot a_{22} a_{12} \cdot a_{21}$ for $n = 2$
- \bullet $a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{21} \cdot a_{32} \cdot a_{13} -$

 $-(a_{31} \cdot a_{22} \cdot a_{13} + a_{11} \cdot a_{32} \cdot a_{23} + a_{21} \cdot a_{12} \cdot a_{33})$ for $n=3$ "products of diagonal elements in augmented matrix": Sarrus's rule

• for $n \geq 4$ there is no such Sarrus's rule, the determinant is then defined using expansion along the first row as

 $a_{11} \cdot |A_{11}| - a_{12} \cdot |A_{12}| + a_{13} \cdot |A_{13}| - a_{14} \cdot |A_{14}| + \cdots$, where A_{ij} is a submatrix obtained from A by deleting the *i*-th row and *j*-th column.

Determinant

Remark: In a similar way, the determinant can be calculated by an expansion along another row.

Theorem: For any square matrix A is true can be expanded also along columns).

$$
|A| = |AT|
$$
 (so the determinant

Problem: Compute the determinants

$$
|A| = \begin{vmatrix} 2 & 7 \\ 3 & 5 \end{vmatrix}, |B| = \begin{vmatrix} 1 & 0 & 2 \\ 3 & 5 & 4 \\ 0 & 2 & 1 \end{vmatrix}, |C| = \begin{vmatrix} 2 & 1 & -3 & 0 \\ 0 & -2 & 0 & -1 \\ 4 & 1 & 1 & 0 \\ 0 & 5 & 0 & 5 \end{vmatrix}
$$

Solution:
$$
|A| = \begin{vmatrix} 2 & 7 \\ 3 & 5 \end{vmatrix} = 2 \cdot 5 - 3 \cdot 7 = -11
$$

\n $|B| = \begin{vmatrix} 1 & 0 & 2 \\ 3 & 5 & 4 \\ 0 & 2 & 1 \end{vmatrix}$
\n $= 1 \cdot 5 \cdot 1 + 0 \cdot 4 \cdot 0 + 3 \cdot 2 \cdot 2 - (0 \cdot 5 \cdot 2 + 1 \cdot 4 \cdot 2 + 3 \cdot 0 \cdot 1) = 9$

Expansion of determinant

Example continued: $|C|$ =

$$
=\begin{vmatrix} 2 & 1 & -3 & 0 \\ 0 & -2 & 0 & -1 \\ 4 & 1 & 1 & 0 \\ 0 & 5 & 0 & 5 \end{vmatrix} = 2 \cdot \begin{vmatrix} -2 & 0 & -1 \\ 1 & 1 & 0 \\ 5 & 0 & 5 \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & 0 & -1 \\ 4 & 1 & 0 \\ 0 & 0 & 5 \end{vmatrix} + (-3) \cdot \begin{vmatrix} 0 & -2 & -1 \\ 4 & 1 & 0 \\ 0 & 5 & 5 \end{vmatrix}
$$

$$
= 2 \cdot (-10 + 5) - 1 \cdot 0 - 3 \cdot (-20 + 40) = -70.
$$

Theorem: The determinant of a matrix in the upper triangular form is equal to the product of its diagonal elements.

Example:
$$
\begin{vmatrix} 7 & 0 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{vmatrix} = 7 \cdot 1 \cdot 5.
$$

Remark: When calculating the determinant, the matrix can be converted to a staircase (or upper triangular) form using elementary operations.

Caution: Some transformations change the value of the determinant!

<http://demonstrations.wolfram.com/33DeterminantsByExpansion/>

Determinant by elementary operations

If we get the matrix \bm{B} from the matrix \bm{A} using the basic elementary operations

- Interchanging two rows, then $|B| = -|A|$
- multiplying a row by a number α , then $|B| = \alpha |A|$
- Adding one row to another, then $|B| = |A|$

Problem: Find the determinant from previous example by elementary operations. **Solution:** $|C|$ =

$$
\begin{vmatrix} 2 & 1 & -3 & 0 \ 0 & -2 & 0 & -1 \ 4 & 1 & 1 & 0 \ 0 & 5 & 0 & 5 \ \end{vmatrix} = \begin{vmatrix} 2 & 1 & -3 & 0 \ 0 & -1 & 7 & 0 \ 0 & 5 & 0 & 5 \ \end{vmatrix} = - \begin{vmatrix} 2 & 1 & -3 & 0 \ 0 & -1 & 7 & 0 \ 0 & 5 & 0 & 5 \ \end{vmatrix} = - \begin{vmatrix} 2 & 1 & -3 & 0 \ 0 & -2 & 0 & -1 \ 0 & 5 & 0 & 5 \ \end{vmatrix} = - \begin{vmatrix} 2 & 1 & -3 & 0 \ 0 & 0 & -14 & -1 \ 0 & 0 & 35 & 5 \ \end{vmatrix}
$$

=
$$
- \begin{vmatrix} 2 & 1 & -3 & 0 \ 0 & -1 & 7 & 0 \ 0 & 0 & -14 & -1 \ 0 & 0 & 0 & 2.5 \ \end{vmatrix} = -(2 \cdot (-1) \cdot (-14) \cdot 2.5 = -70
$$

<http://demonstrations.wolfram.com/DeterminantsSeenGeometrically/>