
Multivariable calculus



Definition: For 𝑛 ∈ ℕ, let 𝐷 ⊆ ℝ𝑛 (the set of ordered 𝑛-tuples of
real numbers). Mapping from 𝐷 to ℝ is called function of 𝑛
variables. We use the notation 𝑧 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) where  
𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ𝑛. 

Comment: Usually, the domain 𝐷 of the function 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛)
is the largest set for which the expression makes sense.

Comment: We will use Euclidean distance between the points
𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℝ𝑛 and 𝐵 = 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ ℝ𝑛, defined
as  

𝜌(𝐴, 𝐵) = 𝑎1 − 𝑏1
2 + 𝑎2 − 𝑏2

2 +⋯+ 𝑎𝑛 − 𝑏𝑛
2

Similarly to a function of one variable, we can define
neighborhood of 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℝ𝑛. For 𝛿 > 0 we call by  
𝛿 - neighborhood of 𝐴 the set of all points from ℝ𝑛 that are 
closer to 𝐴 than 𝛿: 𝑈𝛿 𝐴 = {𝑋 ∈ ℝ𝑛, 𝜌(𝑋, 𝐴) < 𝛿}

Function of more variables



Definition: We say that the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

has at 𝑋0 = 𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0 limit 𝐴 ∈ ℝ , lim

𝑋→ 𝑋0
𝑓(𝑋) = 𝐴, 

if for ∀ 𝜀 > 0 ∃ 𝛿 > 0 such that 𝑓(𝑋) is defined in neighborhood 
𝑈𝛿 𝑋0 ∖ {𝑋0} and for all 𝑋 from this neighborhood: 

|𝑓(𝑋) − 𝐴| < 𝜀 ( for 𝑋 „close to“ 𝑋0 is 𝑓 𝑋 ≈ 𝐴.)   

Comment: The same rules apply to the calculation of limits as for the 
function of one variable. Improper limits are introduced in a similar way.

Definition: We say that the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is continuous at the
point 𝑋0 = [𝑥1

0, 𝑥2
0, … , 𝑥𝑛

0], if it has a limit at this point and satisfies: 

lim
𝑋→ 𝑋0

𝑓(𝑋) = 𝑓(𝑋0).

Example: The function 𝑓(𝑥, 𝑦) =
1

𝑥2+𝑦2
is continuous in ℝ2 except for 

point [0,0]. 

Comment: We will make further considerations for functions of two 
variables, but they can also be generalized for 𝑛 > 2. 

Limit of the multivariable function



Graphical representation of the
function of two variables
In three-dimensional space, we can imagine a graph of a 
function of two variables as the earth's surface. Level curves
(contours) are mostly used to represent a surface in 2D.



Graphical representation of the
function of two variables
Example: Lets sketch the graph and level curves of g(x, y) =

𝑥

𝑒𝑥
2+𝑦2

.

Definition: For given c ∈ ℝ, we define the level curve of 𝑓(𝑥, 𝑦) as 
the set of all 𝑥, 𝑦 ∈ ℝ2 such that 𝑓(𝑥, 𝑦) = 𝑐. For example, the zero
level curve of 𝑔(𝑥, 𝑦) corresponds to the set of solutions

𝑥

𝑒𝑥
2+𝑦2

= 0 . 

Obviously, 𝑥 = 0 but 𝑦 is arbitrary, so we get the set { 0, 𝑦 , 𝑦 ∈ ℝ}. 



Let‘s consider a function of two variables 𝑓(𝑥, 𝑦) and let 𝑦 be equal to some 𝑦0 ∈
ℝ. We get a function of one variable, let's denote it 𝑔(𝑥) = 𝑓(𝑥, 𝑦0).  

If this function has a derivative at a point 𝑥0, i.e 𝑔′ 𝑥0 = lim
𝑥→ 𝑥0

𝑓(𝑥,𝑦0) − 𝑓(𝑥0,𝑦0)

𝑥−𝑥0
, 

we call it partial derivative of 𝑓(𝑥, 𝑦) at 𝑥0, 𝑦0 w. r. t. the variable 𝑥. We denote it
by

𝑓𝑥
′(𝑥0, 𝑦0) or  𝑓𝑥(𝑥0, 𝑦0) or  

𝜕 𝑓 𝑥0,𝑦0

𝜕 𝑥
.

We define the derivative w. r. t. 𝑦 similarly.
Comment: For the function 𝑛 variables, partial derivatives are defined similarly. If 
we derive w.r.t. 𝑥𝑖, we consider other variables as constants. We denote the partial 
derivatives of the function 𝑓 (𝑋) at the point 𝑋0 as 𝑓𝑥1

′ 𝑋0 , 𝑓𝑥2
′ 𝑋0 , … , 𝑓𝑥𝑛′(𝑋

0).

Problem: The function 𝑓(𝑥, 𝑦) = 𝑥2 + 3𝑦2 + 5𝑥𝑦 − 4𝑥 + 𝑦 − 1 has partial
derivatives

𝑓𝑥
′(𝑥, 𝑦) = 2𝑥 + 0 + 5𝑦 − 4 + 0 and 𝑓𝑦

′(𝑥, 𝑦) = 0 + 6𝑦 + 5𝑥 − 0 + 1.

Problem: The function 𝑓(𝑥, 𝑦, 𝑧) =
𝑥

𝑦+𝑧2
has partial derivatives

𝑓𝑥
′(𝑥, 𝑦, 𝑧) =

1 ⋅ 𝑦 + 𝑧2 − 𝑥 ⋅ 0

𝑦 + 𝑧2 2 =
1

𝑦 + 𝑧2
,

𝑓𝑦
′ 𝑥, 𝑦, 𝑧 =

0 ⋅ 𝑦 + 𝑧2 − 𝑥 ⋅ 1

𝑦 + 𝑧2 2 =
−𝑥

𝑦 + 𝑧2 2 ,

𝑓𝑧
′(𝑥, 𝑦, 𝑧) =

0 ⋅ 𝑦 + 𝑧2 − 𝑥 ⋅ 2𝑧

𝑦 + 𝑧2 2 =
−2𝑥𝑧

𝑦 + 𝑧2 2

Partial derivatives

http://demonstrations.wolfram.com/PartialDerivativesIn3D/

http://demonstrations.wolfram.com/PartialDerivativesIn3D/


Let Ω ⊆ ℝ𝑛, where the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) has the derivative 𝑓𝑥𝑖 , 𝑖 ∈
{1,… , 𝑛}. If the funtion 𝑓𝑥𝑖 has derivative w. r. t. 𝑥𝑗 in some 𝑋0 ∈ Ω, we call it second 
order partial derivative w.r.t. 𝑥𝑖 and 𝑥𝑗 and denote

𝑓𝑖𝑗 𝑋0 or 𝑓𝑖𝑗
′′ 𝑋0 or

𝜕2 𝑓(𝑋0)

𝜕 𝑥𝑖 𝜕 𝑥𝑗

Comment: If 𝑖 = 𝑗, we use the notation 𝑓𝑖
′′ or

𝜕2 𝑓(𝑋0)

𝜕 𝑥𝑖
2 .

Problem: Calculate all partial derivatives of the second order of the function
𝑓(𝑥, 𝑦, 𝑧) = 3𝑥2 + 𝑦2 + 𝑧3 − 𝑥𝑦𝑧.
Solution: First order derivatives are

𝑓𝑥 = 6𝑥 − 𝑦𝑧,
𝑓𝑦 = 2𝑦 − 𝑥𝑧,

𝑓𝑧 = 3𝑧2 − 𝑥𝑦,
Next, we calculate the second order derivatives

𝑓𝑥𝑥 = 6, 𝑓𝑥𝑦 = −𝑧, 𝑓𝑥𝑧 = −𝑦,

𝑓𝑦𝑥 = −𝑧, 𝑓𝑦𝑦 = 2, 𝑓𝑦𝑧 = −𝑥,

𝑓𝑧𝑥 = −𝑦, 𝑓𝑧𝑦 = −𝑥, 𝑓𝑧𝑧 = 6𝑧.

Theorem: If the function 𝑓 has continuous partial derivatives up to the order 𝑘 in 
some neighborhood 𝑈𝛿(𝑋0) of 𝑋0, the order in which we derive does not matter, ie

𝑓𝑖𝑗
′′(𝑋0) = 𝑓𝑗𝑖

′′(𝑋0).

Higher order partial derivatives



We say that 𝑓(𝑋) has local minimum at the point 𝑋0 ∈ ℝ𝑛 if there is a  
neighborhood 𝑈𝛿(𝑋

0) such that fo all 𝑋 ∈ 𝑈𝛿(𝑋
0) :  

𝑓 𝑋0 ≤ 𝑓(𝑋). Local maximum is defined similarly. 
Comment: In the case of strict inequalities, we speak about strict local 
extremes.
Theorem: If the function 𝑓 (𝑋) has a local extreme at the point 𝑋0 then all 
partial derivatives that exist here must be equal to 0.
Comment: The point at which all partial derivatives are zero is called 
stationary point.  
Problem: Find the stationary points of 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑦2 + 6𝑥𝑦 + 1. 

Solution: 𝑓𝑥
′ = 3𝑥2 + 6𝑦, 𝑓𝑦

′ = 6𝑦 + 6𝑥. 
The equations for a stationary point are 3𝑥2 + 6𝑦 = 0, 6𝑦 + 6𝑥 = 0. 
From the second equation we get 𝑦 = −𝑥 and after substituting into the 
first we get the quadratic equation 3𝑥2 − 6𝑥 = 0 with zero points 𝑥1 =
0, 𝑥2 = 2. Then 𝑦1 = 0, 𝑦2 = −2. Stationary points are 0,0 , 2, −2 . 

Example: The function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 has 
local minimum at [0,0], where the partial

derivatives 𝑓𝑥(𝑥, 𝑦) =
𝑥

𝑥2+𝑦2
and 𝑓𝑦(𝑥, 𝑦) =

𝑦

𝑥2+𝑦2

are not  defined. 

Local extreme points



Theorem: Consider the function 𝑓(𝑥, 𝑦) and its stationary point [𝑥0, 𝑦0]. If 
there are continuous second-order partial derivatives in some neighborhood 
of the point [𝑥0, 𝑦0], we introduce

Δ 𝑥0, 𝑦0 = 𝑓𝑥
′′ 𝑥0, 𝑦0 ⋅ 𝑓𝑦

′′(𝑥0, 𝑦0) – 𝑓𝑥𝑦
′′ 𝑥0, 𝑦0

2

In case Δ(𝑥0, 𝑦0) < 0, there is no extreme at 𝑥0, 𝑦0 ; we say that [𝑥0, 𝑦0]
is the saddle point of 𝑓(𝑥, 𝑦). In case Δ(𝑥0, 𝑦0) > 0 then [𝑥0, 𝑦0] is the local
extreme point, namely minimum for 𝑓𝑥

′′ 𝑥0, 𝑦0 > 0, or maximum for
𝑓𝑥
′′(𝑥0, 𝑦0) < 0. 

Problem: Find local extreme points of 𝑓 𝑥, 𝑦 = 𝑥3 + 3𝑦2 + 6𝑥𝑦 + 1.
Solution: We already know that the stationary points of 𝑓(𝑥, 𝑦) are 0,0 ,
2,−2 . We use 𝑓𝑥

′ = 3𝑥2 + 6𝑦 and 𝑓𝑦
′ = 6𝑦 + 6𝑥 to find second-order

partial derivatives:

𝑓𝑥
′′ = 6𝑥, 𝑓𝑥𝑦

′′ = 6,

𝑓𝑦𝑥
′′ = 6, 𝑓𝑦

′′ = 6,
So, Δ 𝑥, 𝑦 = 6 𝑥 ⋅ 6 − 6 ⋅ 6. We check its value at stationary points: At 
point [0,0] we get the value
Δ 0,0 = 0 − 6 ⋅ 6 = −36 < 0, so [0,0] is the saddle point of the
function.  For [2, −2] we get Δ 2,−2 = 12 ⋅ 6 − 6 ⋅ 6 = 36 > 0, and 
𝑓𝑥
′′(2, −2) = 12 > 0, so [2,−2] is the point of local minimum. 

Local extreme points



Local extreme points
Examples:
1. Function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 has a local minimum at its stationary point 

[0,0] as its second derivatives are 𝑓𝑥
′′ = 2, 𝑓𝑥𝑦

′′ = 𝑓𝑦𝑥
′′ = 0, 𝑓𝑦

′′ = 2,

and the value of Δ 0,0 = 2 ⋅ 2 − 0 = 4 > 0
2. Function 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 has no extreme point at the stationary point 

[0,0], as  𝑓𝑥
′′ = 2, 𝑓𝑥𝑦

′′ = 𝑓𝑦𝑥
′′ = 0, 𝑓𝑦

′′ = −2, and the value Δ 0,0 =

2 ⋅ −2 − 0 = −4 < 0. The point [0,0] is the saddle point of 𝑓 𝑥, 𝑦 .

•


