Multivariable calculus

Function of more variables

Definition: For $n \in \mathbb{N}$, let $D \subseteq \mathbb{R}^n$ (the set of ordered *n*-tuples of real numbers). Mapping from D to \mathbb{R} is called function of n variables. We use the notation $z = f(x_1, x_2, ..., x_n)$ where $[x_1, x_2, ..., x_n] \in \mathbb{R}^n$.

Comment: Usually, the domain *D* of the function $f(x_1, x_2, ..., x_n)$ is the largest set for which the expression makes sense.

Comment: We will use Euclidean distance between the points $A = [a_1, a_2, ..., a_n] \in \mathbb{R}^n$ and $B = [b_1, b_2, ..., b_n] \in \mathbb{R}^n$, defined as

$$\rho(A,B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

Similarly to a function of one variable, we can define neighborhood of $A = [a_1, a_2, ..., a_n] \in \mathbb{R}^n$. For $\delta > 0$ we call by δ - neighborhood of A the set of all points from \mathbb{R}^n that are closer to A than δ : $U_{\delta}(A) = \{X \in \mathbb{R}^n, \rho(X, A) < \delta\}$

Limit of the multivariable function

Definition: We say that the function $f(x_1, x_2, ..., x_n)$

has at $X^0 = [x_1^0, x_2^0, ..., x_n^0]$ limit $A \in \mathbb{R}$, $\lim_{X \to X^0} f(X) = A$,

if for $\forall \varepsilon > 0 \exists \delta > 0$ such that f(X) is defined in neighborhood $U_{\delta}(X^0) \setminus \{X^0\}$ and for all X from this neighborhood:

 $|f(X) - A| < \varepsilon$ (for X "close to" X^0 is $f(X) \approx A$.)

Comment: The same rules apply to the calculation of limits as for the function of one variable. Improper limits are introduced in a similar way.

Definition: We say that the function $f(x_1, x_2, ..., x_n)$ is continuous at the point $X^0 = [x_1^0, x_2^0, ..., x_n^0]$, if it has a limit at this point and satisfies:

$$\lim_{X\to X^0} f(X) = f(X^0).$$

Example: The function $f(x, y) = \frac{1}{x^2 + y^2}$ is continuous in \mathbb{R}^2 except for point [0,0].

Comment: We will make further considerations for functions of two variables, but they can also be generalized for n > 2.

Graphical representation of the function of two variables

In three-dimensional space, we can imagine a graph of a function of two variables as the earth's surface. Level curves (contours) are mostly used to represent a surface in 2D.

Graphical representation of the function of two variables

Example: Lets sketch the graph and level curves of $g(x, y) = \frac{x}{e^{x^2+y^2}}$.

Definition: For given $c \in \mathbb{R}$, we define the level curve of f(x, y) as the set of all $[x, y] \in \mathbb{R}^2$ such that f(x, y) = c. For example, the zero level curve of g(x, y) corresponds to the set of solutions $\frac{x}{e^{x^2+y^2}} = 0$. Obviously, x = 0 but y is arbitrary, so we get the set { $[0, y], y \in \mathbb{R}$ }.

Partial derivatives

Let's consider a function of two variables f(x, y) and let y be equal to some $y_0 \in \mathbb{R}$. We get a function of one variable, let's denote it $g(x) = f(x, y_0)$.

If this function has a derivative at a point x_0 , i.e. $g'(x_0) = \lim_{x \to x_0} \frac{f(x,y_0) - f(x_0,y_0)}{x - x_0}$, we call it partial derivative of f(x, y) at $[x_0, y_0]$ w.r.t. the variable x. We denote it by

$$f'_x(x_0, y_0)$$
 or $f_x(x_0, y_0)$ or $\frac{\partial f(x_0, y_0)}{\partial x}$.

We define the derivative w. r. t. *y* similarly.

Comment: For the function *n* variables, partial derivatives are defined similarly. If we derive w.r.t. x_i , we consider other variables as constants. We denote the partial derivatives of the function f(X) at the point X^0 as $f'_{x_1}(X^0)$, $f'_{x_2}(X^0)$, ..., $f_{x_n}'(X^0)$. **Problem:** The function $f(x, y) = x^2 + 3y^2 + 5xy - 4x + y - 1$ has partial derivatives

$$f'_x(x, y) = 2x + 0 + 5y - 4 + 0$$
 and $f'_y(x, y) = 0 + 6y + 5x - 0 + 1$.

Problem: The function $f(x, y, z) = \frac{x}{y+z^2}$ has partial derivatives

$$f'_{x}(x, y, z) = \frac{1 \cdot (y + z^{2}) - x \cdot 0}{(y + z^{2})^{2}} = \frac{1}{(y + z^{2})},$$

$$f'_{y}(x, y, z) = \frac{0 \cdot (y + z^{2}) - x \cdot 1}{(y + z^{2})^{2}} = \frac{-x}{(y + z^{2})^{2}},$$

$$f'_{z}(x, y, z) = \frac{0 \cdot (y + z^{2}) - x \cdot 2z}{(y + z^{2})^{2}} = \frac{-2xz}{(y + z^{2})^{2}},$$

http://demonstrations.wolfram.com/PartialDerivativesIn3D,

Higher order partial derivatives

Let $\Omega \subseteq \mathbb{R}^n$, where the function $f(x_1, x_2, ..., x_n)$ has the derivative f_{x_i} , $i \in \{1, ..., n\}$. If the function f_{x_i} has derivative w. r. t. x_j in some $X_0 \in \Omega$, we call it second order partial derivative w.r.t. x_i and x_j and denote

 $f_{ij}(X_0)$ or $f_{ij}''(X_0)$ or $\frac{\partial^2 f(X_0)}{\partial x_i \partial x_j}$

Comment: If i = j, we use the notation f_i'' or $\frac{\partial^2 f(X_0)}{\partial x_i^2}$.

Problem: Calculate all partial derivatives of the second order of the function $f(x, y, z) = 3x^2 + y^2 + z^3 - xyz$.

Solution: First order derivatives are

$$f_x = 6x - yz,$$

$$f_y = 2y - xz,$$

$$f_z = 3z^2 - xy,$$

Next, we calculate the second order derivatives

$$f_{xx} = 6, \quad f_{xy} = -z, \quad f_{xz} = -y, f_{yx} = -z, \quad f_{yy} = 2, \quad f_{yz} = -x, f_{zx} = -y, \quad f_{zy} = -x, \quad f_{zz} = 6z.$$

Theorem: If the function f has continuous partial derivatives up to the order k in some neighborhood $U_{\delta}(X_0)$ of X_0 , the order in which we derive does not matter, ie

$$f_{ij}''(X_0) = f_{ji}''(X_0).$$

Local extreme points

We say that f(X) has local minimum at the point $X^0 \in \mathbb{R}^n$ if there is a neighborhood $U_{\delta}(X^0)$ such that fo all $X \in U_{\delta}(X^0)$:

 $f(X^0) \leq f(X)$. Local maximum is defined similarly.

Comment: In the case of strict inequalities, we speak about strict local extremes.

Theorem: If the function f(X) has a local extreme at the point X^0 then all partial derivatives that exist here must be equal to 0.

Comment: The point at which all partial derivatives are zero is called stationary point.

Problem: Find the stationary points of $f(x, y) = x^3 + 3y^2 + 6xy + 1$. **Solution:** $f'_x = 3x^2 + 6y$, $f'_y = 6y + 6x$. The equations for a stationary point are $3x^2 + 6y = 0$, 6y + 6x = 0. From the second equation we get y = -x and after substituting into the first we get the quadratic equation $3x^2 - 6x = 0$ with zero points $x_1 = 0$, $x_2 = 2$. Then $y_1 = 0$, $y_2 = -2$. Stationary points are [0,0], z[2,-2]. **Example:** The function $f(x, y) = \sqrt{x^2 + y^2}$ has local minimum at [0,0], where the partial derivatives $f_x(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$ and $f_y(x, y) = \frac{y}{\sqrt{x^2 + y^2}}$

Local extreme points

Theorem: Consider the function f(x, y) and its stationary point $[x_0, y_0]$. If there are continuous second-order partial derivatives in some neighborhood of the point $[x_0, y_0]$, we introduce

$$\Delta(x_0, y_0) = f_x''(x_0, y_0) \cdot f_y''(x_0, y_0) - \left(f_{xy}''(x_0, y_0)\right)^2$$

In case $\Delta(x_0, y_0) < 0$, there is no extreme at $[x_0, y_0]$; we say that $[x_0, y_0]$ is the saddle point of f(x, y). In case $\Delta(x_0, y_0) > 0$ then $[x_0, y_0]$ is the local extreme point, namely minimum for $f''_x(x_0, y_0) > 0$, or maximum for $f''_x(x_0, y_0) < 0$.

Problem: Find local extreme points of $f(x, y) = x^3 + 3y^2 + 6xy + 1$. **Solution:** We already know that the stationary points of f(x, y) are [0,0], [2,-2]. We use $f'_x = 3x^2 + 6y$ and $f'_y = 6y + 6x$ to find second-order partial derivatives:

$$f''_{xx} = 6x, f''_{xy} = 6,$$

 $f''_{yx} = 6, f''_{yx} = 6,$
So, $\Delta(x, y) = 6x \cdot 6 - 6 \cdot 6$. We check its value at stationary points: At point [0,0] we get the value
 $\Delta(0,0) = 0 - 6 \cdot 6 = -36 < 0$, so [0,0] is the saddle point of the function. For [2, -2] we get $\Delta(2, -2) = 12 \cdot 6 - 6 \cdot 6 = 36 > 0$, and $f''_{xx}(2, -2) = 12 > 0$, so [2, -2] is the point of local minimum.

Local extreme points

Examples:

- 1. Function $f(x, y) = x^2 + y^2$ has a local minimum at its stationary point [0,0] as its second derivatives are $f''_x = 2$, $f''_{xy} = f''_{yx} = 0$, $f''_y = 2$, and the value of $\Delta(0,0) = 2 \cdot 2 0 = 4 > 0$
- 2. Function $f(x, y) = x^2 y^2$ has no extreme point at the stationary point [0,0], as $f''_x = 2$, $f''_{xy} = f''_{yx} = 0$, $f''_y = -2$, and the value $\Delta(0,0) = 2 \cdot (-2) 0 = -4 < 0$. The point [0,0] is the saddle point of f(x, y).

