Multivariable calculus
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Function of more variables

Definition: Forn € N, let D € R™ (the set of ordered n-tuples of
real numbers). Mapping from D to R is called function of n
variables. We use the notation z = f (x4, x5, ..., X,) Where

|x1, %5, ..., x,] € R™,

Comment: Usually, the domain D of the function f (x{, x5, ..., X;;)
is the largest set for which the expression makes sense.

Comment: We will use Euclidean distance between the points
A=laqa,,...,a,] € R*and B = |by, by, ..., b,] € R™, defined
as

| p(AB) =+/(a1 —b)? + (@ — b))% + —+ (ay — by)?

Similarly to a function of one variable, we can define
neighborhood of A = [a4, ay, ...,a,] € R™ For§ > 0 we call by

d - neighborhood of A n are
closer to A than 6: Us(A) ={X € R",p(X,A) <6




Limit of the multivariable function

Definition: We say that the function f(xq, x5, ..., X;;)
hasat X0 =[x, x), .., x0] limit A € R, [Xlirgl(of(X) = A]

ifforVe > 036 > 0 suchthat f(X) is defined in neighborhood
Us(X%)\ {X°}and for all X from this neighborhood:

[|f(X) — A| < e (forX ,closeto”X%is f(X) =~ A.) ]

Comment: The same rules apply to the calculation of limits as for the
function of one variable. Improper limits are introduced in a similar way.

Definition: We say that the function f (x4, x5, ..., X;,;) is continuous at the
point X° = [x?,x2, ..., x0], if it has a limit at this point and satisfies:

li X) = f(X).
Tim 7)) = 7(X°)
Example: The function f(x,y) =
point [0,0].

Comment: We will make further considerations for functions of two
variables, but they can also be generalized for n > 2.

is continuous in R? except for

x2+7y?2




Graphical representation of the
function of two variables

In three-dimensional space, we can imagine a graph of a
function of two variables as the earth's surface. Level curves
(contours) are mostly used to represent a surface in 2D.
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Graphical representation of the
function of two variables

Example: Lets sketch the graph and level curves of g(x,y) =

2

X
eX?+y?’
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Definition: For given ¢ € R, we define the level curve of f(x,y) as
the set of all [x,y] € R? such that f(x,y) = c. For example, the zero

level curve of g(x,y) corresponds to the set of solutions exz+yz = 0.
Obviously, x = 0 but y is arbitrary, so we get the set {[0,y], y € R}.




Partial derivatives

Let‘s consider a function of two variables f(x,y) and let y be equal to some y, €
R. We get a function of one variable, let's denote it g(x) = f(x,yo).

If this function has a derivative at a point x,, i.e g'(xy) = lim [x.y0) = F(X0 o)
. . N X— Xo ey .
we call it partial derivative of f(x, y) at [xy, Yo] w.r.t. the variable x. We denote it

by
(£2Goyo)or fuCrory) or o2 )

We define the derivative w.r. t. y similarly.

Comment: For the function n variables, partial derivatives are defined similarly. If
we derive w.r.t. x;, we consider other variables as constants. We denote the partial
derivatives of the function f (X) at the point X° as £/ (X°), £, (X°), ..., fx,.,"(X®).

Problem: The function f(x,y) = x? + 3y? 4+ 5xy — 4x + y — 1 has partial
derivatives

fx(x,y)=2x+0+5y—4+0andf,(x,y) =0+ 6y + 5x — 0 + 1.

Problem: The function f (x,y,2z) = yfzz has partial derivatives
, 1-(y+2z%)—x-0 1
ReyD =—C o — =510
, 0-(y+2z%)—x-1 —x
Bors ==—6mr — Tora7
, 0-(y+z%)—x-2z —2xz
fe (%7.2) = (v +2%)? (v +22)?

http://demonstrations.wolfram.com/PartialDerivativesin3D/



http://demonstrations.wolfram.com/PartialDerivativesIn3D/

Higher order partial derivatives

Let O © R", where the function f(xy, Xy, ..., x5) has the derivative f, ,i €
{1, ...,n}. If the funtion f, has derivative w.r.t. x; in some X, € (), we call it second
order partial derivative w.rt. x; and xj and denote

[ﬁ, (Xo) or £ (Xo) or 5L ]

J

0% f(Xo)
ax? -
Problem: Calculate aII partlal derivatives of the second order of the function
f(x,v,z) =3x* +y? + z3 — xyz.
Solution: First order derivatives are

Comment: If i = j, we use the notation f;" or

fx — 6x _)’Z;
fy = 2y — xz,
f, = 3z% — xy,

Next, we calculate the second order derivatives
fxx = 6, fxy = 7% fxz = =Y
fyx = =2, fyy = 2, fyz = =X,

fox = =Y, fzy = —X, [z, = 62.

Theorem: If the function f has continuous partial derivatives up to the order k in
some neighborhood Ug(X) of X,, the order in which we derive does not matter, ie

ij (Xo) = j'i'(Xo)}




Local extreme points

We say that f(X) has local minimum at the point X° € R" if there is a
neighborhood Us(X°) such thatfo all X € Us(X?) :

(X% < f(X)l Local maximum is defined similarly.

Comment: In the case of strict inequalities, we speak about strict local
extremes.

Theorem: If the function f (X) has a local extreme at the point X° then all
partial derivatives that exist here must be equal to 0.

Comment: The point at which all partial derivatives are zero is called
stationary point.

Problem: Find the stationary points of f(x,y) = x3 + 3y? + 6xy + 1.
Solution: fy = 3x°+ 6y, f, = 6y + 6x.
The equations for a stationary point are 3x% + 6y = 0,6y + 6x = 0.

From the second equation we get y = —x and after substituting into the
first we get the quadratic equation 3x%2 — 6x = 0 with zero points x; =

0, x, = 2.Theny; = 0, y, = —2.Stationary points are [0,0],:[2, —2].
Example: The function f(x,y) = \/x? + y? has ) A
.. . \ S ;’,2//
local minimum at [0,0], where the partial \\\\\“\“““‘:“‘g":ﬁg;’,}%ﬂ
N y

derivatives f,(x,y) = Wand fy(y) = Nrerey

are not defined.




Local extreme points

Theorem: Consider the function f(x, y) and its stationary point [xq, yo]. If
there are continuous second-order partial derivatives in some neighborhood
of the point [x,, yy], we introduce

[A(xo,YO) = fx (x0,¥0) * ;' (x0,¥0) - (f’g’(xo’y(’))z]

In case A(xg, Vo) < 0, thereis no extreme at [xy, yo|; we say that [xg, Vo]
is the saddle point of f(x, y). In case A(xy,y9) > 0 then [xg, V] is the local

!/

extreme point, namely minimum for £,/ (xq, yo) > 0, or maximum for

% (X0,¥0) < 0.
Problem: Find local extreme points of f(x,y) = x3 + 3y? + 6xy + 1.

Solution: We already know that the stationary points of f(x, y) are [0,0],
[2,—-2]. Weuse fy = 3x?+ 6yand fy = 6y + 6x to find second-order
partial derivatives:

f = 6x fiy = 6,

v = 6, =6,

So, A(x,y) = 6x-6 —6-6.We check its value at stationary points: At
point [0,0] we get the value

A(0,0)= 0 —6-6 = —36 < 0,s0]0,0]is the saddle point of the
function. For [2,—2]wegetA(2,—-2)= 12:6 —6:-6 = 36 > 0, and
" (2,—2) = 12 > 0,50 [2,—2] is the point of local minimum.




Local extreme points

Examples:
1. Function f(x,y) = x% + y? has a local minimum at its stationary point
[0,0] as its second derivatives are fy' = 2,f, = fyx =0,f) =2,

and the value of A(0,0) = 2:-2—-0=4>0
2. Function f(x,y) = x? — y? has no extreme point at the stationary point
[0,0],as fy" =2, fry = fyx =0,f, =—2,and the value A(0,0) =
2:-(—2) — 0= —4 < 0.The point [0,0] is the saddle point of f(x,y).




