
Derivatives in use: optimization, 
convexity, and asymptotes



Derivative and monotonicity
Theorem:  Let 𝑓 𝑥 have derivative for all 𝑥 from the interval I. 
• if 𝑓′ 𝑥 > 0 ∀ 𝑥 ∈ 𝐼 then 𝑓 𝑥 is strictly increasing in the interval 𝐼.  
• if 𝑓′ 𝑥 < 0 ∀ 𝑥 ∈ 𝐼 then 𝑓(𝑥) is strictly decreasing in the interval 𝐼. 
• if 𝑓′ 𝑥 ≥ 0 ∀ 𝑥 ∈ 𝐼 then 𝑓(𝑥) is increasing in the interval 𝐼. 
• if 𝑓′ 𝑥 ≤ 0 ∀ 𝑥 ∈ 𝐼 then 𝑓(𝑥) is decreasing in the interval 𝐼. 
Problem: Find the intervals where is 𝑓(𝑥) = 𝑥3 − 3𝑥 + 1 increasing.
Solution: First, we find the derivative 𝑓′(𝑥) = 3𝑥2 − 3. The function
𝑓′(𝑥) has zeros −1, 1, dividing the real set into three intervals. The sign 
of 𝑓′(𝑥) is following:

Thus, according to the previous theorem, the function 𝑓 (𝑥) increases in 
the interval  (−∞,−1), decreases in (−1,1) and increases in (1,∞).
See the graph of
𝑓(𝑥) = 𝑥3 − 3𝑥 + 1
and its derivative
𝑓′(𝑥) = 3𝑥2 − 3

(−∞,−1) (−1,1) (1,∞)

+ − +



Local extreme points
Definition: The function 𝑓(𝑥) is said to have local minimum (or maximum) 
at 𝑥0 if it is defined in some neighborhood of 𝑥0 and if for all 𝑥 from this
neighborhood:

Local minima and maxima are generally called local extremes.
Definition: A point 𝑥0 satisfying 𝑓′ 𝑥0 = 0 is called stationary point of
𝑓(𝑥).
Theorem: A differentiable function 𝑓(𝑥) can have a maximum or 
minimum at a point 𝑥0 if and only if

Comment: However, this „First Order Condition“ is neither necessary nor 
sufficient condition for the existence of an extreme point (see the function
𝑓1(𝑥), having local minimum, but no derivative at 𝑥0 = 0 or 𝑓3(𝑥), 
satisfying 𝑓′(0) = 0, but having no local extreme point here) 

𝑓 𝑥 ≥ 𝑓(𝑥0) (or 𝑓 𝑥 ≤ 𝑓(𝑥0))

𝑓′ 𝑥0 = 0



Existence of local extrema
Theorem: Let 𝑓(𝑥) have stationary point at 𝑥0, i.e. 𝑓′(𝑥0) = 0 (FOC). 
If there is δ> 0 such that: 

∀ 𝑥 ∈ (𝑥0 − 𝛿, 𝑥0): 𝑓′(𝑥0) > 0 and ∀ 𝑥 ∈ (𝑥0, 𝑥0 + 𝛿): 𝑓′(𝑥0) < 0, 
then 𝑥0 is the local maximum point of 𝑓(𝑥)

∀ 𝑥 ∈ (𝑥0 − 𝛿, 𝑥0): 𝑓′(𝑥0) < 0 and ∀ 𝑥 ∈ (𝑥0, 𝑥0 + 𝛿): 𝑓′ 𝑥0 > 0, 
then 𝑥0 is the local minimum point of 𝑓(𝑥)

Problem: Find local extreme points of 𝑓(𝑥) = 𝑥3 − 3𝑥 + 1.

Solution: We have already computed 𝑓′(𝑥) = 3𝑥2 − 3 and the
stationary points 𝑥1,2 = −1, 1. We know that 𝑓′(𝑥) is positive below
𝑥1 = −1 and above 𝑥2 = 1 and it is negative between them. Thus
𝑓(𝑥) has local maximum at the point 𝑥1 = −1 with the value
𝑓(−1) = 3 (and local minimum at the point 𝑥2 = 1 with 𝑓 1 = −1).

http://demonstrations.wolfram.com/SnowboardingOverDerivatives/
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Global extreme points

Definition: The function 𝑓(𝑥) is said to have absolute minimum 
(or maximum) over the set 𝑀 at 𝑥0, if it is defined on 𝑀 and

Comment: Absolute minima and maxima are called absolute or
global extrema. If we use strict inequalities in the definition, we 
get the so-called strict extremes.  

Theorem: (Weierstrass) If the function 𝑓 (𝑥) is continuous on a 
closed interval〈𝑎, 𝑏〉 then it has absolute minimum on this 
interval, either at the point of the local extreme or at one of the 
extreme points 𝑎, 𝑏. The same goes for the absolute maximum.

∀ 𝑥 ∈ 𝑀: 𝑓 𝑥 ≥ 𝑓 𝑥0 , 𝒐𝒓
∀ 𝑥 ∈ 𝑀: 𝑓 𝑥 ≤ 𝑓(𝑥0).



Convexity and concavity
Definition: The function 𝑓(𝑥) is said to be

• strictly convex at the interval 𝐼 if for any 𝑥1, 𝑥2, 𝑥3 ∈ 𝐼 applies: 

𝑥1 < 𝑥2 < 𝑥3 ⇒ the point 𝑇2 = [𝑥2, 𝑓(𝑥2)] lies below the line 
connecting 𝑇1 = [𝑥1, 𝑓(𝑥1)] and 𝑇3 = [𝑥3, 𝑓(𝑥3)]. 

Similarly, 𝑓 𝑥 is said to be

• strictly concave at the interval 𝐼 if for any 𝑥1, 𝑥2, 𝑥3 ∈ 𝐼 applies: 
𝑥1 < 𝑥2 < 𝑥3 ⇒ the point 𝑇2 = [𝑥2, 𝑓(𝑥2)] lies over the line
connecting 𝑇1 = 𝑥1, 𝑓 𝑥1 and 𝑇3 = [𝑥3, 𝑓(𝑥3)]. 



Convexity and concavity
Comment: If we allow the point 𝑇2 to lie on the line 𝑇1 𝑇3 in the 
previous definition, then we omit the word „strictly". 
Theorem: If the function 𝑓(𝑥) has 𝑓′′ 𝑥 at the interval 𝐼, then for

Comment: Points of change between "the convexity and concavity" 
are called inflection points. A function can have an inflection points
only at points where the first derivative exists and the second 
derivative either does not exist or is equal to zero.
Theorem: If the function 𝑓(x) satisfies at the point 𝑥0 following: 

𝑓′ 𝑥0 = 𝑓′′ 𝑥0 = ⋯ = 𝑓 𝑛 𝑥0 = 0 and 𝑓(𝑛+1) 𝑥0 ≠ 0 then
• for 𝑛 even, the point 𝑥0 is the inflection point of 𝑓(𝑥)
• for 𝑛 odd, the point 𝑥0 is the local extreme point of 𝑓(𝑥), namely

maximum for 𝑓 𝑛+1 (𝑥0) < 0 and minimum for 𝑓 𝑛+1 (𝑥0) > 0.

• ∀ 𝑥 ∈ 𝐼: 𝑓′′ 𝑥 ≥ 0, is the function 𝑓(𝑥) convex at 𝐼

• ∀ 𝑥 ∈ 𝐼: 𝑓′′ 𝑥 ≤ 0, is the function 𝑓(𝑥) concave at 𝐼



Convexity and concavity- example
Problem: Let 𝑓(𝑥) = ln(𝑥2 + 2). Find the inflection points of the
function. Determine the intervals of convexity and concavity.

Solution: We find the second derivative, 

𝑓′ 𝑥 =
2𝑥

𝑥2 + 2
, 𝑓′′ 𝑥 =

2 𝑥2 + 2 − 2𝑥. 2𝑥

𝑥2 + 2 2
=

4 − 2𝑥2

𝑥2 + 2 2
.

The zero points of 𝑓′′ 𝑥 are ± 2. We determine the sign of 𝑓′′(𝑥):

So the function is concave at the interval (−∞,− 2), convex at

(− 2, 2) and concave at ( 2,∞). Inflection points are ± 2.

(−∞,− 2) (− 2, 2) ( 2,∞)

Sign of 𝑓′′(𝑥) − + −



Asymptotes

Asymptotes are lines, to which the function graph approaches as 𝑥 tends to 𝑎 ∈ ℝ.
Definition: We call the line 𝑥 = 𝑎 vertical asymptote for the graph of 𝑓(𝑥) if

lim
𝑎

𝑓 𝑥 = ±∞, where the symbol lim denotes lim
𝑥→ 𝑎

, lim
𝑥→ 𝑎−

, or lim
𝑥→ 𝑎+

Example: The function 𝑓(𝑥) =
1

𝑥2+5𝑥+6
=

1

(𝑥+2)(𝑥+3)
has two vertical asymptotes: 

𝑥 = −2, 𝑥 = −3, as

lim
𝑥→ −3−

𝑓 𝑥 = ∞, lim
𝑥→ −3+

𝑓 𝑥 = −∞, lim
𝑥→ −2−

𝑓 𝑥 = −∞, lim
𝑥→ −2+

𝑓 𝑥 = ∞

Definition: We call the line 𝑦 = 𝐴𝑥 + 𝐵 oblique asymptote for the function 𝑓(𝑥)
and 𝑥 tending to ∞, or − ∞, if

lim
𝑥→∞

𝑓 𝑥 − 𝐴𝑥 + 𝐵 = 0, resp. lim
𝑥→ −∞

[𝑓(𝑥) − (𝐴𝑥 + 𝐵)] = 0.

Problem: The asymptote of the function 𝑓(𝑥) =
1

𝑥2+5𝑥+6
is the line 𝑦 = 0, as 

lim
𝑥→ ±∞

1

𝑥2+5𝑥+6
− 0 = 0.



Oblique asymptote –example
Theorem: The line 𝑦 = 𝐴𝑥 + 𝐵 is the asymptote of 𝑓(𝑥) as 𝑥 tends to + ∞ or −∞ ⟺

𝐴 = lim
𝑥→∞

𝑓(𝑥)

𝑥
, 𝐵 = lim

𝑥→∞
(𝑓(𝑥) − 𝐴𝑥) , or

𝐴 = lim
𝑥→−∞

𝑓(𝑥)

𝑥
, 𝐵 = lim

𝑥→−∞
(𝑓(𝑥) − 𝐴𝑥)

Comment: The function 𝑓(𝑥) may have no asymptotes, e.g. the function 𝑓(𝑥) = sin 𝑥. 

Problem: Find the asymptotes of the function 𝑓(𝑥) =
𝑥2+2𝑥+1

𝑥
for 𝑥 → ∞ and 𝑥 → −∞.

Solution: Lets start with the asymptote at +∞:

𝐴 = lim
𝑥→∞

𝑥2 + 2𝑥 + 1

𝑥2
= 1,

𝐵 = lim
𝑥→∞

𝑥2 + 2𝑥 + 1

𝑥
− 𝑥 = lim

𝑥→∞

2𝑥 + 1

𝑥
= 2

So the equation of the oblique asymptote is 𝑦 = 𝑥 + 2. We do the same at − ∞: 

𝐴 = lim
𝑥→−∞

𝑥2 + 2𝑥 + 1

𝑥2
= 1,

𝐵 = lim
𝑥→−∞

𝑥2 + 2𝑥 + 1

𝑥
− 𝑥 = lim

𝑥→∞

2𝑥 + 1

𝑥
= 2

So the oblique asymptote is the same for both 𝑥 → ∞ and 𝑥 → −∞: 𝑦 = 𝑥 + 2.


