Derivatives in use: optimization, convexity, and asymptotes

 $r + r$ ⁴⁷

Derivative and monotonicity

Theorem: Let $f(x)$ have derivative for all x from the interval I.

- if $f'(x) > 0 \forall x \in I$ then $f(x)$ is strictly increasing in the interval I.
- if $f'(x) < 0 \forall x \in I$ then $f(x)$ is strictly decreasing in the interval I.
- if $f'(x) \geq 0 \forall x \in I$ then $f(x)$ is increasing in the interval I.
- if $f'(x) \leq 0 \forall x \in I$ then $f(x)$ is decreasing in the interval I.

Problem: Find the intervals where is $f(x) = x^3 - 3x + 1$ increasing. **Solution:** First, we find the derivative $f'(x) = 3x^2 - 3$. The function $f'(x)$ has zeros -1 , 1, dividing the real set into three intervals. The sign of $f'(x)$ is following: $(-\infty, -1)$ $(-1,1)$ $(1, \infty)$

Thus, according to the previous theorem, the function $f(x)$ increases in the interval $(-\infty, -1)$, decreases in $(-1,1)$ and increases in $(1, \infty)$. See the graph of $v = f'(x)$ $y=f(x)$ $f(x) = x^3 - 3x + 1$ and its derivative $f'(x) = 3x^2 - 3$ -1

+ − +

Local extreme points

Definition: The function $f(x)$ is said to have local minimum (or maximum) at x_0 if it is defined in some neighborhood of x_0 and if for all x from this neighborhood:

 $f(x) \geq f(x_0)$ (or $f(x) \leq f(x_0)$)

Local minima and maxima are generally called local extremes.

Definition: A point x_0 satisfying $f'(x_0) = 0$ is called stationary point of $f(x)$.

Theorem: A differentiable function $f(x)$ can have a maximum or minimum at a point x_0 if and only if $f'(x_0) = 0$

Comment: However, this "First Order Condition" is neither necessary nor sufficient condition for the existence of an extreme point (see the function $f_1(x)$, having local minimum, but no derivative at $x_0 = 0$ or $f_3(x)$, satisfying $f'(0) = 0$, but having no local extreme point here)

Existence of local extrema

Theorem: Let $f(x)$ have stationary point at x_0 , i.e. $f'(x_0) = 0$ (FOC). If there is $\delta > 0$ such that:

 $\forall x \in (x_0 - \delta, x_0): f'(x_0) > 0$ and $\forall x \in (x_0, x_0 + \delta): f'(x_0) < 0$, then x_0 is the local maximum point of $f(x)$ $\forall x \in (x_0 - \delta, x_0) : f'(x_0) < 0$ and $\forall x \in (x_0, x_0 + \delta) : f'(x_0) > 0$, then x_0 is the local minimum point of $f(x)$ **Problem:** Find local extreme points of $f(x) = x^3 - 3x + 1$. **Solution:** We have already computed $f'(x) = 3x^2 - 3$ and the stationary points $x_{1,2} = -1$, 1. We know that $f'(x)$ is positive below $x_1 = -1$ and above $x_2 = 1$ and it is negative between them. Thus $f(x)$ has local maximum at the point $x_1 = -1$ with the value $f(-1) = 3$ (and local minimum at the point $x_2 = 1$ with $f(1) = -1$).

<http://demonstrations.wolfram.com/SnowboardingOverDerivatives/>

Global extreme points

Definition: The function $f(x)$ is said to have absolute minimum (or maximum) over the set M at x_0 , if it is defined on M and

> $\forall x \in M: f(x) \geq f(x_0)$, or $\forall x \in M: f(x) \leq f(x_0).$

Comment: Absolute minima and maxima are called absolute or global extrema. If we use strict inequalities in the definition, we get the so-called strict extremes.

Theorem: (Weierstrass) If the function $f(x)$ is continuous on a closed interval $\langle a, b \rangle$ then it has absolute minimum on this interval, either at the point of the local extreme or at one of the extreme points a , b . The same goes for the absolute maximum.

Convexity and concavity

Definition: The function $f(x)$ is said to be

• strictly convex at the interval *I* if for any $x_1, x_2, x_3 \in I$ applies:

 $x_1 < x_2 < x_3 \Rightarrow$ the point $T_2 = [x_2, f(x_2)]$ lies below the line connecting $T_1 = [x_1, f(x_1)]$ and $T_3 = [x_3, f(x_3)]$. Similarly, $f(x)$ is said to be

• strictly concave at the interval *I* if for any $x_1, x_2, x_3 \in I$ applies: $x_1 < x_2 < x_3 \Rightarrow$ the point $T_2 = [x_2, f(x_2)]$ lies over the line connecting $T_1 = [x_1, f(x_1)]$ and $T_3 = [x_3, f(x_3)].$

Convexity and concavity

Comment: If we allow the point T_2 to lie on the line T_1 T_3 in the previous definition, then we omit the word "strictly". **Theorem:** If the function $f(x)$ has $f''(x)$ at the interval I, then for

• $\forall x \in I: f''(x) \geq 0$, is the function $f(x)$ convex at I

• $\forall x \in I: f''(x) \leq 0$, is the function $f(x)$ concave at I

Comment: Points of change between "the convexity and concavity" are called inflection points. A function can have an inflection points only at points where the first derivative exists and the second derivative either does not exist or is equal to zero.

Theorem: If the function $f(x)$ satisfies at the point x_0 following:

 $f'(x_0) = f''(x_0) = \dots = f^{(n)}(x_0) = 0$ and $f^{(n+1)}(x_0) \neq 0$ then

- for *n* even, the point x_0 is the inflection point of $f(x)$
- for *n* odd, the point x_0 is the local extreme point of $f(x)$, namely maximum for $f^{(n+1)}(x_0) < 0$ and minimum for $f^{(n+1)}(x_0) > 0$.

Convexity and concavity- example

Problem: Let $f(x) = \ln(x^2 + 2)$. Find the inflection points of the function. Determine the intervals of convexity and concavity.

Solution: We find the second derivative,

$$
f'(x) = \frac{2x}{x^2 + 2}, \ f''(x) = \frac{2(x^2 + 2) - 2x \cdot 2x}{(x^2 + 2)^2} = \frac{4 - 2x^2}{(x^2 + 2)^2}.
$$

The zero points of $f''(x)$ are $\pm \sqrt{2}.$ We determine the sign of $f''(x)$:

Asymptotes

Asymptotes are lines, to which the function graph approaches as x tends to $a \in \mathbb{R}$. **Definition:** We call the line $x = a$ vertical asymptote for the graph of $f(x)$ if lim \overline{a} $f(x) = \pm \infty$, where the symbol lim denotes lim $x \rightarrow a$, lim $x \rightarrow a-$, or lim $x \rightarrow a +$

Example: The function $f(x) = \frac{1}{x^2 + 5}$ $rac{1}{x^2+5x+6} = \frac{1}{(x+2)(x+2)}$ $\frac{1}{(x+2)(x+3)}$ has two vertical asymptotes: $x = -2$, $x = -3$, as

$$
\lim_{x \to -3^{-}} f(x) = \infty, \lim_{x \to -3^{+}} f(x) = -\infty, \lim_{x \to -2^{-}} f(x) = -\infty, \lim_{x \to -2^{+}} f(x) = \infty
$$

Definition: We call the line $y = Ax + B$ oblique asymptote for the function $f(x)$ and x tending to ∞ , or $-\infty$, if

lim →∞ $f(x) - (Ax + B)$] = 0, resp. lim $x \rightarrow -\infty$ $[f(x) - (Ax + B)] = 0.$

Problem: The asymptote of the function $f(x) = \frac{1}{x^2 + 5x^2}$ $\frac{1}{x^2+5x+6}$ is the line $y=0$, as lim $x \rightarrow \pm \infty$ 1 $\frac{1}{x^2+5x+6}$ - 0) = 0.

Oblique asymptote –example

Theorem: The line $y = Ax + B$ is the asymptote of $f(x)$ as x tends to + ∞ (or $-\infty$) \Leftrightarrow

$$
A = \lim_{x \to \infty} \frac{f(x)}{x}, B = \lim_{x \to \infty} (f(x) - Ax), \text{ or}
$$

$$
A = \lim_{x \to -\infty} \frac{f(x)}{x}, B = \lim_{x \to -\infty} (f(x) - Ax)
$$

Comment: The function $f(x)$ may have no asymptotes, e.g. the function $f(x) = \sin x$. **Problem:** Find the asymptotes of the function $f(x) = \frac{x^2 + 2x + 1}{x}$ $\frac{z^{2x+1}}{x}$ for $x \to \infty$ and $x \to -\infty$. **Solution:** Lets start with the asymptote at +∞:

$$
A = \lim_{x \to \infty} \frac{x^2 + 2x + 1}{x^2} = 1,
$$

$$
B = \lim_{x \to \infty} \left(\frac{x^2 + 2x + 1}{x} - x \right) = \lim_{x \to \infty} \frac{2x + 1}{x} = 2
$$

So the equation of the oblique asymptote is $y = x + 2$. We do the same at $-\infty$:

$$
A = \lim_{x \to -\infty} \frac{x^2 + 2x + 1}{x^2} = 1,
$$

$$
B = \lim_{x \to -\infty} \left(\frac{x^2 + 2x + 1}{x} - x \right) = \lim_{x \to \infty} \frac{2x + 1}{x} = 2
$$

So the oblique asymptote is the same for both $x \to \infty$ and $x \to -\infty$: $y = x + 2$.