Seminar 11: Linear systems of equations

Problem 1: EMEA 603, ex. 1

Use Cramer's rule to solve the following systems of equations.

Problem 2: EMEA 580, ex. 3 b,c

Use Cramer's rule to solve the following systems of equations. Test the answers by substitution.

	x_1	_	x_2			=	0		x	+	3y	_	2z	=	1
a)	x_1	+	$3x_2$	+	$2x_3$	=	0	b)	3x	—	2y	+	5z	=	14
	x_1	+	$2x_2$	+	x_3	=	0		2x	_	5y	+	3z	=	1

Problem 3: EMEA 608, ex. 11

For what values of a does the system of equations a) one solution b) no solution c)infinitely many solutions

Next, replace the right-hand sides by general numbers b_1, b_2 , and b_3 . Find a necessary and sufficient condition for the new system of equations to have infinitely many solutions.

Problem 4: EMEA 576, ex. 6*

Use Cramer's rule to find Y (national product) and C (private consumption) when

$$Y = C + I_0 + G_0, \qquad C = a + bY,$$

where symbols I_0 (private investment), G_0 (public consumption and investment), a and b < 1 all represent constants.

Problem 5: EMEA 555, ex. 2

Use Gaussian elimination to find all solutions of the linear system.

Problem 6: EMEA 558, ex. 1, b,c Solve the following equation systems by Gaussian elimination.