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1. Linearity

2. Random sampling

3. No perfect collinearity

4. Zero conditional mean

5. Homoskedasticity

6. Normality of the error term

▪ OLS is unbiased – assumptions (1-4)

▪ Gauss-Markov theorem: OLS is BLUE –
assumptions (1-5)

Classical Assumptions
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• We are going to discuss how hypotheses about 
coefficients can be tested in regression models

• We will explain what significance of coefficients mean

• We will learn how to read regression output

– Wooldridge Chapter 4;

– Studenmund Chapter 5.1-5.4

Today’s Lecture
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• Statistical inference in the regression model

▪ Hypothesis tests about population parameters

▪ Construction of confidence intervals 

• Sampling distributions of the OLS estimators

▪ The OLS estimators are random variables

▪ We already know their expected values and their 

variances

▪ For hypothesis testing we need to know their distribution

Multiple Regression Analyses: Inference



Inference: 
Sampling distributions of the OLS Estimators
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• Assumption 6 (Normality of error terms)

independently of

It is assumed that the unobserved
factors are normally distributed
around the population regression
function.

The form and the variance of the
distribution does not depend on
any of the explanatory variables.



Inference: 
Sampling distributions of the OLS Estimators
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• Discussion of the normality assumption

• The error term is the sum of „many“ different unobserved factors

• Sums of independent factors are normally distributed (CLT)

• Problems:

▪ How many different factors? Observations large enough?

▪ Possibly very heterogenuous distributions of individual factors

▪ How independent are the different factors?

• The normality of the error term is an empirical question

• At least the error distribution should be „close“ to normal

• In many cases, normality is questionable or impossible by definition



Inference: 
Sampling distributions of the OLS Estimators
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• Discussion of the normality assumption (cont.)

• Examples where normality cannot hold:

• Wages (nonnegative; also: minimum wage)

• Unemployment (indicator variable, takes on only 1 or 0)

• In some cases, normality can be achieved through transformations of 

the dependent variable 

• Under normality, OLS is the best (even nonlinear) unbiased estimator

• Important: For the purposes of statistical inference, the assumption 

of normality can be replaced by a large sample size (CLT)



Inference: 
Sampling distributions of the OLS Estimators, CLT
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Source: https://statisticsbyjim.com/basics/central-limit-theorem/
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• We cannot prove that a given hypothesis is “correct” using 
hypothesis testing

• All we can do is to state that a particular sample conforms to 

a particular hypothesis

• We can often reject a given hypothesis with a certain degree 

of confidence

• In such a case, we conclude that it is very unlikely the sample 

result would have been observed if the hypothesized theory 

were correct 

Multiple Regression Analyses: 
Hypothesis Testing
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Step 1: state explicitly the hypothesis to be tested

• Null hypothesis: statement of the range of values of 
the regression coefficient that would be expected to 
occur if the researcher‘s theory were not correct

• Alternative hypothesis: specification of the range of 
values of the coefficient that would be expected to 
occur if the researcher‘s theory were correct

• In other words, we define the null hypothesis as the 
result we do not expect

Multiple Regression Analyses: 
Hypothesis Testing
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Step 2: set the significance level (α)

- chance that you will accept your alternative 
hypothesis when your null hypothesis is actually 
true.

- The smaller the significance level, the greater the 
burden of proof needed to reject the null 
hypothesis, or in other words, to support the 
alternative hypothesis.

Multiple Regression Analyses: 
Hypothesis Testing
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• It would be unrealistic to think that conclusions 
drawn from regression analysis will always be right

• There are two types of errors we can make:

– Type I: we reject a true null hypothesis

– Type II: We fail to reject a false null hypothesis

Type I and Type II Errors
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Example: 

• H0: The defendant is innocent

• HA: The defendant is guilty

– Type I error: sending an innocent person to jail

– Type II error: freeing a guilty person

• Lowering the probability of Type I error means 
increasing the probability of Type II error;

• In hypothesis testing, we focus on Type I error and 
we ensure that its probability is not unreasonably 
large

Type I and Type II Errors
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Type I and Type II Errors



Inference: The t Test
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• Testing hypotheses about a single population parameter

• Theorem 4.2 (t-distribution for standardized estimators)

• Null hypothesis

Under assumptions 1 – 6:
If the standardization is done using the
estimated standard deviation (= standard
error), the normal distribution is replaced
by a t-distribution

The population parameter is equal to zero, i.e. 
after controlling for the other independent
variables, there is no effect of xj on y 

Note: The t-distribution is close to the standard normal distribution if n-k-1 is large.



Inference: The t Test
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• t-statistic (or t-ratio)

• Distribution of the t-statistic if the null hypothesis is true

• Goal: Define a rejection rule so that, if it is true, H0 is rejected only with a small 

probability (= significance level, e.g. 5%)

The t-statistic will be used to test the above null 
hypothesis. The farther the estimated coefficient is
away from zero, the less likely it is that the null 
hypothesis holds true. But what does „far“ away
from zero mean? 

This depends on the variability of the estimated
coefficient, i.e. its standard deviation. The t-statistic
measures how many estimated standard deviations the
estimated coefficient is away from zero.   



Inference: The t Test
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• Testing against one-sided alternatives (greater than zero)

Test                    ag      against

Reject the null hypothesis in favour of
the alternative hypothesis if the
estimated coefficient is „too large“ (i.e. 
larger than a critical value).

Construct the critical value so that, if the
null hypothesis is true, it is rejected in,
for example, 5% of the cases.

In the given example, this is the point of
the t-distribution with 28 degrees of
freedom that is exceeded in 5% of the
cases.

! Reject if t-statistic greater than 1.701



Inference: The t Test
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• Example: Wage equation

• Test whether, after controlling for education and tenure, higher work 

experience leads to higher hourly wages

Standard errors

Test                              against                           .

One would either expect a positive effect of experience on hourly wage or no effect at all.



Inference: The t Test
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• Example: Wage equation (cont.)

„The effect of experience on hourly wage is statistically greater 
than zero at the 5% (and even at the 1%) significance level.“

t-statistic

Degrees of freedom;
here the standard normal 
approximation applies

Critical values for the 5% and the 1% significance level (these are
conventional significance levels). 

The null hypothesis is rejected because the t-statistic exceeds the
critical value.



Inference: The t Test
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• Testing against one-sided alternatives (less than zero)

Test                    a       against                   .

Reject the null hypothesis in favour of
the alternative hypothesis if the
estimated coefficient is „too small“ (i.e. 
smaller than a critical value).

Construct the critical value so that, if the
null hypothesis is true, it is rejected in,
for example, 5% of the cases.

In the given example, this is the point of
the t-distribution with 18 degrees of
freedom so that 5% of the cases are
below the point.

! Reject if t-statistic less than -1.734



Inference: The t Test
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• Example: Student performance and school size

• Test whether smaller school size leads to better student performance

Test                              against                            .

Do larger schools hamper student performance or is there no such effect?

Percentage of students
passing maths test

Average annual tea-
cher compensation

Staff per one thou-
sand students

School enrollment
(= school size)



Inference: The t Test
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• Example: Student performance and school size (cont.)

One cannot reject the hypothesis that there is no effect of school size on 
student performance (not even for a larger significance level of 15%).

t-statistic

Degrees of freedom;
here the standard normal 
approximation applies

Critical values for the 5% and the 15% significance level.

The null hypothesis is not rejected because the t-statistic is not 
smaller than the critical value.



Inference: The t Test
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• Example: Student performance and school size (cont.)

• Alternative specification of functional form:

Test                                      against                                    .

R-squared slightly higher



Inference: The t Test

31

• Example: Student performance and school size (cont.)

The hypothesis that there is no effect of school size on student performance
can be rejected in favor of the hypothesis that the effect is negative.

t-statistic

Critical value for the 5% significance level ! reject null 
hypothesis

How large is the effect? + 10% enrollment ! -0.129 percentage points
students pass test

(small effect)



Inference: The t Test
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• Testing against two-sided alternatives

Test                             against                   .

Reject the null hypothesis in favour of
the alternative hypothesis if the absolute 
value of the estimated coefficient is too
large.

Construct the critical value so that, if the
null hypothesis is true, it is rejected in,
for example, 5% of the cases.

In the given example, these are the
points of the t-distribution so that 5% of
the cases lie in the two tails.

! Reject if absolute value of t-statistic is
less than -2.06 or greater than 2.06



Inference: The t Test
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• Example: Determinants of college GPA Lectures missed per week

The effects of hsGPA and skipped are
significantly different from zero at the 1% 
significance level. The effect of ACT is not 
significantly different from zero, not even at
the 10% significance level.

For critical values, use standard normal distribution



Inference: The t Test
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• „Statistically significant“ variables in a regression

• If a regression coefficient is different from zero in a two-sided test, the 

corresponding variable is said to be „statistically significant“

• If the number of degrees of freedom is large enough so that the normal 

approximation applies, the following rules of thumb apply:

„statistically significant at 10 % level“

„statistically significant at 5 % level“

„statistically significant at 1 % level“



Inference: The t Test
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• Guidelines for discussing economic and statistical significance

• If a variable is statistically significant, discuss the magnitude of the 

coefficient to get an idea of its economic or practical importance

• The fact that a coefficient is statistically significant does not 

necessarily mean it is economically or practically significant!

• If a variable is statistically and economically important but has the 

„wrong“ sign, the regression model might be misspecified  

• If a variable is statistically insignificant at the usual levels (10%, 5%, 

1%), one may think of dropping it from the regression

• If the sample size is small, effects might be imprecisely estimated so 

that the case for dropping insignificant variables is less strong



Inference: The t Test
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• Testing more general hypotheses about a regression coefficient

• Null hypothesis

• t-statistic

• The test works exactly as before, except that the hypothesized value is 

substracted from the estimate when forming the statistic

Hypothesized value of the coefficient



Inference: The t Test
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• Example: Campus crime and enrollment

• An interesting hypothesis is whether crime increases by one percent   if 

enrollment is increased by one percent

The hypothesis is
rejected at the 5% level

Estimate is different from
one but is this difference
statistically significant?



Inference: The t Test
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• Computing p-values for t-tests

• If the significance level is made smaller and smaller, there will be a point 

where the null hypothesis cannot be rejected anymore

• The reason is that, by lowering the significance level, one wants to avoid 

more and more to make the error of rejecting a correct H0

• The smallest significance level at which the null hypothesis is still rejected, is 

called the p-value of the hypothesis test

• A small p-value is evidence against the null hypothesis because one would 

reject the null hypothesis even at small significance levels

• A large p-value is evidence in favor of the null hypothesis

• P-values are more informative than tests at fixed significance levels



Inference: The t Test
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• How the p-value is computed (here: two-sided test)

The p-value is the significance level at which
one is indifferent between rejecting and not 
rejecting the null hypothesis. 

In the two-sided case, the p-value is thus the
probability that the t-distributed variable 
takes on a larger absolute value than the
realized value of the test statistic, e.g.:

From this, it is clear that a null hypothesis is
rejected if and only if the corresponding p-
value is smaller than the significance level.

For example, for a significance level of 5% 
the t-statistic would not lie in the rejection
region.

value of test statistic

These would be
the critical
values for a 5% 
significance level



Inference: Confidence Intervals
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Critical value of
two-sided test• Confidence intervals

• Simple manipulation of the result in Theorem 4.2 implies that

• Interpretation of the confidence interval

• The bounds of the interval are random

• In repeated samples, the interval that is constructed in the above way will 

cover the population regression coefficient in 95% of the cases 

Lower bound of the
Confidence interval

Upper bound of the
Confidence interval

Confidence level



Inference: Confidence Intervals
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• Confidence intervals for typical confidence levels

• Relationship between confidence intervals and hypotheses tests

reject                         in favor of 

Use rules of thumb



Inference: Confidence Intervals
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• Example: Model of firms‘ R&D expenditures

Spending on R&D Annual sales Profits as percentage of sales

The effect of sales on R&D is relatively precisely estimated as the
interval is narrow. Moreover, the effect is significantly different 
from zero because zero is outside the interval.

This effect is imprecisely estimated as the in-
terval is very wide. It is not even statistically
significant because zero lies in the interval.

(0.0128 )

0.0217

(0.0128 )



Inference: Three ways to conclude about the t-test

Rejection region:
• No need to know the test statistic in order to determine the rejection 

region 
• Critical value around two at the usual 5% level

Confidence interval
• Interesting in its own right 
• No need to specify the hypothesized value first 
• Problem with one-tailed tests 

P-value
• No need to specify the significance level in advance, or: results 

immediately seen for varying significance levels



Inference: Testing hypotheses about a linear 
combination of parameters
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• Example: Return to education at 2 year vs. at 4 year colleges

Years of education at
2 year colleges

Years of education at
4 year colleges

Test                                against                              .

A possible test statistic would be:

The difference between the estimates is normalized by the estimated
standard deviation of the difference. The null hypothesis would have to be
rejected if the statistic is „too negative“ to believe that the true difference
between the parameters is equal to zero.



Inference: Testing hypotheses about a linear 
combination of parameters
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• Impossible to compute with standard regression output because

• Alternative method Usually not available in regression output

Define                          and test                       against                     .

a new regressor (= total years of college)Insert into original regression
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• Estimation results

• This method works always for single linear hypotheses

Total years of college

Hypothesis is rejected at 10% 
level but not at 5% level

Inference: Testing hypotheses about a linear 
combination of parameters



Estimation: Goodness-of-Fit measure
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How well the model fits our data (the goal is to end up with a single 

number, ideally expressed as a percentage)

• total sum of squares (SST) 

• 𝑆𝑆𝑇 = σ𝑖=1
𝑛 (𝑦𝑖 − ത𝑦)2

• Explained sum of squares (SSE)

• 𝑆𝑆𝐸 = σ𝑖=1
𝑛 (ෝ𝑦𝑖 − ത𝑦)2

• Residual sum of squares (SSR)

• 𝑆𝑆𝑅 = σ𝑖=1
𝑛 (𝑦𝑖 − ෝ𝑦𝑖)

2= σ𝑖=1
𝑛 ෝ𝑢𝑖

2



Estimation: Goodness-of-Fit measure
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Important algebraic identity: 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅

➢ nice way of describing the goodness of fit of the model

R-squared of the regression (or the coefficient of determination):

• 𝑅2 =
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝑅

𝑆𝑆𝑇

Properties of R2 :

• 0 ≤ 𝑅2 ≤ 1

• 𝑅2 = 1 only if 𝑆𝑆𝑅 = 0, which means that all residuals are zero, 
and all observations lie exactly on the regression line

• 𝑅2 = 0 only if 𝑆𝑆𝐸 = 0, which implies that ෢𝛽1 = 0,෢𝛽0 = ത𝑦

𝑅2 is the fraction of the sample variation in y that is explained by x



Estimation: Goodness-of-Fit measure
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• Goodness-of-Fit

• Decomposition of total variation

• R-squared

• Alternative expression for R-squared

Notice that R-squared can only 
increase if another explanatory
variable is added to the 
regression

R-squared is equal to the squared
correlation coefficient between the
actual and the predicted value of
the dependent variable



Inference: The F Test
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• Testing multiple linear restrictions: The F-test

• Testing exclusion restrictions 

Years in 
the league

Average number of 
games per year

Salary of major lea-
gue baseball player

Batting average Home runs per year Runs batted in per year

against

Test whether performance measures have no effect/can be exluded from regression.



51

• Estimation of the unrestricted model

None of these variabels are statistically significant when tested individually

Idea: How would the model fit be if these variables were dropped from the regression?

Inference: The F Test



Inference: The F Test
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• Estimation of the restricted model

• Test statistic

The sum of squared residuals necessarily increases, but is the increase statistically significant?

The relative increase of the sum of
squared residuals when going from
H1 to H0 follows a F-distribution (if
the null hypothesis H0 is correct)

Number of restrictions



Inference: The F Test
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• Rejection rule 

A F-distributed variable only takes on positive 
values. This corresponds to the fact that the sum
of squared residuals can only increase if one
moves from H1 to H0.

Choose the critical value so that the null hypo-
thesis is rejected in, for example, 5% of the cases, 
although it is true.



Inference: The F Test
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• Test decision in example

• Discussion

➢ The three variables are „jointly significant“

➢ They were not significant when tested individually

➢ The likely reason is multicollinearity between them 

Number of restrictions to be tested

Degrees of freedom in
the unrestricted model

The null hypothesis is overwhel-
mingly rejected (even at very small
significance levels).



Inference: The F Test
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• Test of overall significance of a regression

• The test of overall significance is reported in most regression packages; the null 

hypothesis is usually overwhelmingly rejected

The null hypothesis states that the explanatory
variables are not useful at all in explaining the
dependent variable

Restricted model 
(regression on constant) 


