
1/36

Econometrics

F-Test

Omitted Variables

Nonlinear specifications and dummy variables

Anna Donina

Lecture 5



TESTING MULTIPLE HYPOTHESES REVISITED

2/49

• Suppose we have amodel

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

• Suppose we want to test multiple linear hypotheses in 
this model

• For example, we want to see if the following restrictions 
on coefficients hold jointly:

β1  + β2 = 1 and β3  = 0

• We cannot use a t-test in this case (t-test can be used only  
for one hypothesis at a time)

• We will use an F-test



RESTRICTED VS. UNRESTRICTED MODEL
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• We can reformulate the model by plugging the restrictions as if 
they were true (model under H0)

• We call this model restricted model as opposed to the unrestricted 
model

• The unrestricted modelis

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

• Restricted model can be derived to have the following form:

y∗i = β0 + β1x∗
i       + εi ,

where   y∗i = yi − xi2    and   x∗i = xi1 − xi2



IDEA OF THE F-TEST
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• If the restrictions are true, then the restricted model fits the  
data in the same way as the unrestricted model

▪ residuals are nearly the same

• If the restrictions are false, then the restricted model fits the 
data poorly

▪ residuals from the restricted model are much larger than  
those from the unrestricted model

• The idea is thus to compare the residuals from the two 
models



IDEA OF THE F-TEST
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How to compare residuals in the twomodels?

▪ Calculate the sum of squared residuals in the two models

▪ Test if the difference between the two sums is equal to zero  
(statistically)

▪ H0: the difference is zero (residuals in the two models are  
the same, restrictions hold)

▪ HA: the difference is positive (residuals in the restricted  
model are bigger, restrictions do not hold)

Sum of squaredresiduals



F-TEST
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The test statistic is defined as

F =
(SSRr − SSRur)/q 

SSRur/(n − k − 1)
∼ Fq,n−k−1 ,

. . . sum of squared residuals from the restricted model

. . . sum of squared residuals from the unrestricted model

where:
SSRr

SSRur  

q . . . number of restrictions

n . . . number of observations

k . . . number of estimated coefficients



GOODNESS OF FIT MEASURE
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• We know that education and experience have a significant
influence on wages

• But how important are they in determiningwages?

• How much of difference in wages between people is  
explained by differences in education and in experience?

• How well variation in the independent variable(s) 
explains variation in the dependent variable?

• This are the questions answered by the goodness of fit  
measure - R2



TOTAL AND EXPLAINED VARIATION

Total variation in the dependent variable:

Predicted value of the dependent variable = part that is  
explained by independent variables:

(case of regression line - for simplicity of notation)

Explained variation in the dependent variable:
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GOODNESS OF FIT - R2

Denote:
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Define the measure of the goodness offit:

R2 = 
SSE

= 
Explained variation in y 

SST Total variation in y



GOODNESS OF FIT - R2
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In all models: 0 ≤ R2 ≤ 1

• R2 tells us what percentage of the total variation in the
dependent variable is explained by the variation in
the independent variable(s)
▪ R2 = 0.3 means that the independent variables can explain

30% of the variation in the dependent variable

• Higher R2 means better fit of the regression model (not
necessarily a better model!)



DECOMPOSING THE VARIANCE

For models with intercept, R2 can be rewritten using the  
decomposition of variance.

Variance decomposition:
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VARIANCE DECOMPOSITION AND R2

12/49

Variance decomposition: SST = SSE + SSR

Intuition: total variation can be divided between the  
explained variation and the unexplained variation

▪ the true value y is a sum of estimated (explained) ư𝑦 and
the residual ei (unexplained part)

We can rewriteR2:

2R = =
SSE SST −SSR 

SST SST
= 1−

SSR 

SST



ADJUSTED R2
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• The sum of squared residuals (SSR) decreases when  
additional explanatory variables are introduced in the  
model, whereas total sum of squares (SST) remains the  
same

▪ 𝑅2 = 1 − 𝑆𝑆𝑅

𝑆𝑆𝑇
increases if we add explanatory variables

▪ Models with more variables automatically have better fit.

• To deal with this problem, we define the adjusted R2:

R2
adj = 1−

SSR
n−k−1

SST
n−1

≤ R2

(k is the number of coefficients)

• This measure introduces a “punishment” for including more  
explanatory variables



OMITTED VARIABLES
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We omit a variable whenwe
▪ forget to include it
▪ do not have data for it

This misspecification resultsin
▪ not having the coefficient for this variable
▪ biasing estimated coefficients of other variables in the  

equation → omitted variable bias



OMITTED VARIABLES
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• Where does the omitted variable bias come from?

• True model:
𝑦𝑖 = 𝛽𝑥𝑖 + 𝛾𝑧𝑖 + 𝑢𝑖

• Model as it looks when we omit variable z:
𝑦𝑖 = 𝛽𝑥𝑖 + ෤𝑢𝑖

implying
෤𝑢𝑖 = 𝛾𝑧𝑖 + 𝑢𝑖

• We assume that Cov ෤𝑢𝑖, 𝑥𝑖 = 0, but:

Cov ෤𝑢𝑖, 𝑥𝑖 = 𝐶𝑜𝑣 𝛾𝑧𝑖 + 𝑢𝑖, 𝑥𝑖 = 𝛾𝐶𝑜𝑣 𝑧𝑖 , 𝑥𝑖 ≠ 0

• The classical assumption is violated ⇒ 

biased (and inconsistent) estimate!!!



OMITTED VARIABLES
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For the model with omitted variable:

▪ Coefficients β and γ are from the true model

𝑦𝑖 = 𝛽𝑥𝑖 + 𝛾𝑧𝑖 + 𝑢𝑖

▪ Coefficient 𝛼 is from a regression of z on x, i.e.

𝑧𝑖 = 𝛼𝑥𝑖 + 𝑒𝑖

The bias is zero if 𝛾 = 0 or 𝛼 = 0 (not likely to happen)



OMITTED VARIABLES
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Intuitive explanation:

▪ if we leave out an important variable from the regression  
(𝛾 ≠ 0), coefficients of other variables are biased unless the 
omitted variable is uncorrelated with all included  
dependent variables (𝛼 ≠ 0)

▪ the included variables pick up some of the effect of the  
omitted variable (if they are correlated), and the 
coefficients  of included variables thus change causing the
bias

Example: what would happen if you estimated a  
production function with capital only and omitted labor?



OMITTED VARIABLES
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Example: estimating the price of chicken meat in theUS

Yt . . . per capita chicken consumption
PCt . . . price ofchicken
PBt . . . price ofbeef
YDt . . . per capita disposableincome



OMITTED VARIABLES
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When we omit price of beef:

, n = 44R2 = 0.895

Compare to the true model:

R2 = 0.986 , n = 44

We observe positive bias in the coefficient of PC (was it expected?)



OMITTED VARIABLES
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Determining the direction of bias: 𝑏𝑖𝑎𝑠 = 𝛾 ∗𝛼

▪ Where 𝛾 is a correlation between the omitted variable and  
the dependent variable (the price of beef and chicken  
consumption)

▪ 𝛾 is likely to be positive

▪ Where 𝛼 is a correlation between the omitted variable 
and  the included independent variable (the price of beef 
and  the price of chicken)

▪ 𝛼 is likely to be positive

Conclusion: Bias in the coefficient of the price of chicken is  
likely to be positive if we omit the price of beef from the  
equation.



OMITTED VARIABLES
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• In reality, we usually do not have the true model to
compare with

▪ Because we do not know what the true model is

▪ Because we do not have data for some important variable

• We can often recognize the bias if we obtain some
unexpected results

• We can prevent omitting variables by relying on the
theory

• If we cannot prevent omitting variables, we can at least
determine in what way this biases our estimates



IRRELEVANT VARIABLES
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A second type of specification error is including a variable  
that does not belong to the model

This misspecification

▪ Does not cause bias

▪ But it increases the variance of the estimated coefficients 
of the included variables



IRRELEVANT VARIABLES
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• True model:
yi = βxi + ui (1)

(2)

• Model as it looks when we add irrelevant z:

𝑦𝑖 = 𝛽𝑥𝑖 + 𝛾𝑧𝑖 + ǁ𝑢𝑖

• We can represent the error term as ǁ𝑢𝑖 = 𝑢𝑖 − 𝛾𝑧𝑖

• But since from the true model 𝛾 = 0, we have ǁ𝑢𝑖 = 𝑢𝑖
and there is no bias



SUMMARY OF THE THEORY

Bias – efficiency trade-off:

Omitted variable Irrelevant variable

Bias Yes* No

Variance Decreases * Increases*

* As long as we have correlation between x and z
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FOUR IMPORTANT SPECIFICATION CRITERIA
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Does a variable belong to the equation?

1. Theory: Is the variable’s place in the equation  
unambiguous and theoretically sound? Does intuition tells  
you it should be included?

2. t-test: Is the variable’s estimated coefficient significant in  
the expected direction?

3. R2: Does the overall fit of the equation improve (enough)  
when the variable is added to the equation?

4. Bias: Do other variables’ coefficients change significantly  
when the variable is added to the equation?



FOUR IMPORTANT SPECIFICATION CRITERIA
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• If all conditions hold, the variable belongs in the equation

• If none of them holds, the variable is irrelevant and can be  
safely excluded

• If the criteria give contradictory answers, most importance  
should be attributed to theoretical justification

▪ Therefore, if theory (intuition) says that variable belongs to  
the equation, we include it (even though its coefficients  
might be insignificant!).



NONLINEAR SPECIFICATION
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We will discuss different specifications: 

▪ nonlinear in dependent and independent variables 
and their interpretation

We will define the notion of a dummy variable and we
will show its different uses in linear regression models



NONLINEAR SPECIFICATION
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There is not always a linear relationship between dependent 
variable and explanatory variables

▪ The use of OLS requires that the equation be linear in 
coefficients 

▪ However, there is a wide variety of functional forms that  are 
linear in coefficients while being nonlinear in variables!

We have to choose carefully the functional form of the
relationship between the dependent variable and each
explanatory variable

▪ The choice of a functional form should be based on the  
underlying economic theory and/or intuition

▪ Do we expect a curve instead of a straight line? Does the effect 
of a variable peak at some point and then start to decline?



LINEAR FORM

y = β0 + β1x1 + β2x2 + ε

• Assumes that the effect of the explanatory variable on the  
dependent variable is constant:

𝑑𝑦

𝑑𝑥𝑘
= 𝛽𝑘 , k = 1,2

• Interpretation: if xk increases by 1 unit (in which xk is  
measured), then y will change by 𝛽𝑘units (in which y is  
measured)

• Linear form is used as default functional form until strong  
evidence that it is inappropriate is found
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LOG-LOG FORM

ln y = β0 + β1 ln x1 + β2 ln x2 + ε

• Assumes that the elasticity of the dependent variable 
with  respect to the explanatory variable is constant:

∂ ln y ∂y/y

∂ ln xk 
= 

∂xk/xk 
= βk
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k = 1,2

• Interpretation: if xk increases by 1 percent, then y will  
change by βk percent

• Before using a double-log model, make sure that
there are  no negative or zero observations in the 
data set



EXAMPLE
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• Estimating the production function of Indian sugar industry:

ln Q = 2.70 + 0
(0.14) (0.17)

.59 ln L + 0.33 lnK

Q . . . output  L
. . . labor  K

. . . capital employed

Interpretation: if we increase the amount of labor by 1%, the  
production of sugar will increase by 0.59%, ceteris paribus.

Ceteris paribus is a Latin phrase meaning ’other things  being
equal’.



LOG-LINEAR FORMS

32/49

Linear-log form:

y = β0 + β1 ln x1 + β2 ln x2 + ε

▪ Interpretation: if xk increases by 1 percent, then y will  
change by (𝛽𝑘/100) units (k = 1,2)

Log-linear form:

ln y = β0 + β1x1 + β2x2 + ε

▪ Interpretation: if xk increases by 1 unit, then y will change  
by (𝛽𝑘 ∗100) percent (k = 1,2)



EXAMPLES OF LOG LINEAR FORMS
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Estimating demand for chicken meat:

Y . . . annual chicken consumption (kg.)
PC . . . price of chicken
PB . . . price of beef
YD . . . annual disposable income

Interpretation: An increase in the annual disposable income by  
1% increases chicken consumption by 0.12 kg per year, ceteris  
paribus.



EXAMPLES OF LOG LINEAR FORMS
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Estimating the influence of education and experience on wages:

wage
educ
exper

. . . annual wage (USD)

. . . years of education

. . . years of experience

Interpretation: An increase in education by one year increases  
annual wage by 9.8%, ceteris paribus. An increase in experience  
by one year increases annual wage by 1%, ceteris paribus.



POLYNOMIAL FORM

1y = β0 + β1x1 + β2x2 + ε

• To determine the effect of x1 on y, we need to calculate the  
derivative:

∂y

∂x1 
= β1 + 2 ·β2·x1

• Clearly, the effect of x1 on y is not constant, but changes  
with the level of x1
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• We might also have higher order polynomials,e.g.:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε
1 1 1



EXAMPLE OF POLYNOMIAL FORM

• The impact of the number of hours of studying on 
the grade from Econometrics:

• To determine the effect of hours on grade, calculate 
the  derivative:
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▪ Decreasing returns to hours of studying: more hours
implies higher grade, but the positive effect of additional
hour of studying decreases with more hours



CHOICE OF CORRECT FUNCTIONAL FORM
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• The functional form has to be correctly specified in 
order  to avoid biased and inconsistent estimates

➢ Remember that one of the OLS assumptions is that 
the  model is correctly specified

• Ideally: the specification is given by underlying theory of  
the equation

• In reality: underlying theory does not give precise  
functional form

• In most cases, either linear form is adequate, or common  
sense will point out an easy choice from among the  
alternatives



CHOICE OF CORRECT FUNCTIONAL FORM
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Nonlinearity of explanatory variables

▪ often approximated by polynomial form

▪ missing higher powers of a variable can be detected as  
omitted variables

Nonlinearity of dependentvariable

▪ harder to detect based on statistical fit of the regression
R2 is incomparable across models where the y is
transformed

▪ dependent variables are often transformed to log-form in  
order to make their distribution closer to the normal  
distribution



DUMMY VARIABLES
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Dummy variable - takes on the values of 0 or 1, depending  
on a qualitative attribute

Examples of dummyvariables:



INTERCEPT DUMMY
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• Dummy variable included in a regression alone (not  
interacted with other variables) is an intercept dummy

• It changes the intercept for the subset of data defined by a  
dummy variable condition:

yi = β0 + β1Di + β2xi + εi

where

We have

yi =  (β0 + β1) + β2xi + εi    if Di = 1

yi = β0 + β2xi + εi    if Di = 0



INTERCEPT DUMMY

X
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Y

β0+β1

β0

Di=1

Slope = β2

Di=0

Slope = β2



EXAMPLE
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• Estimating the determinants of wages:

• Interpretation of the dummy variable M: men earn on  
average $2.156 per hour more than women, ceteris
paribus



SLOPE DUMMY
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• If a dummy variable is interacted with another variable 
(x),  it is a slope dummy.

• It changes the relationship between x and y for a subset of  
data defined by a dummy variable condition:

We have

yi =  β0 + (β1 + β2)xi + εi    if Di = 1

yi = β0 + β1xi + εi   if Di = 0



SLOPE DUMMY

X
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Y

β0

Di=0

Slope = β1+β2

Di=1

Slope = β1



EXAMPLE
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Estimating the determinants of wages:

Interpretation: men gain on average 17 cents per hour more 
than women for each additional year of education,  ceteris
paribus



SLOPE AND INTERCEPT DUMMIES
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• Allow both for different slope and intercept for two  subsets of 
data distinguished by a qualitative condition:

yi = β0 + β1Di + β2xi + β3(xi ·Di) + εi

where

iD = 1 if the i-th observation meets a particularcondition
0 otherwise

We  have 

yi =  (β0 + β1) + (β2 + β3)xi + εi if Di = 1

yi = β0 + β2xi + εi   if Di = 0



SLOPE AND INTERCEPT DUMMIES

X
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Y

Di=0

Slope = β2+β3

Di=1

Slope = β2

β0+β1

β0



DUMMY VARIABLES - MULTIPLE CATEGORIES
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• What if a variable defines three or more qualitative  
attributes?

• Example: level of education - elementary school, high  
school, and college

• Define and use a set of dummy variables:

• Should we include also a third dummy in the regression,  
which is equal to 1 for people with elementary education?

▪ No, unless we exclude the intercept!

▪ Using full set of dummies leads to perfect multicollinearity  
(dummy variable trap)



SUMMARY
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• We revisited F-testand talked about omitted variables

• We discussed different nonlinear specifications of a  
regression equation and their interpretation

• We defined the concept of a dummy variable and we  
showed its use

❖ Furtherreadings:

Studenmund, Chapter 7
Wooldridge, Chapters 6 & 7


