Indefinite integral

Hey, did you know $\int f(x) = g(x)$? Hmm. That means $f(x) = g'(x)$ $...$ ah Hahaha

Moral: Math isn't very funny.

Antiderivative

Definition: If $F(x)$ and $f(x)$ are such functions that for all x from the interval $I: f(x) = F'(x)$, then we say that $F(x)$ is an antiderivative of $f(x)$ on the interval *.*

Example: The function $F(x) = x^3 + \frac{x^2}{x^2}$ 2 $+$ 3x + 5 is an antiderivative of $f(x) = 3x^2 + x + 3$ as $f(x) = F'(x)$.

Comment: If $F(x)$ is antiderivative of $f(x)$ in the interval I, then the function $F(x)$ is continuous. What conditions must $f(x)$ satisfy to have an antiderivative? A sufficient condition for its existence is the continuity of $f(x)$ on *I*. Is the primitive function uniquely determined?

Example: The function $G(x) = x^3 + \frac{x^2}{x^2}$ 2 $+$ 3x + is also an antiderivative of the function $f(x) = 3x^2 + x + 3$ from the previous example. **Theorem:** If the functions $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ in the interval *I*, then there is a constant $c \in \mathbb{R}$, such that for $\forall x \in I$: $F(x) = G(x) + c.$

Indefinite integral

Definition: The set of all antiderivatives to $f(x)$ on *I* is called indefinite integral of $f(x)$ on *I* and is denoted as $\int f(x) dx$. We write

 $f(x) dx = F(x) + c$,

where $F(x)$ is an arbitrary antiderivative of $f(x)$ on *I dx* is the differential of x and c constant of integration.

Problem: Find indefinite integrals

$$
\int \sin x \, dx
$$

$$
\int x^3 \, dx
$$

$$
\int e^{2x} \, dx
$$

Solution: $\int \sin x \, dx = -\cos x + c$

$$
\int x^3 dx = \frac{x^4}{4} + c
$$

$$
\int e^{2x} dx = \frac{e^{2x}}{2} + c
$$

Some important integrals

$$
\int 0 dx = c,
$$

\n
$$
\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1,
$$

\n
$$
\int e^x dx = e^x + c,
$$

\n
$$
\int \sin x dx = -\cos x + c,
$$

\n
$$
\int \cos x dx = \sin x + c,
$$

\n
$$
\int \frac{dx}{1+x^2} = \operatorname{atan}(x) + c,
$$

\n
$$
\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + c,
$$

\n
$$
\int \frac{dx}{\cos^2 x} = \tan(x) + c,
$$

\n
$$
\int \frac{dx}{\sin^2 x} = -\cot(x) + c
$$

(The equation always applies to the interval where the integrand is continuous)

Some General Rules

Theorem: Integration of a linear combination of functions:

If the functions $f_1(x)$, $f_2(x)$, ... $f_n(x)$ are integrable on *I*, then for any $c_1, c_2, ... c_n \in \mathbb{R}$ the function $f(x) = c_1 f_1(x) + c_2 f_2(x) + ... +$ $c_n f_n(x)$ is also integrable, and:

$$
\int f(x) dx = c_1 \int f_1(x) dx + c_2 \int f_2(x) dx + \dots + c_n \int f_n(x) dx
$$

Problem: Find indefinite integral $\int (e^{x} + \frac{2}{x^{2}})$ x^2+1 $+\frac{3}{x}$ χ dx

Solution:
$$
\int \left(e^x + \frac{2}{x^2 + 1} + \frac{3}{x} \right) dx = \int e^x dx + 2 \int \frac{1}{x^2 + 1} dx +
$$

3 $\int \frac{1}{x} dx = e^x + 2 \arctg x + 3 \ln|x| + c$

Theorem: Integration by Parts:

If the functions $u(x)$, $v(x)$ have continuous derivatives on I , then: $\int u'(x)v(x)dx = u(x)v(x) - \int u(x)v'(x) dx$

Integration by Parts - examples

Problem: Find indefinite integral $\int x \cdot \sin x \, dx$

Solution: We integrate by parts: $u'(x) = \sin x, v(x) = x$. Then we have $u(x) = -\cos x, v'(x) = 1$, and substitute to the formula:

 $\int x \cdot \sin x \, dx = -x \cos x - \int (-\cos x) \, dx = -x \cos x + \sin x + c.$

Comment: Sometimes it is necessary to apply the rule repeatedly.

Problem: Find indefinite integral $\int x^2 \cdot e^x dx$. **Solution:** We integrate by parts: $u'(x) = e^x$, $v(x) = x^2$. Then we have $u(x) = e^x$, $v'(x) = 2$, and substitute to the formula: $\int x^2 \cdot e^x dx = x^2 \cdot e^x - \int 2x \cdot e^x dx$ We integrate by parts again: $u'(x) = e^x, v(x) = 2x, \text{ so } u(x) = e^x, v'(x) = 2.$ $x^2 \cdot e^x \, dx = x^2 \cdot e^x - 2x \cdot e^x - 2e^x \, dx =$ $x^2 \cdot e^x - 2x \cdot e^x + 2e^x + c.$

Integration by Substitution:

Integral of the type $\int f(\varphi(x))\varphi'(x) dx$ can be solved by substitution.

The solution procedure is as follows:

- First we choose the substitution $y = \varphi(x)$.
- We find $dy = \varphi'(x) dx$.
- Then we substitute for $\varphi(x)$ and $\varphi'(x)$ dx and we get $\int f(y) dy$.
- We find $F(y) = \int f(y) dy$.
- Finally, we find the integral by "back substitution":

$$
\int f(\varphi(x))\varphi'(x) \ dx = F(\varphi(x)) + c, x \in I.
$$

Integration by Substitution: examples

Problem: Find $\int e^{3x+1} dx$.

Solution:
$$
\int e^{3x+1} dx = \frac{1}{3} \int e^{3x+1} \cdot 3 dx = \begin{vmatrix} \text{substitution} & u = 3x + 1 \\ du = 3 dx \end{vmatrix} = \frac{1}{3} \int e^u du = \frac{1}{3} e^u + c = \frac{1}{3} e^{3x+1} + c, x \in \mathbb{R}.
$$

Problem: Find ∫ $\frac{x}{x^2+1} dx$.

Solution:
$$
\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{2x}{x^2 + 1} dx = \begin{vmatrix} \text{substitution} & u = x^2 + 1 \\ du = 2x dx \end{vmatrix}
$$

$$
= \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + c = \frac{1}{2} \ln|x^2 + 1| + c, x \in \mathbb{R}.
$$

Comment: For the function $\varphi(x)$ that is nonzero on the interval *I* and has the derivative $\varphi'(x)$ we have:

$$
\int \frac{\varphi'(x)}{\varphi(x)} dx = \ln |\varphi(x)| + c, \quad x \in I: \varphi(x) \neq 0.
$$