Limits

Neighbourhood

For point a∈R and number δ > 0 we define δ- neighbourhood of a point a as interval U_δ(a) = (a - δ, a + δ). Sometimes it is not necessary to specify δ, then the Neighbourhood a is denoted by U (a) and we understand it as a small open interval containing a. The terms left neighborhood, right Neighbourhood and pure Neighbourhood of the point a are also introduced (as U (a) - {a})

Neighbourhood of *a* Pure Neighbourhood of *a* Right Neighbourhood of *a* Pure right Neighbourhood of *a*

Continuity

- Definition: Let y = f (x) be a function defined on the open interval I and point a∈I. " We say that f is continuous at point a if for any accuracy ε > 0 it holds that all x from some Neighbourhood of point a satisfy: f(x) ≐ f(a) (±ε)"
- **Comment:** we also define the continuity from the right for the right neighborhood, (or from the left for the left neighborhood).

Definition of limits

Definition: We say that the function f(x) has a limit at x_0 equal to the number α if "for any accuracy $\varepsilon > 0$ there exists a pure neighbourhood $U_{\delta}(x_0)$ such that all x from this neighbourhood satisfy: $f(x) \approx \alpha$ (with the accuracy ε)".

We write:

$$\lim_{x\to x_0} f(x) = \alpha$$

Comment:

The limit value at point x_0 does not depend on $f(x_0)$. If the function f(x) is continuous at the point x_0 , then of course it has a limit at this point and it holds that $\lim_{x \to x_0} f(x) = f(x_0)$.

Problem: Find the limit $\lim_{x \to 3} \frac{x+5}{x+1}$

Solution: The function $f(x) = \frac{x+5}{x+1}$ is continuous in all points of its domain $Df = \mathbb{R} \setminus \{-1\}.$

So
$$\lim_{x \to 3} f(x) = f(3) = \frac{3+5}{3+1} = \frac{8}{4} = 2.$$

http://demonstrations.wolfram.com/LimitOfAFunctionAtAPoint/

Limit calculation

The function can have a limit even at a point where it is not defined!

Problem: Find the limit $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$

Solution: $Df = \mathbb{R} \setminus \{1\}$. So f(x) is not continuous at $x_0 = 1$. We determine several function values around the point $x_0 = 1$.

x	1.1	0.9	1.01	0.99	1.001	0.999
f(x)	2.1	1.9	2.01	1.99	2.001	1.999

Conclusion: The values of the function are "close to the number 2" for x "close to 1".

Theorem: If in some $U_{\delta}(x_0)$ holds $\forall x \neq x_0$: f(x) = g(x), then the function f(x) has a limit at point x_0 if and only if the function g(x) has a limit and

has a limit and

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x)$$

Limit of the function, example

Problem: Determine the limit from the previous example using the theorem.

Solution: For all $x \neq 1$, we have: $\frac{x^2-1}{x-1} = \frac{(x-1)(x+1)}{(x-1)} = x+1$. So f(x) and g(x) = x + 1 meet the assumptions of the theorem, and therefore $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2.$ g(x)=x+1 2 2

One-Sided Limits

If we replace the neighbourhood of x_0 with the left neighbourhood $U_{\delta}^-(x_0)$ or the right neighbourhood $U_{\delta}^+(x_0)$, we get the definition of the limit from below or from above. We write:

Problem:

$$\lim_{x \to x_0^-} f(x) \text{, or } \lim_{x \to x_0^+} f(x)$$

(x)

Find $\lim_{x \to 1} f(x)$ for the floor function $f(x) = \lfloor x \rfloor$ defined as $\lfloor x \rfloor := n \in \mathbb{N}: n \le x \land n + 1 > x$.

Solution: There is no limit; for x "to the right of point $x_0 = 1$ ", it holds: [x] = 1, but to the left of point $x_0 = 1$ ", it is [x] = 0. There are only one-sided limits $\lim_{x \to 1^+} f(x) = 1$, $\lim_{x \to 1^-} f(x) = 0$.

Augmented real numbers

We define the set $\mathbb{R}^* = \mathbb{R} \cup \{\infty, -\infty\}$. The symbols $\infty, -\infty$ stand for infinity and negative infinity.

Everything is nothing

We define for $a \in \mathbb{R}$:

Limit at the infinity

We say that the function f(x) has a limit at infinity equal to α , if for any accuracy ε it holds for all "sufficiently large" $x: f(x) \approx \alpha$ (with precision ε).

$$\lim_{x\to\infty}f(x) = \alpha$$

The limit at the point $-\infty$ is defined analogously.

Comment: The definition can also be applied to the case $\alpha = \pm \infty$

Problem: Find the limit $\lim_{x \to \infty} \frac{3}{x+5}$

Solution: First let's try to substitute "large x" into the function.

x	5	95	995	9995	99995
f(x)	0,3	0,03	0,003	0,0003	0,00003

We see that the function values go to zero, so $\lim_{x\to\infty} \frac{3}{x+5} = \frac{3}{\infty} = 0$. <u>http://demonstrations.wolfram.com/InfiniteLimitAtInfinity/</u>

Infinite limits

Limits $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ of the type $\frac{a}{0}$, where $a \neq 0$, satisfy:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = +\infty, \text{ if } \frac{f(x)}{g(x)} > 0 \text{ in a neighbourhood of } x_0,$$
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = -\infty, \text{ je-li } \frac{f(x)}{g(x)} < 0 \text{ in a neighbourhood of } x_0,$$

else the limit doesn't exist.

Problem: Investigate all infinite limits of the function $f(x) = \frac{1}{x-2}$ **Solution:** Limits at infinite points:

 $\lim_{x \to \infty} \frac{1}{x-2} = \frac{1}{\infty} = 0, \quad \lim_{x \to -\infty} \frac{1}{x-2} = \frac{1}{-\infty} = 0$ As $D(f) = \mathbb{R} \setminus \{2\}$, we will also try to calculate the limit at the point $x_0 = 2$: $\lim_{x \to 2} \frac{1}{x-2} \text{ doesn't exist, as } \frac{1}{x-2} > 0 \text{ for } x > 2, \text{ but } \frac{1}{x-2} < 0 \text{ for } x < 2.$ The function has just one-sided limits there: $\lim_{x \to 2-} \frac{1}{x-2} = -\infty, \quad \lim_{x \to 2+} \frac{1}{x-2} = +\infty$

Infinite limits and the graph

• If $\lim_{x \to x_0 \pm} f(x) = \pm \infty$, we say that the function has a vertical asymptote at x_0 ; the graph is approaching the line $x = x_0$ in the left (or right) neighbourhood of x_0 .

• If
$$\lim_{\{x \to \infty\}} f(x) = \alpha$$
, $(\operatorname{or}_{\{x \to -\infty\}} f(x) = \alpha)$,

we say that the function has a horizontal asymptote; the graph is approaching the line $y = \alpha$ on the right (or left) side.

Example: The function from the previous slide $f(x) = \frac{1}{x-2}$ has a vertical asymptote x = 2 and horizontal asymptote y = 0.

Limit of the sequence

In a similar way as the function limit at the infinity, we define the limit of the sequence $\{a_n\}_{n=1}^{\infty}$:

Definition: We say that $\{a_n\}_{n=1}^{\infty}$ has a limit at infinity equal to α , if for any $\varepsilon > 0$ it holds for all "sufficiently large $n: a_n \approx \alpha$ (with precision ε)". We write

 $\lim_{n\to\infty}a_n = \alpha$

Such a sequence is called **convergent** in the case of finite α . If there is no finite limit $\lim_{n\to\infty} a_n$, then the sequence is called **divergent**.

Example: The picture shows several terms of the convergent sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$

http://demonstrations.wolfram.com/LimitsOfSequences/

Rules for limits

If
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = B$ for $x_0, A, B \in \mathbb{R}^*$, then
$$\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B,$$
$$\lim_{x \to x_0} f(x) \cdot g(x) = A \cdot B,$$
$$\lim_{x \to x_0} f(x) / g(x) = A / B$$

if the right-hand side makes sense in \mathbb{R}^* .

Problem:

Find the limit $\lim_{x\to\infty} \frac{2x^2+5x+1}{3-x^2}$. **Solution:** $\lim_{x\to\infty} \frac{2x^2+5x+1}{3-x^2} = \frac{\infty}{-\infty}$, but the expression on the left is not defined. For $x \neq 0$, we can simplify the fraction:

$$\lim_{x \to \infty} \frac{2x^2 + 5x + 1}{3 - x^2} = \lim_{x \to \infty} \frac{2x^2 + 5x + 1}{3 - x^2} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{2 + \frac{5}{x} + \frac{1}{x^2}}{\frac{3}{x^2} - 1} = \frac{2 + 0 + 0}{0 - 1} = -2.$$

Limit of a composite function

Theorem: If $F(x) = f(\varphi(x))$ and f(x) is continuous at a, where $a = \lim_{x \to x_0} \varphi(x)$, then

$$\lim_{x \to x_0} F(x) = f\left(\lim_{x \to x_0} \varphi(x)\right) = f(a)$$

Example: $\lim_{x \to \infty} \sin\left(\frac{1}{x}\right) = \sin\left(\lim_{x \to \infty} \left(\frac{1}{x}\right)\right) = \sin 0 = 0.$

Comment:

To compute limits of the type $\infty - \infty$, $0 \cdot (\pm \infty)$, etc., we often expand the expression to get a fraction.

Example:
$$\lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = \infty - \infty = \lim_{\substack{x \to \infty \\ \sqrt{x+1} + \sqrt{x}}} (\sqrt{x+1} - \sqrt{x}) = 0$$