Exercise 7

To examine the quantity theory of money, Brumm (2005) ["Money Growth, Output Growth, and Inflation: A Reexamination of the Modern Quantity Theory's Linchpin Prediction," *Southern Economic Journal*, 71(3), 661–667] specifies the equation:

Inflation = $\beta_0 + \beta_1 * Money + \beta_2 * Output + u$

where *INFLAT* is the growth rate of the general price level, *MONEY* is the growth rate of the money supply, and *OUTPUT* is the growth rate of national output. According to theory we should observe that $\beta_0 = 0$, $\beta_1 = 1$, and $\beta_2 = -1$. The data used in this paper is contained in the file *brumm.gdt*. It consists of 1995 year data on 76 countries.

a) Estimate the model by OLS and interpret all the parameters.

ols Inflation const Money Output

Model 1: OLS, using observations 1-76 Dependent variable: Inflation										
	coeffic	ient	std.	erron	t-ratio	p-value				
const	-0.234	214	0.97	9925	-0.2390	0.8118				
Money	1.03313		0.009	904221	114.3	4.65e-084	***			
Output	-1.662	01	0.25	0566	-6.633	4.95e-09	***			
Mean dependent var		25.35395		S.D. dependent var		58.94767				
Sum squared resid		1356.034		S.E.	of regression	4.309966				
R-squared		0.994797		Adjusted R-squared		0.994654				
F(2, 73)		6978.325		P-val	lue(F)	4.41e-84				
Log-likelihood		-217.3396		Akaike criterion		440.6792				
Schwarz criterion		447.6714		Hannan-Quinn		443.4736				

b) Test the joint hypothesis that $\beta_0 = 0$, $\beta_1 = 1$ and $\beta_2 = -1$. What do you conclude?

```
restrict
b[1] = 0
b[2] = 1
b[3] = -1
end restrict
Restriction set
 1: b[const] = 0
2: b[Money] = 1
 3: b[Output] = -1
Test statistic: F(3, 73) = 10.5158, with p-value = 7.88962e-006
Restricted estimates:
            coefficient std. error t-ratio p-value
                                      -----
  const
           0.000000 0.000000 NA
                                                 NA
  Money
              1.00000
                          0.000000
                                    NA
NA
                                                 NA
                       0.00000
             -1.00000
                                                 NA
  Output
  Standard error of the regression = 5.05503
```

We reject H0, therefore, restrictions do not hold

c) Examine the least squares residuals for the presence of heteroskedasticity related to the

variable Money.

series resid=\$uhat

gnuplot sq_resid Money

modtest -white (this tests all explanatory variables for heteroskedasticity

Manually:

genr mout=Money*Output

ols sq_resid const Money Output sq_Money sq_Output mout

	coeffic	ient :	std.	err	or	t-ratio	p-value	
const	-16,420	6 2	20,91	62		-0,7851	0,4351	
Money	2,368	62	0,54	064	9	4,381	4,06e-05	**
Output	-5,083	22	10,69	932		-0,4754	0,6360	
sq_Money	-0,005	69956	0,00	156	983	-3,631	0,0005	**
sq_Output	0,254	486	1,13	8671		0,2239	0,8235	
mout	-0,017	6535	0,13	8693	7	-0,1289	0,8978	
Mean depender	nt var	17,84255	s.	D.	depend	lent var	71,65330	
Sum squared n	esid	238967,9	s.	Ε.	of reg	gression	58,42797	
R-squared	1	0,379408	Ac	ljus	sted R-	-squared	0,335080	
F(5, 70)	1	8,559119	P-	val	ue(F)		2,30e-06	
Log-likelihoo	od –	413,8667	A	caik	crit	cerion	839,7333	
Schwarz crite	rion	853,7177	Ha	nna	n-Quir	n	845,3222	

LM= R²*n=0.3794*76=28.83

Critical value at 1% significance $\chi^2(5) = 15.086$

Therefore, we reject the hypothesis that there is no heteroskedasticity with respect to

the variable Money

d) Obtain robust standard errors for the model and compare them to the OLS standard errors. Does your conclusion change in part (b) after using robust standard errors?

ols Inflation const Money Output -robust

Model 3: OLS, using observations 1-76 Dependent variable: Inflation Heteroskedasticity-robust standard errors, variant HCl										
c	coefficie	ent	std.	error	t-ratio	p-value				
const	-0.23421	14	0.619	615	-0.3780	0.7065				
Money	1.03313	3	0.023	6942	43.60	5.08e-054	***			
Output	-1.66201	1	0.175	914	-9.448	2.71e-014	***			
Mean dependent	var 2	25.353	95	S.D. dep	endent var	58.9476	57			
Sum squared resid 135		1356.0	34	S.E. of regression		n 4.309966				
R-squared	0	0.9947	97	Adjusted	l R-squared	0.99465	54			
F(2, 73)	9	956.82	15	P-value	(F)	4.26e-5	53			
Log-likelihood	1 –2	217.33	96	Akaike o	riterion	440.679	92			
Schwarz criter	ion 4	447.67	14	Hannan-O	uinn	443.473	86			

Conclusion does not change - they are jointly not equal to the theoretical parameters

e) It is argued that *Output* may be endogenous. Four instrumental variables are proposed, *INITIAL* = initial level of real GDP, *SCHOOL* = a measure of the population's educational attainment, *INVEST* = average investment as a share of GDP, and *POPRATE* = average population growth rate. Using these instruments, obtain instrumental variables (2SLS) estimates of the inflation equation (do the two stage procedure).

First stage:

ols Output const initial poprate school invest Money

series Output_hat=\$yhat

Second stage:

ols Inflation const Money Output_hat

```
      Model 6: OLS, using observations 1-76

      Dependent variable: Inflation

      coefficient
      std. error
      t-ratio
      p-value

      const
      -1,09398
      2,26858
      -0,4822
      0,6311

      Money
      1,03506
      0,0119309
      86,75
      2,16e-075
      ***

      Out_hat
      -1,39420
      0,673298
      -2,071
      0,0419
      **

      Mean dependent var
      25,35395
      S.D. dependent var
      58,94767

      Sum squared resid
      2052,737
      S.E. of regression
      5,302800

      R-squared
      0,991213
      Adjusted R-squared
      0,991908

      F(2, 73)
      4597,479
      P-value(F)
      1,65e-77

      Log-likelihood
      -233,0948
      Akaike criterion
      472,1896

      Schwarz criterion
      479,1818
      Hannan-Quinn
      474,9840
```

Alternatively, we can use Gretl command

tsls Inflation 0 Output Money ; 0 initial invest poprate school Money

OR

tsls Inflation const Output Money ; const initial invest poprate school Money

f) Are the instruments strong? Only invest predicts the Output significantly, other variables are weak instruments. The theoretical parameters are again jointly rejected.
 The impact of output on the inflation is now lower than before.

According to F test, instrument is weak because it falls below 10.27, where bias could have been roughly around 10% only but this is beyond the scope of our course

Weak instrument test First-stage F-statistic (4, 70) = 4,64206
 Critical values for TSLS bias relative to OLS:
 bias 5% 10% 20% 30%
 value 16,85 10,27 6,71 5,34