	Time Value of Money Formula For:	Annual Compounding	Compounded (m) Times Per Year	Continuous Compounding
1.	Future value of a single cash flow. (Future Value of a Lump Sum)	$FV = PV(1+i)^n$	$FV = PV \left(1 + \frac{i}{m}\right)^{nm}$	$FV = PV(e)^{in}$
2.	Present value of a single cash flow. (Present Value of a Lump Sum)	$PV = FV(1+i)^{-n}$	$PV = FV\left(1 + \frac{i}{m}\right)^{-nm}$	$PV = FV(e)^{-in}$
3.	Future value of a series of equal cash flows (PMT) at fixed intervals for a specified number of periods. (Future Value of an Annuity)	$FVA = PMT \left[\frac{(1+i)^n - 1}{i} \right]$	$FVA = PMT \left[\frac{\left(1 + \frac{i}{m}\right)^{nm} - 1}{i/m} \right]$	$\mathbf{FVA} = \mathbf{PMT} \left[\frac{(e^{i n} - 1)}{(e^{i} - 1)} \right]$
4.	Present value of a series of equal cash flows (PMT) at fixed intervals for a specified number of periods. (Present Value of an Annuity)	$PVA = PMT \left[\frac{1 - (1 + i)^{-n}}{i} \right]$	$PVA = PMT \left[\frac{1 - \left(1 + \frac{i}{m}\right)^{-nm}}{i/m} \right]$	$PVA = PMT \left[\frac{(1 - e^{-in})}{(e^{i} - 1)} \right]$
5.	Effective interest rate given simple (or quoted) interest rate.	EAR = i	$EAR = \left(1 + \frac{i}{m}\right)^{m} - 1$	$EAR = e^{i} - 1$
6.	Simple (or quoted) interest rate given effective interest rate.	i = EAR	$i = m_{[}(1 + EAR)^{1/m} - 1_{]}$	i = ln(1 + EAR)
7.	The length of time required for a single cash flow to grow to a specified future amount at a given rate of interest.	$n = \frac{\ln(FV/PV)}{\ln(1+i)}$	$n = \frac{\ln(FV/PV)}{m * \ln(1 + \frac{i}{m})}$	$n = \frac{1}{i} \ln(FV/PV)$
8.	The simple (or quoted) rate of interest required for a single cash flow to grow to a specified future cash flow.	$i = \left(\frac{FV}{PV}\right)^{1/n} - 1$	$i = m \left[\left(\frac{FV}{PV} \right)^{1/(nm)} - 1 \right]$	$i = \frac{1}{n} \ln (FV/PV)$
9.	The length of time required for a series of equal cash flows (PMT) to grow to a specific future amount.	$n = \frac{\ln \left[\frac{(FVA)(i)}{PMT} + 1 \right]}{\ln(1+i)}$	$\mathbf{n} = \frac{\ln \left[\left(\frac{\mathbf{i}}{\mathbf{m}} \right) \left(\frac{FVA}{PMT} + \frac{\mathbf{m}}{\mathbf{i}} \right) \right]}{\mathbf{m} * \left[\ln \left(1 + \frac{\mathbf{i}}{\mathbf{m}} \right) \right]}$	
10.	Present value of a finite series of cash flows (CF) growing at a constant rate (g) for (n) periods with constant (i).	$PV = \frac{CF_o(1+g)}{(i-g)} \left[1 - \left(\frac{1+g}{1+i}\right)^n \right], \text{ for}$	ri≠g	

i = simple or quoted rate (nominal interest rate)

m = number of compounding periods per year

ln = natural logarithm

n = time period expressed in years (or portion thereof)

e = Euler's constant ≈ 2.71828...

EAR = effective annual rate