

Portfolio Theory

Important Assumptions of Mean-Variance Analysis

Mean-variance analysis

Returns are normally distributed

Markets are informationally and operationally efficient

EXHIBIT 5-9 Histogram of U.S. Large Company Stock Returns, 1926-2008

Violations o	of the	l				2006 2004					
				2000	2007	1988	2003	1997			
normality assumption:				1990	2005	1986	1999	1995			
skewness and				1981	1994	1979	1998	1991			
			1977	1993	1972	1996	1989				
kurtosis.				1969	1992	1971	1983	1985			
				1962	1987	1968	1982	1980			
				1953	1984	1965	1976	1975			
				1946	1978	1964	1967	1955			
			2001	1940	1970	1959	1963	1950			
			1973	1939	1960	1952	1961	1945			
		2002	1966	1934	1956	1949	1951	1938	1958		
	2008	1974	1957	1932	1948	1944	1943	1936	1935	1954	
1931	1937	1939	1941	1929	1947	1926	1942	1927	1928	1933	
-60 -50 -	40 -3	30 -2	20 –1	io 0) 1	0 2	20 3	30 4	0 5	60 60	70

Indifference Curves

An indifference curve plots the combination of risk-return pairs that an investor would accept to maintain a given level of utility.

 σ_i

Portfolio Expected Return and Risk Assuming a Risk-Free Asset

Assume a portfolio of two assets, a risk-free asset and a risky asset. Expected return and risk for that portfolio can be determined using the following formulas:

$$E(R_{P}) = w_{1}R_{f} + (1 - w_{1})E(R_{i})$$

$$\sigma_{P}^{2} = w_{1}^{2}\sigma_{f}^{2} + (1 - w_{1})^{2}\sigma_{i}^{2} + 2w_{1}(1 - w_{1})\rho_{fi}\sigma_{f}\sigma_{i}$$

$$= (1 - w_{1})^{2}\sigma_{i}^{2}$$

$$\sigma_{P} = \sqrt{(1 - w_{1})^{2}\sigma_{i}^{2}} = (1 - w_{1})\sigma_{i}$$

The Capital Allocation Line (CAL)

EXHIBIT 5-15 Portfolio Selection for Two Investors with Various Levels of Risk Aversion

Correlation and Portfolio Risk

EXHIBIT 5-16 Relationship between Risk and Return

Weight in	Portfolio	Portfolio Risk with Correlation of					
Asset 1	Return	1.0	0.5	0.2	-1.0		
0%	15.0	25.0	25.0	25.0	25.0		
10%	14.2	23.7	23.1	22.8	21.3		
20%	13.4	22.4	21.3	20.6	17.6		
30%	12.6	21.1	19.6	18.6	13.9		
40%	11.8	19.8	17.9	16.6	10.2		
50%	11.0	18.5	16.3	14.9	6.5		
60%	10.2	17.2	15.0	13.4	2.8		
70%	9.4	15.9	13.8	12.3	0.9		
80%	8.6	14.6	12.9	11.7	4.6		
90%	7.8	13.3	12.2	11.6	8.3		
100%	7.0	12.0	12.0	12.0	12.0		

EXHIBIT 5-17 Relationship between Risk and Return

Standard Deviation of Portfolio σ_p

EXHIBIT 5-22 Minimum-Variance Frontier

Portfolio Standard Deviation

EXHIBIT 5-23 Capital Allocation Line and Optimal Risky Portfolio

EXHIBIT 5-25 Optimal Investor Portfolio

EXHIBIT 6-1 Portfolio Risk and Return

	Weight in	Weight in	Portfolio	
Portfolio	Asset 1	Asset 2	Return	Portfolio Standard Deviation
Х	25.0%	75.0%	6.25%	9.01%
Y	50.0	50.0	7.50	11.18
Ζ	75.0	25.0	8.75	15.21
Return	10.0%	5.0%		
Standard deviation	20.0%	10.0%		
Correlation between		0.0		
Assets 1 and 2				

 $\sigma_{X} = \sqrt{(.25^{2})(.20^{2}) + (.75^{2})(.10)^{2} + (.25)(0)(.20)(.10) + (.75)(0)(.10)(.20)} \approx 9.01\%$

Portfolio of Risk-Free and Risky Assets

Portfolio Beta

Portfolio beta is the weighted sum of the betas of the component securities:

$$\beta_p = \sum_{i=1}^{N} w_i \beta_i = (0.40 \times 1.50) + (0.60 \times 1.20) = 1.32$$

The portfolio's expected return given by the CAPM is:

$$E(R_{p}) = R_{f} + \beta_{p} \left[E(R_{m}) - R_{f} \right]$$
$$E(R_{p}) = 3\% + 1.32 \left[9\% - 3\% \right] = 10.92\%$$

Camparison of funds performance

Active vs. Pasive Investing

Expense Ratios of Actively Managed and Index Mutual Funds Have Fallen Percent

Záp

Jensen's alpha

Jensen's alpha helps an investor determine how much extra return a fund has earned above the expected return while considering the non-diversifiable risk of the market. The expected return is calculated using the CAPM (capital asset pricing model). A positive Jensen's alpha indicates that the managers of the fund, through careful stock selection, have been able to extract higher returns than the market (which in our case is the underlying indexes). Jensen's alpha is calculated as follows:

Jensen's alpha = (portfolio return – expected return CAPM)

The Sharpe ratio

Investors often use the Sharpe ratio to gauge the performance of investment portfolios. The Sharpe ratio measures the units of excess return earned by a portfolio over the risk-free rate for every unit of risk taken. The risk is the standard deviation of the portfolio returns. The equation for the Sharpe ratio is as follows:

Sharpe ratio = (average return of portfolio – risk-free rate of return)/standard deviation of portfolio returns

R-squared value

The R-squared value is a statistical measure that compares the movement of a fund against that of its benchmark index. The R-squared value ranges from 0 to 1. A value closer to 1 indicates that the fund's performance follows the movement of the underlying index, whereas a fund with a low R-squared value does not closely follow the performance of the underlying index.

R-squared value

The Treynor ratio

The Treynor ratio calculates how much an investment has earned above the risk-free market rate for every unit of risk assumed. Although it is similar to the Sharpe ratio, its measure of risk is different. Whereas the Sharpe ratio considers the total risk of the investment, the Treynor ratio only considers the systematic risk, assuming that the non-systematic risk is fully diversified in developing the portfolio. Risk in the Treynor ratio, represented by beta, is the systematic risk or non-diversifiable risk. The equation for the Treynor ratio is as follows:

Treynor ratio = (average return of portfolio – risk-free rate of

The Sortino ratio

The Sharpe ratio can sometimes be unfavorable for stocks that have high upside volatility. To prevent this, we can use the Sortino ratio. Although the calculation of the Sortino ratio is similar to that of the Sharpe ratio, the Sortino ratio's denominator is the downside deviation of the portfolio. The equation for the Sortino ratio is as follows:

Sortino ratio = (average return of portfolio – risk-free rate of return)/downside deviation of portfolio returns

The information ratio

The information ratio can be used to evaluate the performance of an actively managed fund. It can determine how consistently the manager of the fund has generated excess returns for its investors. In simple terms, it is the ratio of the active return generated by the manager over the index return, divided by the active risk taken. The risk taken is measured by the standard deviation of the difference between the returns of the portfolio and the index, which is referred to as the tracking error. The equation is as follows: Information ratio = (portfolio return – benchmark return)/tracking error

