
Portfolio Theory



Important Assumptions of Mean-Variance 
Analysis

Mean-variance 
analysis

Markets are 
informationally and 

operationally efficient

Returns are normally 
distributed



EXHIBIT 5-9 Histogram of U.S. Large Company 
Stock Returns, 1926-2008
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Violations of the 

normality assumption: 

skewness and 

kurtosis.



Utility Theory
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Indifference Curves

An indifference 

curve plots the 

combination of 

risk-return pairs 

that an investor 

would accept to 

maintain a given 

level of utility.



Portfolio Expected Return and Risk Assuming a Risk-

Free Asset
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Assume a portfolio of two assets, a risk-free asset 

and a risky asset.  Expected return and risk for that 

portfolio can be determined using the following 

formulas:



The Capital Allocation Line (CAL)
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EXHIBIT 5-15 Portfolio Selection for Two 
Investors with Various Levels of Risk Aversion
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Correlation and Portfolio Risk

Correlation 
between assets 
in the portfolio

Portfolio risk



EXHIBIT 5-16 Relationship between Risk and Return

Weight in 

Asset 1 

Portfolio 

Return 

Portfolio Risk with Correlation of 

1.0 0.5 0.2  –1.0 

0% 15.0 25.0 25.0 25.0 25.0 

10% 14.2 23.7 23.1 22.8 21.3 

20% 13.4 22.4 21.3 20.6 17.6 

30% 12.6 21.1 19.6 18.6 13.9 

40% 11.8 19.8 17.9 16.6 10.2 

50% 11.0 18.5 16.3 14.9 6.5 

60% 10.2 17.2 15.0 13.4 2.8 

70% 9.4 15.9 13.8 12.3 0.9 

80% 8.6 14.6 12.9 11.7 4.6 

90% 7.8 13.3 12.2 11.6 8.3 

100% 7.0 12.0 12.0 12.0 12.0 

 



EXHIBIT 5-17 Relationship between Risk and Return
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EXHIBIT 5-22 Minimum-Variance Frontier 
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EXHIBIT 5-23 Capital Allocation Line and Optimal Risky 

Portfolio
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CAL(P) is 

the optimal 

capital 

allocation 

line and 

portfolio P 

is the 

optimal 

risky 

portfolio.



The Two-Fund Separation Theorem

Investment 
Decision

Financing 
Decision

Optimal 
Investor 
Portfolio



EXHIBIT 5-25 Optimal Investor Portfolio
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Given the 

investor’s 

indifference 

curve, 

portfolio C on 

CAL(P) is the 

optimal 

portfolio.



EXHIBIT 6-1 Portfolio Risk and Return 

Portfolio 

Weight in 

Asset 1 

Weight in 

Asset 2 

Portfolio 

Return Portfolio Standard Deviation 

X 25.0% 75.0% 6.25% 9.01% 

Y 50.0 50.0 7.50 11.18 

Z 75.0 25.0 8.75 15.21 

     

Return 10.0% 5.0%   

Standard deviation 20.0% 10.0%   

Correlation between 

Assets 1 and 2 

 0.0   
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Portfolio of Risk-Free and Risky Assets

Combine 
risk-free 

asset and 
risky asset

Capital 
allocation line 

(CAL)

Superimpose 
utility curves 
on the CAL

Optimal 

Risky 

Portfolio



Portfolio Beta

1

(0.40 1.50) (0.60 1.20) 1.32
N

p i i

i

w
=

 =  =  +  =

Portfolio beta is the weighted sum of the betas of the 

component securities:
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The portfolio’s expected return given by the CAPM is:



Camparison of funds
performance
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Jensen’s alpha

Jensen’s alpha helps an investor determine how much extra return 

a fund has earned above the expected return while considering the 

non-diversifiable risk of the market. The expected return is 

calculated using the CAPM (capital asset pricing model). A positive 

Jensen’s alpha indicates that the managers of the fund, through 

careful stock selection, have been able to extract higher returns 

than the market (which in our case is the underlying indexes). 

Jensen’s alpha is calculated as follows:

Jensen’s alpha = (portfolio return – expected return CAPM)





The Sharpe ratio

Investors often use the Sharpe ratio to gauge the performance of 

investment portfolios. The Sharpe ratio measures the units of 

excess return earned by a portfolio over the risk-free rate for every 

unit of risk taken. The risk is the standard deviation of the portfolio 

returns. The equation for the Sharpe ratio is as follows:

Sharpe ratio = (average return of portfolio – risk-free rate of 

return)/standard deviation of portfolio returns





R-squared value

The R-squared value is a statistical measure that compares the 

movement of a fund against that of its benchmark index. The R-

squared value ranges from 0 to 1. A value closer to 1 indicates that 

the fund’s performance follows the movement of the underlying 

index, whereas a fund with a low R-squared value does not closely 

follow the performance of the underlying index.



R-squared value



The Treynor ratio

The Treynor ratio calculates how much an investment has earned 

above the risk-free market rate for every unit of risk assumed. 

Although it is similar to the Sharpe ratio, its measure of risk is 

different. Whereas the Sharpe ratio considers the total risk of the 

investment, the Treynor ratio only considers the systematic risk, 

assuming that the non-systematic risk is fully diversified in 

developing the portfolio. Risk in the Treynor ratio, represented by 

beta, is the systematic risk or non-diversifiable risk. The equation for 

the Treynor ratio is as follows:

Treynor ratio = (average return of portfolio – risk-free rate of 

return)/beta of portfolio





The Sortino ratio

The Sharpe ratio can sometimes be unfavorable for stocks that 

have high upside volatility. To prevent this, we can use the Sortino 

ratio. Although the calculation of the Sortino ratio is similar to that of 

the Sharpe ratio, the Sortino ratio’s denominator is the downside 

deviation of the portfolio. The equation for the Sortino ratio is as 

follows:

Sortino ratio = (average return of portfolio – risk-free rate of 

return)/downside deviation of portfolio returns





The information ratio

The information ratio can be used to evaluate the performance of an 

actively managed fund. It can determine how consistently the 

manager of the fund has generated excess returns for its investors. 

In simple terms, it is the ratio of the active return generated by the 

manager over the index return, divided by the active risk taken. The 

risk taken is measured by the standard deviation of 

the difference between the returns of the portfolio and the index, 

which is referred to as the tracking error. The equation is as follows:

Information ratio = (portfolio return – benchmark return)/tracking 

error




