Kepner-Tregoe Methodology (English version - částečně) Ing.J.Skorkovský, CSc, Department of Business Management FACULTY OF ECONOMICS AND ADMINISTRATION Masaryk University Brno Czech Republic 1 2 - Albert Einstein Formulace problému je mnohem důležitější než jeho řešení, které může být pouze otázkou matematické nebo experimentální dovednosti. Related actions – na sebe navazující akce (Formulace problému=identifikace a specifikace) 3 Resource: taken from K&T vidoes 1 – nezvládnutí pandemické situace 2 – vysoké počty nakažených, vysoká smrtnost, …. 3 – odpírači, nedůvěra obyvatelstva v nařízení, každý hraje jenom na sebe,.. 4 - neschopnost vlády 5 - změna ve vládě, nové metody obrany proti viru, očkovací centra, kampaň pro očkování , 6 – zavedení a pravidla Apollo 13 – Houston, Houston, do you read me ? We have a big problem….! The Apollo 13 team is famous for bringing back the astronauts stranded in space by solving difficult and complex problems. The teams solving the problems has used the Kepner-Tregoe (KT) methodology ! 4 Appolo 13 – description (problem and solution - home study) 5 https://spectrum.ieee.org/tech-history/space-age/apollo-13-we-have-a-solution https://prezi.com/_ohiqi4xzcxt/tier-v-problems-and-solutions-on-apollo-13/ Appolo 13 – problem description (problem and solution) 6 7 Kepner Tregoe is used for decision making (finding best possible choice) . Nalezení nejlepšího možného rozhodnutí) ( text níže –> domácí studium) It is a structured methodology for gathering information and prioritizing and evaluating it. Strukturovaný přístup jak shromáždit informace a dát jim správnou prioritu It is very detailed and complex method applicable in many areas, which is much broader than just idea selection. Detailní a komplexní metoda, kterou je možné aplikovat v různých oblastech- není to pouze výběr plánu (postupu) respektive nápadu jak řešit problém It is called also a root cause analysis and decision-making method. Jde o analýzu klíčového problému – úzkého místa (TOC přístup, Ishikawa FBD přístup) It is a step-by-step approach for systematically solving problems, making decisions, and analyzing potential risks. Přístup, kde s postupuje krok po kroku, analyzuje se klíčový problém, rozhodne se o způsobu řešení. Provádí se analýza risku s tím spojeného 8 Time Incident Detection Diagnosis Repair type chosen Repair action Solved incident Restore CRT K-T Ishikawa + Pareto time K-T postup 9 Nemusíte být zrovna astronauti, abyste mohli tuto metodu uplatnit v praxi. Pravdou je, že se vám bude hodit v jakékoliv práci – zvlášť pokud se pohybujete v manažerské oblasti. Následuje popis 4 základních kroků 1.Vyhodnocení situace Orientujte se. Situace může vypadat složitě, ale po základní analýze budete mít pravděpodobně více jasno. Udělejte si seznam toho, co je potřeba řešit a to včetně nastavení priorit jednotlivých kroků 2.Analýza problému Popište všechny příčiny. Nakonec najdete, kde je zakopaný pes (Ishikawa, CRT) 3. Rozhodovací analýza Problém a příčinu už znáte. Najděte možné řešení. Zkuste to vícekrát a proveďte PROS a CONS hodnocení. 4. Analýza rizik Nepřehledné situace, nežádoucí jevy, nebezpečí špatného rozhodnutí, nesprávné nastavení priorit toho co se má řešit a jak se to má řešit. K-T –> grafické znázornění předchozích kroků 10 Other possible problem analysis Decision analysis 1. Assessment (appraisal) – priorities assigned to current situation 2. Existing Problem analysis – to find root problem (cause) 3. Decision analysis – to select way to react (MaxiMax,MaxiMin,..) 4. Future problem analysis (risk analysis) Existing problem analysis Assessment (Appraisal) Source : Kepner-Tregoe Appraisal=review= assessment=evaluation = Hodnocení CRT-Ishikawa – bylo již prezentováno 11 12 1 2 3 7 4 6 1 2 3 7 4 6 1 2 3 4 6 7 John 8 7 4 3 5 6 Caroline 9 5 7 8 5 6 Mean 8,5 6 5,5 5,5 5 6 1 = Nature (see, forest, mountains, jungle, river,..) 2 = Hotel type 3 = Amenities (pool, golf course, wellness,.. ) 4 = Period (spring, summer, fall, winter). 12 1 2 3 4 1 R1 R2 Prerequisite Requirement P1 P2 Conflict Alternative 1 Alternative 2 Alternative means how to solve problem and what kind of pay-off you will get Vyhodnocení situace – doplnění již sdělených informací •Identifikace problémů a jejich seznam •Rozdělit sféry zájmu a nastavení priorit - co řešit teď a co později •Jak problém postupně řešit – step-by-step approach • • •Plan for who is involved, what they will be doing, where they will be involved, when it happened and the extent of involvement (magnitude) •KDO – CO – KDE – KDY - ROZSAH 12 Step-by-Step Approach 8-step •8-Step Problem Solving Process (one possibility) 1.Step 1: Define the Problem. What is the problem? ... 2.Step 2: Clarify the Problem. ... 3.Step 3: Define the Goals. ... 4.Step 4: Identify Root Cause of the Problem. ... 5.Step 5: Develop Action Plan. ... 6.Step 6: Execute Action Plan. ... 7.Step 7: Evaluate the Results. ... 8.Step 8: Continuously Improve •Similar to Deming cycle (see OM introduction) 13 Step-by-Step Approach 5 Whys-method I. 14 Here is a set of the first five questions, followed by the next question to find the root cause Step-by-Step Approach 5 Whys-method II. 15 1st question Graphical representation of the process 16 103) Problem Solving Techniques: 5-Why-Method, Flowchart, Mind-Map - YouTube Questions and the fabulous world of the vampires 17 To keep this very unusual economic comparisons in your mind WHO WHAT WHEN WHERE EXTENT 18 Who not When not Where not What not Magnitude Rozhodovací analýza - výběr mezi více alternativami – část rozhodovací analýzy- krok 3 •Identifikace - > co bylo rozhodnuto a jaké metody s použijí •Klasifikace cílů -> důležité a méně důležité cíle •Rozdělení cílů a nastavení míry jejich důležitosti –- must (must-to-have) – musíme to mít (finanční reporting požadovaný zákonem) -want (nice-to- have) - bylo to hezké mít to všechno v barvách -faktor důležitosti-váha (1-10, kde 10 je nejvíce důležitý faktor nebo i 1-100) •Vytvoří se alternativy – různé metody řešení problému •Alternativám se určí skupina MUST-TO-HAVE nebo NICE-TO -HAVE skupina a váhy (faktory důležitosti) •Posoudí se nepříznivé (škodlivé) důsledky nápravných kroků (hodnocení rizika) a potvrzení a realizace té nejlepší volby •Analýzy nákladů spojených s nápravnými kroky •Aplikuje se nejlepší možná volba • • 19 Criteria rating See similar example on the next slide 20 Importance can be understood as a Satisfaction score, meaning desirable but not essential. Criteria rating is related to want criteria and every car property Which car to buy ? 21 Criterion rating Importance score, meaning desirable but not essential. Zákazníci by to rádi měli, ale není to vůbec nutné a nepřináší to žádnou velkou hodnotu 22 Step 1 Problem: Pick a replacement vehicle for the motor pool fleet The definition of the problem dictates the requirements. As the vehicle is for a motor pool, the requirements will differ from those for a family car, for example. Step 2 Requirements: 1. Vehicle shall be made in U. S. A. 2. Vehicle shall seat at least four adults, but no more than six adults 3. Vehicle shall cost no more than $28,000 4. Vehicle shall be new and the current model year Step 1 and Step 2 23 Min Max Max 28000 USD New car (current model) 24 Step 3 and Step 4 Step 3 Goals: · Maximize passenger comfort · Maximize passenger safety · Maximize fuel-efficiency · Maximize reliability of the car · Minimize investment cost Step 4 Alternatives: There are many alternatives but the requirements eliminate the consideration of a number of them: Requirement 1 eliminates the products not manufactured in the USA Requirement 2 eliminates vans, buses, and sports cars (Ferrari no !!!!) Requirement 3 eliminates high-end luxury cars Requirement 4 eliminates used vehicles 25 Step 5 Criteria: “Maximize comfort” will be based on the combined rear seat leg and shoulder room. (Note: front seat passenger leg and shoulder room was found to be too nearly the same to discriminate among the alternatives.) 5 “Maximize safety” will be based on the total number of stars awarded by the National Highway Traffic Safety Administration for head-on and side impact. 10 “Maximize fuel efficiency” will be based on the EPA fuel consumption for city driving. 7 “Maximize reliability” will be based on the reliability rating given each vehicle by a consumer product testing company. 9 “Minimize Cost” will be based on the purchase price. 10 Step 5 Weighted criteria vector C(5,10,7,9,10) are values assigned by decision makers !!!! 26 Kepner-Tregoe table (for 4 cars : Arrow, Baton, Carefree and Dash) 27 Last Step Validate Solution: The totals of the weighted scores show that the Dash most nearly meets the wants/goals (or put another way, has the most “benefits”). Dash meets all the requirements and solves the problem !!! Last step – Validation (check) (Analýza problému) – kroky 1-4 (snímek 8) •State the problem (definice a popis problému)Specify the problem by asking (důležité otázky, které nyní budeme probírat na příkladech): • what is and what is not, who is and who is not, where is and where is not •Develop possible causes of the problem (similar to CRT or Ishikawa) – (detekce příčin -> opět popis na snímku číslo 8) •Test and verify possible causes -testování a verifikace možných příčin •Determine the most probable cause (root cause) -nalezení klíčového problému •Verify any assumptions - verifikace předpokladů •Try the best possible solution and monitor what will be a situation after applied correctives step- aplikace zpětné vazby- korekce nežádoucího stavu 28 Description Problem 1 Problem N Description Causes Priority (urgency) Description Causes Priority (urgency) Solution (corrective action) 1 Solution (corrective action) X Solution (corrective action) 1 Solution (corrective action) Y Problem 1´ Problem N´ Situation Situation Oválný popisek: Who What WhereWhenExtent Who What WhereWhenExtent Oválný popisek: Who What WhereWhenExtent Who What WhereWhenExtent 29 Oválný popisek: Who is not What is not Where is not When is not Extent Who is not What is not Where is not When is not Extent Oválný popisek: Who is not What is not Where is not When is not Extent Who is not What is not Where is not When is not Extent Decomposition, priorities and causes Problem 1 Sub-problem 1 Sub-problem N Priority1 Priority N Problem 1 Problem 2 Sub-problem 1 Sub-problem N Cause 1 Cause N Problem 2 30 Example of problem manifestation (snížení účinnosti) Performance (výkon) time Planned performance (plánovaná hladina výkonu) Real performance Unfavourable deviation (nežádoucí odchylka) What do we see, hear, feel, taste, or smell that tells us there is a deviation? Final effect of the = PROBLEM (e.g. server crashed, hard disk with database crashed) Then we have to ask : Who, What, Where, When, and to what Extent –Size (how much, how many)? And opposite types of questions as well Who is not, What is not ,Where is not,….. 31 Změna (Change) Deviation analysis - questions related to WHAT 32 The questions : WHEN It is WHERE It is WHO It was HOW It happened & WHEN WHERE WHO HOW are similar in content, so we do not include them here for sake of simlicity Is Not Server crashed !!!! home study •Server crashed (to je opravdu zjednodušená definice problému) •The e-mail system crashed after the 3rd shift support engineer applied hot-fix XYZ to Exchange Server 123 (better definition of the problem) •Comment : WHO is not mentioned here but could be Different staff (3 shift) –see table • History (and best practice) says that the root cause of the problem is probably due to some recent change. WHAT, WHERE, WHEN and EXTENT will be shown on next slides 33 Test the Most Probable Cause home study Clarifying problem Analysis (example) We have to ask (where Qi =QUESTION i) : Question IS IS NOT What (identify) Q1 Q2 Where (locate) Q3 Q4 When (timing) Q5 Q6 Extent (magnitude) Q7 Q8 See next slides 34 Problem Analysis - What •What specific object(s) has the deviation? • •What is the specific deviation? • Is Is Not nWhat similar object(s) could have the deviation, but does not? (It did not happen) nWhat other deviations could be reasonably observed, but are not? (It did not happen) Example for Is : 1. What specific object IS related to the defect? Inventory Valuation Objects in database A 2. What specifically is the defect (deviation)? Inventory Adjustment does not work 1-> see setup of the database and see differences 2->see algorithm used for calculation and parameters used. You can see , that in production calculation related algorithm is not functional Example for Is Not : 1. What specific object IS NOT related to the defect? Inventory Valuation Objects in database B 2. What specifically is not the defect (deviation)? Adjustment is working – good setup in database B 1 -> Setup has another parameters ON 2-> Algorithm is used also for production where not error occurs 1. 35 See two MS Dynamics Setup screens (related to the problem specified recently) 36 Back to vampires :Problem Analysis - What •What specific object(s) has the deviation? • • •What is the specific deviation? - bites on the neck • Is Is Not nWhat similar object(s) could have the deviation, but does not? (It did not happen) n n What could the specific deviation? but does not? (It did not happen) – bites=stigma, anemia česnek Example for Is : 1. Nice young girl´s neck and strange look of anemic person 1.Girl with garlic in her hands 2. No bites 3. Healthy 37 Example of Is Not : Another example for What IS and What IS NOT as well as Where IS and Where IS NOT IS girl Sarah visited Dracula lower castle without a bunch of garlic, but IS NOT not the one (Emily) having bunch of garlic and visiting Špilberk castle in Brno 38 Sarah (What IS) Emily (What IS NOT) Dracula Castle (Where IS) Špilberk Brno (Where IS NOT) Problem Analysis - Where •Where is the object when the deviation is observed? (geographically) • •Where is the deviation on the object? • nWhere else could the object be when the deviation is observed, but is not? nWhere else could the deviation be located on the object, but is not? Is Is Not Example for Is : 1.Old castle in the mountains (Romania) Where IS : Romanian Carpathian mountains where it is very easy to meet a lot of vampires there Example for Is Not 1. Brno castle Špilberk Where IS NOT possible to meet vampires (only lovers and children and seniors) 39 Analýza problému a potvrzení pravé příčiny jeho vzniku •Co lze udělat pro ověření všech možných příčin? •Jak lze tyto příčiny modelovat při reálných procesech? •Jak můžeme demonstrovat vztah příčiny a následku (CRT nebo FBD ?) •Když budou přijata nápravná opatření, jak budou výsledky těchto akci kontrolovány (měřeny)? 40 41 Systematic Problem Solving Decision making Overview 42 Planning the Next Steps •Problem Analysis (vždy tři otázky) •Do we have a deviation? •Is the cause unknown? •Is it important to know the cause to take effective action? • •If the answer is YES to ALL three listed problems above, than you have a big problem, Huston !!! 43 44 Problem analysis table template (Home study) 45 Problem description (example) •On a new model of airplane, flight attendants develop rash on arms, hands, face (only those places). It only occurs on flights over water. • •Usually disappears after 24 hours. No problems on old planes over those routes. • •Does not affect all attendants on these flights, but same •number of attendants get it on each flight. Those who get rash have no other ill effects. • •No measurable chemicals, etc., in cabin air. Rash arm -> 46 Results ???? 47 Problem analysis real table Distinction=Difference 48 Problém s rychlosti připojení 49 Stále jsou přijímány nesprávné telefonáty 50 Workplace improvement tools and techniques session 4 Define - ppt ... 51 K-T matice na dalším snímku 52 Example of analysis 53 54 Analysis in manufacturing - general approach One problem that can be effectively addressed using the Kepner-Tregoe (KT) problem : Solving method finds a situation where a manufacturing company is experiencing frequent machine breakdowns on the production line, resulting in costly downtime and decreased productivity. Next slides demonstarte how the Kepner-Tregoe method could be applied to solve this problem: machine breakdown = porucha stroje 55 Situation Appraisal (SA) The first step is to thoroughly understand the problem. In this case, the problem is frequent machine breakdowns. The SA step involves gathering data on when breakdowns occur, which machines are affected, the nature of the breakdowns, and the impact on production schedules and costs. Situace je nepřehledná a já se musím vyznat co se děje. 56 Problem Analysis (PA) Once the situation is fully appraised, the next step is to analyze the problém to identify its root causes. Using techniques like Cause-and-Effect Analysis or the Five Whys, the team can go deeper into why the breakdowns are occurring. Possible causes could include lack of preventive maintenance, aging equipment, operator error, or quality issues with spare parts. V podstatě něco nefunguje tak jak má, takže musím najít příčiny. A taky ke všem aktivitám, které spadají do všech vyjmenovávaných kategorií musím přiřadit priority. To je klíčové. Jde o nežádoucí odchylku od standardního stavu. Proč dojde k odchylce? Musí se najít příčina. Jde jinými slovy o Root-Cause-Analýzu. https://kepner-tregoe.cz/2020/08/03/analyza-problemu/ 57 Decision Analysis (DA) With a clear understanding of the root causes, the team can brainstorm and evaluate potential solutions to address the problem. This step involves considering various options and weighing their pros and cons based on factors such as effectiveness, cost, feasibility, and potential risks. Possible solutions could include implementing a preventive maintenance program, upgrading equipment, providing additional training for operators, or sourcing higher-quality replacement parts. Musím se rozhodnout jak mám nalezený problém řešit (varianty řešení) https://kepner-tregoe.cz/2020/08/04/rozhodovaci-analyza/ 58 Potential Problem Analysis (PPA) After selecting the best solution, the team anticipates potential obstacles or risks that could arise during implementation. PPA involves identifying these potential problems and developing contingency plans to mitigate them. For example, if the chosen solution is to implement a preventive maintenance program, potential problems could include resistance from maintenance staff or difficulty sourcing spare parts. Contingency plans could involve providing training and incentives for maintenance staff or establishing relationships with multiple suppliers. Jak mám problém implementovat, tedy překonat překážky, které budou zavedení „zlepšení“ stát v cestě a těch překážek je vždy hodně 59 (177) Rapid Problem Analysis - YouTube https://technicpack.fandom.com/wiki/Transposer Vysvětlení co je to transposer, o kterém se ve videu mluví Viz další snímek s vazbou na to, co manažer na letišti řeší 60 In the context of manufacturing, a transposer could refer to a piece of equipment or a process that serves to transfer or transpose materials, components, or information from one form or location to another within the manufacturing process. Here are some potential functions or applications of a transposer in manufacturing: 1.Material Handling: Transposers may be used to move raw materials, work-in-progress components, or finished products between different stages of the manufacturing process. This could involve conveyor systems, robotic arms, or other automated equipment. 2.Positioning and Orientation: Transposers might also be utilized to position or orientate components or materials in a specific manner required for subsequent manufacturing steps. This could involve rotating, flipping, or aligning parts as needed. 3.Sorting and Segregation: Transposers may be employed to sort or segregate items based on certain criteria such as size, shape, quality, or destination. This could involve sorting items onto different conveyor lines or into specific bins or containers. 4.Assembly Line Integration: In assembly line manufacturing, transposers could facilitate the smooth flow of components between different workstations or assembly stations. They might ensure that each workstation receives the correct parts in the required sequence. 5.Data Transposition: In a more digital context, transposers could involve software systems or algorithms that transform data from one format or structure to another. This could be useful for integrating data from different sources or systems within the manufacturing environment. 6.Adaptation to Variability: Transposers may be employed to adapt manufacturing processes to accommodate variability in materials, product specifications, or production requirements. This could involve adjusting parameters such as speed, timing, or configuration based on real-time feedback or changing conditions. 7.Quality Control and Inspection: Transposers might also play a role in quality control and inspection processes by transferring items to inspection stations or testing equipment for quality assessment. They could facilitate the movement of defective items for rework or disposal. Overall, the functions of a transposer in manufacturing are aimed at improving efficiency, consistency, and flexibility in the production process, ultimately contributing to higher productivity and product quality. 61 Dohlédněte prosím toto video až do konce! Je tam uvedeno elegantní řešení !! Transposer = zařízení na přemisťování, Cracked – popraskaný, Broken = zlomený, Bent- ohnutý. V Extent oblasti chybí velikost prasklin na Transposeru (1,5 cm). Výsledek je ten, že tato závada nebude příčinou přerušení výroby (důležitý text v čase 5:00 minut od začátku prezentace na letišti). Pokud by jednalo o problémy z materiálem, ze kterého byl Transposer vyroben, pak by to muselo být všude. Stejně tak je to s problémy při dopravě, při které je Transposer používán. Takže někdo na straně zákazníka Transposer nesprávně používal (při jeho instalaci nebo v průběhu operace se tímto zařízením) a to dne 28.x Thanks for Your attention 62