PORTFOLIO THEORY โ€“ EXERCISES 07/05/2024 Dr. Andrea Rigamonti EXERCISE 1 The vector of weights and the covariance matrix of a portfolio with two assets are: ๐’˜ = [ 0.6 0.4 ] ๐œฎ = [ 0.002 0.001 0.001 0.003 ] Compute, using matrix form, the variance of the portfolio. ๐‘‰๐‘Ž๐‘Ÿ( ๐‘… ๐‘ƒ) = [0.6 0.4] [ 0.002 0.001 0.001 0.003 ] [ 0.6 0.4 ] = [0.6 โˆ— 0.002 + 0.4 โˆ— 0.001 0.6 โˆ— 0.001 + 0.4 โˆ— 0.003] [ 0.6 0.4 ] = [0.0016 0.0018] [ 0.6 0.4 ] = 0.0016 โˆ— 0.6 + 0.0018 โˆ— 0.4 = 0.00168 EXERCISE 2 An investor with risk-aversion ๐›พ = 4 invests in a portfolio of one risk-free asset and two risky assets with mean excess return, covariance matrix and inverse covariance matrix equal to: ยต = ( 0.006 0.004 ) โˆ‘ = [ 0.003 0.002 0.002 0.0015 ] โˆ‘โˆ’๐Ÿ โ‰ˆ [ 3000 โˆ’4000 โˆ’4000 6000 ] Compute the portfolio weights. The weights for the risky assets are: ๐’˜ ๐’Ž๐’— = 1 ๐›พ โˆ‘โˆ’๐Ÿ ๐ = 1 4 [ 3000 โˆ’4000 โˆ’4000 6000 ] ( 0.006 0.004 ) = [ 750 โˆ’1000 โˆ’1000 1500 ] ( 0.006 0.004 ) = [ 750 โˆ— 0.006 + (โˆ’1000) โˆ— 0.004 โˆ’1000 โˆ— 0.006 + 1500 โˆ— 0.004 ] = [ 0.5 0 ] The weight for the risk-free asset is: 1 - 0.5 = 0.5 EXERCISE 3 Given two risky assets with mean return, covariance matrix and inverse covariance matrix equal to ยต = ( 0.007 0.004 ) โˆ‘ = [ 0.004 0.002 0.002 0.003 ] โˆ‘โˆ’๐Ÿ = [ 375 โˆ’250 โˆ’250 500 ] compute the weights for the minimum variance portfolio. The weights for the risky assets are: ๐‘ค๐‘ฃ = 1 ๐Ÿโ€ฒโˆ‘โˆ’๐Ÿ ๐Ÿ โˆ‘โˆ’๐Ÿ ๐Ÿ = 1 (1 1) [ 375 โˆ’250 โˆ’250 500 ] ( 1 1 ) [ 375 โˆ’250 โˆ’250 500 ] ( 1 1 ) = 1 [1 โˆ— 375 + 1 โˆ— (โˆ’250) 1 โˆ— (โˆ’250) + 1 โˆ— 500] ( 1 1 ) [ 375 โˆ— 1 + (โˆ’250) โˆ— 1 โˆ’250 โˆ— 1 + 500 โˆ— 1 ] = 1 [125 250] ( 1 1 ) [ 125 250 ] = 1 125 + 250 [ 125 250 ] = 1 375 [ 125 250 ] โ‰ˆ [ 0.33 0.67 ] EXERCISE 4 Write the first order conditions for the problem of computing portfolio weights that minimize the variance given a target return of 1% and a riskfree rate of 0.1%: min ๐’˜ ๐’˜โ€ฒ โˆ‘๐’˜ subject to: ๐’˜โ€ฒ ๐ + (1 โˆ’ ๐’˜โ€ฒ๐Ÿ)0.001 = 0.01 First we write the Lagrangian function: ๐ฟ( ๐’˜, ๐œ†) = ๐’˜โ€ฒ โˆ‘๐’˜ + ๐œ†[0.01 โˆ’ ๐’˜โ€ฒ ๐ โˆ’ (1 โˆ’ ๐’˜โ€ฒ ๐Ÿ)0.001] = ๐’˜โ€ฒ โˆ‘๐’˜ + ๐œ†[0.009 โˆ’ ๐’˜โ€ฒ ๐ + ๐’˜โ€ฒ ๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ] The first order conditions are the two partial derivatives of the Lagrangian with respect to ๐’˜ and ๐œ† set equal to zero: ๐œ•๐ฟ ๐œ•๐’˜ = 2โˆ‘๐’˜ โˆ’ ๐œ†๐ + ๐œ†๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ = ๐ŸŽ ๐œ•๐ฟ ๐œ•๐œ† = 0.009 โˆ’ ๐’˜โ€ฒ ๐ โˆ’ ๐’˜โ€ฒ ๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ = 0 EXERCISE 5 Given a vector of theoretically optimal weights ๐’˜ = [ โˆ’0.2 0.4 0.5 0.3 ] compute the weights ๐’˜โˆ— of the shrinkage portfolio obtained as ๐’˜โˆ— = ๐›ฟ๐’˜ ๐‘ต๐‘จ๐‘ฐ๐‘ฝ๐‘ฌ + (1 โˆ’ ๐›ฟ)๐’˜ with shrinkage parameter ๐›ฟ = 0.4 The weights of the shrinkage portfolio are: ๐’˜โˆ— = 0.4 [ 0.25 0.25 0.25 0.25 ] + 0.6 [ โˆ’0.2 0.4 0.5 0.3 ] = [ 0.1 0.1 0.1 0.1 ] + [ โˆ’0.12 0.24 0.3 0.18 ] = [ โˆ’0.02 0.34 0.4 0.28 ] EXERCISE 6 Given the following series of returns: 0.05 , -0.01 , 0.02 , 0.03 , 0 , 0.005 Compute the downside deviation for an investor that sets the benchmark B=0.01 We compute the semivariance: ๐œŽ ๐ต 2 = 1 6 [(โˆ’0.01 โˆ’ 0.01)2 + (0 โˆ’ 0.01)2 + (0.005 โˆ’ 0.01)2] = 1 6 0.000525 = 0.0000875 The downside deviation is simply the square root of the semivariance: ๐œŽ ๐ต = โˆš0.0000875 = 0.009354143 EXERCISE 7 Consider the set of weights ๐‘ค๐‘กโˆ’1 = [ 0.3 0.7 ] ๐‘ค๐‘ก = [ 0.4 0.6 ] Compute the turnover taking into account the effect of the realized returns ๐‘…๐‘ก = [ 0.1 0.2 ] We have to use the formula ๐‘‡๐‘‚๐‘ก = โˆ‘|๐‘ค๐‘–,๐‘ก โˆ’ ๐‘ค๐‘–,๐‘กโˆ’1 + | ๐‘ ๐‘–=1 To apply it correctly we first need to compute ๐‘ค๐‘–,๐‘กโˆ’1 + . The first asset experienced a +10% returns, therefore we have 0.3 + 0.3 ร— 0.1 = 0.33 The second asset experienced a +20% returns, therefore we have 0.7 + 0.7 ร— 0.2 = 0.84 The weights now sum to 1.17. We need to normalize them so that they sum up to 1 again: ๐‘ค๐‘–,๐‘กโˆ’1 + = [ 0.33 1.17 0.84 1.17] โ‰ˆ [ 0.28 0.72 ] Now we can apply the formula and compute the turnover: ๐‘‡๐‘‚๐‘ก = |0.4 โˆ’ 0.28| + |0.6 โˆ’ 0.72| = 0.12 + 0.12 = 0.24 This means we need to trade 14% of our wealth in order to update the weights.