Portfolio Theory Dr. Andrea Rigamonti andrea.rigamonti@econ.muni.cz Lecture 4 Content: โ€ข Returns and risk โ€ข Estimation windows โ€ข Mean and variance of a portfolio Returns and risk Simple returns: given the price ๐‘ƒ๐‘ก at time t, they are computed as: ๐‘…๐‘ก = ๐‘ƒ๐‘ก โˆ’ ๐‘ƒ๐‘กโˆ’1 ๐‘ƒ๐‘กโˆ’1 โ€ข Simple returns are asset-additive. At time t, given n asset returns ๐‘…๐‘–,๐‘ก with corresponding weights ๐‘ค๐‘–,๐‘ก, the portfolio return ๐‘… ๐‘,๐‘ก is equal to the weighted average of the single assetsโ€™ return: ๐‘… ๐‘,๐‘ก = เท ๐‘–=1 ๐‘ ๐‘ค๐‘–,๐‘ก ๐‘…๐‘–,๐‘ก Returns and risk โ€ข Simple returns are NOT time-additive. To compute the evolution of the value of an asset (or of a portfolio) over ๐‘‡ periods, given the initial value ๐‘‰0, we have to use the formula: ๐‘‰๐‘‡ = ๐‘‰0 + เท ๐‘ก=1 ๐‘‡ ( ๐‘‰๐‘กโˆ’1 ๐‘…๐‘ก) โ€ข Equivalently, we can use this formula that directly computes cumulative returns: ๐‘‰๐‘‡ = ๐‘‰0 + ๐‘‰0 เท‘ ๐‘ก=1 ๐‘‡ 1 + ๐‘…๐‘ก โˆ’ 1 Returns and risk Log returns (or continuous returns): ๐‘Ÿ๐‘ก = ln ๐‘ƒ๐‘ก ๐‘ƒ๐‘กโˆ’1 = ln ๐‘ƒ๐‘ก โˆ’ ln(๐‘ƒ๐‘กโˆ’1) โ€ข Log returns are NOT asset-additive: they cannot be used to compute portfolio return as done with simple returns. But if returns are close to 0, they provide a good approximation: ๐‘… ๐‘,๐‘ก โ‰ˆ เท ๐‘–=1 ๐‘ ๐‘ค๐‘–,๐‘ก ๐‘Ÿ๐‘–,๐‘ก โ€ข Log returns are time-additive: the cumulative return from time 1 to time T can be obtained with a simple sum: ๐‘๐‘ข๐‘š๐‘Ÿ๐‘’๐‘ก = เท ๐‘ก=1 ๐‘‡ ๐‘Ÿ๐‘ก Returns and risk Log returns do not have the same intuitive interpretation of simple returns (in addition to not being asset-additive). If you are working with log returns, you might want to convert them back to simple returns when evaluating the results. This can be done with a simple formula: ๐‘… = exp ๐‘Ÿ โˆ’ 1 Simple returns can be converted to log returns in this way: ๐‘Ÿ = ln(๐‘… + 1) Returns and risk When dividends are paid, all else equal, the price of the shares decrease by an amount equal to the dividend. Unadjusted returns register a loss that is not real, as we are fully compensated for the decrease in the price by receiving an equal amount of wealth in form of dividend. We adjust by assuming that the dividend is immediately reinvested in the same stocks. The return adjusted for the dividend ๐ท๐‘–๐‘ฃ ๐‘ก paid at time t is: ๐‘…๐‘ก = ๐‘ƒ๐‘ก + ๐ท๐‘–๐‘ฃ ๐‘ก โˆ’ ๐‘ƒ๐‘กโˆ’1 ๐‘ƒ๐‘กโˆ’1 Returns and risk We can think at the probability distribution as a function that assigns a probability ๐‘ ๐‘… that each possible return R of an asset will occur. Expected (or mean) return: the expected value of the returns, computed as a weighted average of the possible returns, where the weights correspond to the probabilities: ๐ธ๐‘ฅ๐‘๐‘’๐‘๐‘ก๐‘’๐‘‘ ๐‘…๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘› = ๐ธ[๐‘…] = เท ๐‘… ๐‘ ๐‘… ๐‘… The simplest approach is to compute the expected return as a sample estimate using the T past returns: ๐ธ[๐‘…] = ๐‘… = 1 ๐‘‡ เท ๐‘–=1 ๐‘‡ ๐‘…๐‘ก Returns and risk In this context, the variance is the expected squared deviation from the mean: ๐‘‰๐‘Ž๐‘Ÿ(๐‘…) = ๐ธ[(๐‘… โˆ’ ๐ธ[๐‘…])2 ] = เท ๐‘… ๐‘ ๐‘…(๐‘… โˆ’ ๐ธ[๐‘…])2 To measure volatility the standard deviation (SD) is preferable to the variance because it is in the same unit of the returns. ๐‘†๐ท(๐‘…) = ๐‘‰๐‘Ž๐‘Ÿ(๐‘…) Given the sample mean, we can compute the sample variance: ๐‘‰๐‘Ž๐‘Ÿ(๐‘…) = 1 ๐‘‡ โˆ’ 1 เท ๐‘–=1 ๐‘‡ (๐‘…๐‘กโˆ’๐‘…)2 Returns and risk A higher variance implies higher risk, as returns are more likely to be very different from the mean. Returns and risk We can evaluate the precision of our estimate by computing the standard error, which is the standard deviation of the estimated value of the mean of the actual distribution around its true value. If returns are identically and independently distributed, and the distribution remains the same over time, we calculate the standard error SE of the estimate of the expected return as: ๐‘†๐ธ = ๐‘†๐ท ๐‘‡ In practice, the true value of the standard deviation SD is unknown, and its sample estimate is used. Estimation windows โ€ข From the formula it appears that a bigger sample size would make the estimate more reliable. โ€ข This is true up to a certain point, as the return distribution (and therefore the true value of the parameters) change over time. โ€ข Trade-off: using longer estimation windows allows for a larger sample size, but also includes observations that might be too old and no longer useful. โ€ข There is no hard rule to determine the ideal estimation window length. Usually, up to 5 years are suggested with daily data, 10 or 15 years for weekly data, and a few decades with monthly data. Estimation windows When computing sample estimates, a rolling window or an expanding window can be used. โ€ข A rolling window of length T uses observations from period 1 to T for the first estimation, then from 2 to T+1 for the second, and so on. It has the advantage of gradually getting rid of older observations. โ€ข An expanding window with initial length T uses observations from period 1 to T for the first estimation, then from 1 to T+1 for the second, and so on. It allows for more out-of-sample periods, as one can start with a low T. In general, a rolling window is recommendable if the available time series allows for a large T. Mean and variance of a portfolio The portfolio weights represent the fraction of the total investment in the portfolio held in each individual stock: ๐‘ค๐‘– = ๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘–๐‘›๐‘ฃ๐‘’๐‘ ๐‘ก๐‘š๐‘’๐‘›๐‘ก ๐‘– ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘Ÿ๐‘ก๐‘“๐‘œ๐‘™๐‘–๐‘œ Weights can also be negative, if short selling is allowed. Given a portfolio of N assets with returns ๐‘…๐‘– and weights ๐‘ค๐‘–, the return on the portfolio, ๐‘… ๐‘, is the weighted average of the returns on the investments in the portfolio: ๐‘… ๐‘ = เท ๐‘–=1 ๐‘ ๐‘ค๐‘– ๐‘…๐‘– Mean and variance of a portfolio The expected return of a portfolio is the weighted average of the expected returns of the investments in it, using the portfolio weights: ๐ธ[๐‘… ๐‘] = เท ๐‘–=1 ๐‘ ๐‘ค๐‘– ๐ธ[๐‘…๐‘–] The Variance of a two-stock Portfolio is given by: ๐‘‰๐‘Ž๐‘Ÿ(๐‘… ๐‘) = ๐‘ค1 2 ๐‘‰๐‘Ž๐‘Ÿ(๐‘…1) + ๐‘ค2 2 ๐‘‰๐‘Ž๐‘Ÿ(๐‘…2) + 2๐‘ค1 ๐‘ค2 ๐ถ๐‘œ๐‘ฃ(๐‘…1, ๐‘…2) Computing the variance of portfolios of more than two assets requires some matrix algebra to be feasible. Mean and variance of a portfolio Consider N assets. We define the vector of returns R, the vector of mean ยต, the vector of weights w and the covariance matrix โˆ‘ as: R = ๐‘…1 ๐‘…2 โ‹ฎ ๐‘… ๐‘ ยต = ยต1 ยต2 โ‹ฎ ยต ๐‘ = ๐ธ[๐‘…1] ๐ธ[๐‘…2] โ‹ฎ ๐ธ[๐‘… ๐‘] w= ๐‘ค1 ๐‘ค2 โ‹ฎ ๐‘ค ๐‘ โˆ‘= ๐œŽ1 2 ๐œŽ1,2 โ€ฆ ๐œŽ1,๐‘ ๐œŽ1,2 โ‹ฎ ๐œŽ2 2 โ‹ฎ โ€ฆ โ‹ฑ ๐œŽ2,๐‘ โ‹ฎ ๐œŽ1,๐‘ ๐œŽ2,๐‘ โ€ฆ ๐œŽ ๐‘ 2 The variance of a portfolio is: ๐‘‰๐‘Ž๐‘Ÿ ๐‘… ๐‘ = ๐’˜โ€ฒโˆ‘๐’˜ Mean and variance of a portfolio Obviously, we can also express with matrix notation the formulas for the portfolio return and expected return: ๐‘… ๐‘ = ๐’˜โ€ฒ๐‘น ยต ๐‘ = ๐’˜โ€ฒยต Example with a portfolio of three assets: A, B and C. ๐‘… ๐‘ = ๐’˜โ€ฒ ๐‘น = ๐‘ค ๐ด ๐‘ค ๐ต ๐‘ค ๐ถ ๐‘… ๐ด ๐‘… ๐ต ๐‘… ๐ถ = ๐‘ค ๐ด ๐‘… ๐ด + ๐‘ค ๐ต ๐‘… ๐ต + ๐‘ค ๐ถ ๐‘… ๐ถ ยต ๐‘ = ๐’˜โ€ฒยต= ๐‘ค ๐ด ๐‘ค ๐ต ๐‘ค ๐ถ ยต ๐ด ยต ๐ต ยต ๐ถ = ๐‘ค ๐ดยต ๐ด + ๐‘ค ๐ตยต ๐ต + ๐‘ค ๐ถยต ๐ถ Mean and variance of a portfolio ๐‘‰๐‘Ž๐‘Ÿ ๐‘… ๐‘ = ๐’˜โ€ฒโˆ‘๐’˜ = ๐‘ค ๐ด ๐‘ค ๐ต ๐‘ค ๐ถ ๐œŽ๐ด 2 ๐œŽ๐ด๐ต ๐œŽ๐ด๐ต ๐œŽ ๐ต 2 ๐œŽ๐ด๐ถ ๐œŽ ๐ต๐ถ ๐œŽ๐ด๐ถ ๐œŽ ๐ต๐ถ ๐œŽ ๐ถ 2 ๐‘ค ๐ด ๐‘ค ๐ต ๐‘ค ๐ถ = ๐‘ค ๐ด ๐œŽ๐ด 2 + ๐‘ค ๐ต ๐œŽ๐ด๐ต + ๐‘ค ๐ถ ๐œŽ๐ด๐ถ ๐‘ค ๐ด ๐œŽ๐ด๐ต + ๐‘ค ๐ต ๐œŽ ๐ต 2 + ๐‘ค ๐ถ ๐œŽ ๐ต๐ถ ๐‘ค ๐ด ๐œŽ๐ด๐ถ +๐‘ค ๐ต ๐œŽ ๐ต๐ถ ๐‘ค ๐ถ ๐œŽ ๐ถ 2 ๐‘ค ๐ด ๐‘ค ๐ต ๐‘ค ๐ถ = ๐‘ค ๐ด 2 ๐œŽ๐ด 2 + ๐‘ค ๐ด ๐‘ค ๐ต ๐œŽ๐ด๐ต + ๐‘ค ๐ด ๐‘ค ๐ถ ๐œŽ๐ด๐ถ + ๐‘ค ๐ด ๐‘ค ๐ต ๐œŽ๐ด๐ต + ๐‘ค ๐ต 2 ๐œŽ ๐ต 2 + ๐‘ค ๐ต ๐‘ค ๐ถ ๐œŽ ๐ต๐ถ + ๐‘ค ๐ด ๐‘ค ๐ถ ๐œŽ๐ด๐ถ + ๐‘ค ๐ต ๐‘ค ๐ถ ๐œŽ ๐ต๐ถ + ๐‘ค ๐ถ 2 ๐œŽ ๐ถ 2 = ๐‘ค ๐ด 2 ๐œŽ๐ด 2 + ๐‘ค ๐ต 2 ๐œŽ ๐ต 2 + ๐‘ค ๐ถ 2 ๐œŽ ๐ถ 2 + 2๐‘ค ๐ด ๐‘ค ๐ต ๐œŽ๐ด๐ต + 2๐‘ค ๐ด ๐‘ค ๐ถ ๐œŽ๐ด๐ถ + 2๐‘ค ๐ต ๐‘ค ๐ถ ๐œŽ ๐ต๐ถ With N=3 the formula without matrix notation is already long, and it quickly becomes unfeasible to express it as N grows. The formula with matrix notation is always ๐‘‰๐‘Ž๐‘Ÿ ๐‘… ๐‘ = ๐’˜โ€ฒโˆ‘๐’˜ with any N, and it is very easy to code such formula in, e.g., R.