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Lecture 9

Content:

• Benchmark portfolios

• Ledoit & Wolf shrinkage covariance estimator

• Shrinkage portfolios

• Grouping strategies



Benchmark portfolios

We need to compare portfolios with appropriate 
benchmarks to know if the results are satisfying.

A benchmark portfolio surprisingly difficult to beat is the 
one created with a naïve 1/N rule that assigns equal 
weights to all the assets in all periods. Three strengths:

• immune to estimation errors (as it needs no inputs)

• does not require to perform any optimization procedure

• has a very low turnover, which translates into very low 
transaction costs



Benchmark portfolios

Another possible benchmark is a large stock market index, 
like the S&P 500. While it is not possible to buy an index, it 
is possible to buy an ETF (Exchange-Traded Fund), i.e., a 
fund that is traded on the financial markets and which 
tries to replicate the index. Advantages:

• only one instrument (the ETF) needs to be bought; no 
need to trade all the stocks contained in the index

• over the long run stock markets provide good returns 
(in countries with a solid economy)

• no estimation and optimization procedures required



Ledoit & Wolf shrinkage covariance estimator

Basic mean-variance optimization with sample estimates 
often struggles to beat common benchmarks, especially 
the naïve 1/N rule.

To improve optimization performance we need to reduce 
the severity of the estimation errors in the inputs, and/or 
reduce the impact of such errors on portfolio formation.

On the estimation side we focus on the covariance matrix:

• while 𝝁 is generally more affected by estimation errors, 
Ʃ easier and more effective to improve

• the problem gets worse in Ʃ as 𝑁 grows, due to the 
higher number of parameters (𝑁2)



Ledoit & Wolf shrinkage covariance estimator

Shrinkage estimators are arguably the most successful in 
dealing with the estimation of the covariance matrix.

Ledoit & Wolf (2004) define the shrinkage estimator

∑𝑳𝑾 = 𝛿𝑰𝜇 Ƹ𝑠 + (1 − 𝛿)∑

where ∑ is the usual sample covariance matrix, 𝑰 is the 
identity matrix, 𝜇 Ƹ𝑠 is the average sample variance of all the 
variables, and 0 ≤ 𝛿 ≤ 1 is the shrinkage parameter.

The product 𝑰𝜇 Ƹ𝑠 gives a diagonal matrix whose elements 
on the diagonal are equal to the average sample variance 
and all the other elements are equal to zero, and which is 
the target matrix toward which the sample covariance 
matrix is shrunk.



Ledoit & Wolf shrinkage covariance estimator

An optimal 𝛿 is selected, and this shrunk estimator 
improves over the sample covariance, which translate in 
better portfolio performance.

Moreover, it gives a nonsingular covariance matrix even 
when the number of periods 𝑇 used for estimation is 
smaller than the number of assets 𝑁. 

The sample covariance matrix, on the contrary, in such 
case is singular and therefore not invertible, which makes 
it impossible to perform the optimization procedures. 

It is now standard to use this estimator instead of the 
sample covariance in portfolio optimization. 



Shrinkage portfolios

Tu and Zhou (2011) propose a shrinkage portfolio that 
shrinks the mean-variance portfolio (optimized, but 
affected by estimation errors) toward the naïve 1/N 
portfolio (not optimized, but immune from estimation 
errors, improving over both.

The weights of such portfolio are given by

𝒘∗ = 𝛿𝒘𝑵𝑨𝑰𝑽𝑬 + (1 − 𝛿)𝒘

where 𝒘𝑵𝑨𝑰𝑽𝑬 is the vector of weights of the naïve 1/N 
portfolio, 𝒘 is the vector of weights of the optimized 
portfolio, and 𝛿 controls the shrinkage intensity. 

The value of 𝛿 can be chosen using optimization rules, 
heuristics, or cross-validation.



Grouping strategies

Branger et al. (2019) propose a grouping strategy.

The idea is that since the performance of mean-variance 
(or minimum variance) optimization suffers more and 
more as 𝑁 increases, due to the growing number of 
parameters to estimate, one could achieve better 
performance by reducing the problem dimension.

Assets are grouped together in a certain number of 
groups. The optimization procedure is than performed 
between the groups, while within each group the assets 
are equally weighted.



Grouping strategies

Possible grouping criteria: how similar they are in terms 
of estimated mean, variance or beta.

The number of groups can be chosen using optimization 
rules, heuristics, or cross-validation. 

The higher the number of groups, the closer we get to 
the usual optimization; the smaller the number of 
groups, the closer we get to the naïve 1/N rule. 

In the extreme case where we only have one group we 
obtain the naïve 1/N portfolio; in the extreme case 
where the number of groups is equal to N, we get the 
usual optimized portfolio. 
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