
PORTFOLIO THEORY – LECTURE NOTES 

Dr. Andrea Rigamonti 

MEAN-VARIANCE OPTIMIZATION 

From an economist’s point of view, an investor that optimizes a portfolio is trying to maximize a 
utility function. An extremely simple utility function is the linear utility function: 

𝑈(𝑉) = 𝑎 + 𝑏𝑉,    𝑏 > 0 

where 𝑈(𝑉) is the utility that the investor gets depending on the value 𝑉 of the portfolio. This 
function simply says that the higher the wealth, the higher the utility of the investor. Its shape is a 
line, and the parameter 𝑏 determines how much the utility increases following a wealth increase. 𝑏 
is assumed be positive, otherwise the investor would be indifferent (𝑏 = 0) or less satisfied (𝑏 < 0) 
when wealth increases. In other words, only the mean return of the portfolio matters. 

Markowitz (1952) revolutionized the field by adding risk to the equation. His standard approach 
assumes that an investor cares not only about the mean but also the variance of the portfolio 
returns, i.e. the investor has a mean-variance utility. Given a certain mean return, the utility 
increases as the variance (which quantifies risk) gets lower. Equivalently, given a certain level of 
variance, the utility increases with a higher mean return. The decision in the trade-off between 
return and risk is quantified by a risk aversion parameter 𝛾. A higher 𝛾 means that the investor is 
more risk averse and will therefore require a higher compensation for an increased risk. A lower 𝛾 
means the investor has a lower risk-aversion and will be willing to take more risks. In other words, 
given a set of assets with a certain mean and variance, the lower the 𝛾 of the investor, the more he 
will create an optimal portfolio with a higher mean return but also a higher variance. 

To model such preferences, a quadratic utility function is used: 

𝑈(𝑉) = 𝑉 −
𝛾

2
𝑉2,    𝛾 > 0 

𝛾 is assumed to be positive so that the utility function is concave: 

 

Source: https://financestu.com 

This implies that the investor is risk-averse. With 𝛾 = 0 the investor would be indifferent to risk, 
while 𝛾 < 0 would mean that the investor is risk taker (i.e., prefers more risk for the same amount 
of wealth, which is obviously not realistic). 

Remember that the expected return of a portfolio is given by 𝜇𝑃 = 𝒘′𝝁 = 𝑉, where 𝒘 is the vector 
of portfolio weights and 𝝁 is the vector of mean return of the single assets. Moreover, recall that 
the variance is the expected value of the squared deviation from the mean. 



So, the utility function becomes: 

𝑈(𝒘) = 𝒘′𝝁 −
𝛾

2
𝒘′Ʃ𝒘 

Therefore, given a risk-free asset and a set of 𝑁 risky assets with mean returns 𝝁 and covariance 
matrix 𝜮, and a certain risk aversion coefficient 𝛾, the investor we are considering wants to select 
the weights 𝒘 in a way that maximizes the following utility function: 

max
𝒘

𝒘′𝝁 −
𝛾

2
𝒘′Ʃ𝒘 

This is an unconstrained optimization problem easy to solve. We just need to set the first-order 
condition, i.e., take the partial derivative with respect to 𝒘 and set it equal to zero: 

𝜕𝑈(𝒘)

𝜕𝒘
= 𝝁 −

2𝛾

2
Ʃ𝒘 = 𝝁 − 𝛾Ʃ𝒘 = 𝟎 

We then solve for 𝒘: 

Ʃ𝒘 =
1

𝛾
𝝁 

𝒘 =
1

𝛾
Ʃ−𝟏𝝁 

So, the closed-form solution that gives the optimal weights for the risky assets is: 

𝒘𝑼 =
1

𝛾
Ʃ−𝟏𝝁 

where “U” stands for “Utility”, while the weight for the risk-free asset is equal to 1 − 𝒘𝑼′𝟏, where 
𝟏 is a vector of ones with length equal to the number of risky assets. 

The resulting optimal expected utility is: 

𝑈(𝒘𝑼) =
1

2𝛾
𝝁′Ʃ−𝟏𝝁 

Notice that we do not need to explicitly include the risk-free asset in the asset menu, as it is 
equivalent and simpler to work with excess returns, i.e. with the returns of the risky assets from 
which we subtracted the risk-free rate. 

A more difficult version is the one where we impose a full investment in the risky assets. In other 
words, the sum of the weights of the risky assets must be equal to 1, and nothing is invested in the 
risk-free asset. Hence, we have to solve the following constrained optimization problem: 

max
𝒘

𝒘′𝝁 −
𝛾

2
𝒘′Ʃ𝒘 

subject to: 

𝒘′𝟏 = 1 

To solve this problem, we use the method of Lagrange multipliers. 

First, we need to define the Lagrangian function, i.e., a modified version of the objective function 
that incorporates the constraint in this way: 

𝐿(𝒘, 𝜆) = 𝒘′𝝁 −
𝛾

2
𝒘′Ʃ𝒘 + 𝜆[1 − 𝒘′𝟏] 

where 𝜆 is the Lagrange multiplier. 



By including this additional term we can now solve an unconstrained problem instead of a 
constrained one. Therefore, we set the first order conditions for the Lagrangian function. The 
conditions involve two simultaneous equations, as we have to compute the partial derivative both 
with respect to  𝒘 and to 𝜆. 

𝜕𝐿

𝜕𝒘
= 𝝁 −

2𝛾

2
Ʃ𝒘 − 𝜆𝟏 = 𝝁 − 𝛾Ʃ𝒘 − 𝜆𝟏 = 𝟎 

𝜕𝐿

𝜕𝜆
= 1 − 𝒘′𝟏 = 0 

We start by solving the first equation for 𝒘: 

𝛾Ʃ𝒘 = 𝝁 − 𝜆𝟏 

𝒘 = (𝛾Ʃ)−1(𝝁 − 𝜆𝟏) 

Now we can plug this into the second equation: 

1 − [(𝛾Ʃ)−1(𝝁 − 𝜆𝟏)]′𝟏 = 0 

Remember that (𝑨𝑩)′ = 𝑩′𝑨′, and therefore we have: 

(𝝁 − 𝜆𝟏)′((𝛾Ʃ)−1)′𝟏 = 1 

(𝝁 − 𝜆𝟏)′ (
Ʃ−𝟏

𝛾
)

′

𝟏 = 1 

The transpose of the sum of matrices (or vectors) is the sum of the transpose of those matrices: 
(𝑨 + 𝑩)′ = 𝑨′ + 𝑩′. Moreover, a scalar is unaffected by the transpose: (𝑐𝑨)′ = 𝑐𝑨′. Also notice 

that Ʃ−𝟏 is a symmetric matrix, and therefore its transpose is still Ʃ−𝟏. Therefore: 

(𝝁′ − 𝜆𝟏′)
Ʃ−𝟏

𝛾
𝟏 = 1 

(𝝁′ − 𝜆𝟏′)Ʃ−𝟏𝟏 = 𝛾 

𝝁′Ʃ−𝟏𝟏 − 𝜆𝟏′Ʃ−𝟏𝟏 = 𝛾 

𝜆 =
𝝁′Ʃ−𝟏𝟏 − 𝛾

𝟏′Ʃ−𝟏𝟏
 

We can now plug this into the first equation, finally obtaining the solution we were looking for: 

𝒘 = (𝛾Ʃ)−1(𝝁 − 𝜆𝟏) 

𝒘 = (𝛾Ʃ)−1 (𝝁 −
𝝁′Ʃ−𝟏𝟏 − 𝛾

𝟏′Ʃ−𝟏𝟏
𝟏) 

With some minimal rearrangement, we have therefore the following set of optimal weights that 
maximize the mean-variance utility given the constraint of full investment in the risky assets: 

𝒘𝑼∗ =
Ʃ−𝟏

𝛾
(𝝁 +

𝛾 − 𝝁′Ʃ−𝟏𝟏

𝟏′Ʃ−𝟏𝟏
𝟏) 

Given a vector of mean 𝝁 and a covariance matrix Ʃ, there will be different sets of optimal weights 
𝒘𝑼 and 𝒘𝑼∗  for each different value of the risk-aversion parameter 𝛾. However, while in 𝒘𝑼∗  the 
relative wealth allocated to each risky asset changes with each different value of 𝛾, in 𝒘𝑼 all the 
weights scale up or down by the same proportion. In other words, when there is a risk-free asset, 



the only thing changing with different values of 𝛾 is the amount of wealth allocated to the risky 
assets, while the proportions within 𝒘𝑼 do not change. 

For example, imagine we have three risky assets and a risk-free asset, and the optimal weights with 
𝛾 = 3 are 𝒘𝑼

′ = [0.2 0.4 0.3]. This means that 90% of the wealth is invested in the risky assets, 
and 10% in the risk-free asset. If the risk aversion parameter increases to 𝛾 = 6, the new risky 
weights will be 𝒘𝑼

′ = [0.1 0.2 0.15]. Now 45% of the wealth is invested in the risky assets and 
55% in the risk-free. However, the weights for the risky assets maintained the same proportions: 
they were all cut in half. 

With the formulas that we computed, we can obtain the efficient frontier, i.e., the set of portfolios 
that have the most efficient mean-variance combination (in other words, the highest possible utility) 
for each level of 𝛾. However, the efficient frontier that we can draw in this way is incomplete, as the 
minimum variance portfolio is only reached with an infinite value for the risk aversion parameter. 

The following picture provides an illustration of the efficient frontier obtained from 29 asset with 
(red line) and without (blue curve) the possibility to also invest in a risk-free asset. The black dots 
are the individual stocks that have been combined to obtain the portfolio allocations that lie on the 
efficient frontier(s). 

 

The higher 𝛾, the more the investor chooses an investor toward the left side of the plot, i.e., with 
lower mean and lower standard deviation. 

We could also extend this plot by plotting the frontier allocations obtained with a negative 𝛾. In this 
case the red line and the blue curve would be horizontally mirrored, and have therefore a negative 
inclination. Such allocation would be seek by an investor who is risk-seeking, i.e., who prefers more 
risk for a given mean return. As this is unreasonable and not “efficient” in any sensible way, those 
allocations are generally not considered and are not part of the efficient frontier. 

Providing a specific value for 𝛾 might be difficult in practice. Moreover, it can be difficult to interpret 
the meaning of the specific utility value associated with a certain portfolio. While we can say that a 
portfolio with a certain utility is preferable to another with a lower utility, it is not obvious how good 
it is in a more general sense. In short, the value itself, in the case of utility, is not very informative. 



A more intuitive approach is to specify the preferences through a desired mean portfolio return 𝑅𝑒 
instead of a level of risk aversion. In this case, the goal becomes to minimize the variance given the 
desired mean return. This is a constrained optimization problem: 

min
𝒘

𝒘′Ʃ𝒘 

subject to: 

𝒘′𝝁 + (1 − 𝒘′𝟏)𝑅𝑓 = 𝑅𝑒 

In the constraint, 𝒘′𝝁 is the return of the risky assets, and (1 − 𝒘′𝟏)𝑅𝑓 is the return of the risk-free 

asset. Together they give the return of the portfolio, which, as stated, must be equal to 𝑅𝑒. 

As with mean-variance utility maximization, it is possible (and preferable) to work with excess 
returns instead of explicitly including the risk-free asset in the asset menu. In this case 𝑅𝑒 is the 
desired excess return, and the problem simplifies to: 

min
𝒘

𝒘′Ʃ𝒘 

subject to: 

𝒘′𝝁 = 𝑅𝑒 

The Lagrangian function is: 

𝐿(𝒘, 𝜆) = 𝒘′Ʃ𝒘 + 𝜆[𝑅𝑒 − 𝒘′𝝁] 

In order to get a more convenient first order condition, it is common to multiply the first term by 
0.5, which does not alter the result (because minimizing half the variance is equivalent to minimizing 
the variance). So the Lagrangian becomes: 

𝐿(𝒘, 𝜆) =
1

2
𝒘′Ʃ𝒘 + 𝜆[𝑅𝑒 − 𝒘′𝝁] 

The first order conditions are: 

𝜕𝐿

𝜕𝒘
= Ʃ𝒘 − 𝜆𝝁 = 𝟎 

𝜕𝐿

𝜕𝜆
= 𝑅𝑒 − 𝒘′𝝁 = 0 

We start by solving for 𝒘 in the first equation: 

𝒘 = 𝜆Ʃ−𝟏𝝁 

Then we plug it into the second equation and we solve for 𝜆: 

𝑅𝑒 = 𝒘′𝝁 

𝑅𝑒 = (𝜆Ʃ−𝟏𝝁)′𝝁 

𝑅𝑒 = 𝜆𝝁′Ʃ−𝟏𝝁 

𝜆 =
𝑅𝑒

𝝁′Ʃ−𝟏𝝁
 

We can now substitute this back in the first equation and we get the solution we wanted: 

𝒘 =
𝑅𝑒

𝝁′Ʃ−𝟏𝝁
Ʃ−𝟏𝝁 



Using the subscript “mv” (for “mean-variance”) to univocally identify the formula, we have: 

𝒘𝒎𝒗 =
𝑅𝑒

𝝁′Ʃ−𝟏𝝁
Ʃ−𝟏𝝁 

Obviously, it is also possible to specify a given level of variance and maximize the mean return: 

max
𝒘

𝒘′𝝁 

subject to: 

𝒘′Ʃ𝒘 = 𝜎2 

We write the Lagrangian and the first order conditions: 

𝐿(𝒘, 𝜆) = 𝒘′𝝁 + 𝜆[𝜎2 − 𝒘′Ʃ𝒘] 

𝜕𝐿

𝜕𝒘
= 𝝁 − 𝟐𝜆Ʃ𝒘 = 𝟎 

𝜕𝐿

𝜕𝜆
= 𝜎2 − 𝒘′Ʃ𝒘 = 0 

We solve the first equation for 𝒘: 

𝟐𝜆Ʃ𝒘 = 𝝁 

𝒘 =
Ʃ−𝟏𝝁

2𝜆
 

Now we plug into the second equation: 

𝜎2 = 𝒘′Ʃ𝒘 

𝜎2 = (
Ʃ−𝟏𝝁

2𝜆
)

′

Ʃ
Ʃ−𝟏𝝁

2𝜆
=

𝝁′Ʃ−𝟏

2𝜆
Ʃ

Ʃ−𝟏𝝁

2𝜆
 

𝜎2 =
𝝁′𝑰

2𝜆

Ʃ−𝟏𝝁

2𝜆
=

𝝁′Ʃ−𝟏𝝁

4𝜆2
 

𝜎 =
√𝝁′Ʃ−𝟏𝝁

2𝜆
 

𝜆 =
√𝝁′Ʃ−𝟏𝝁

2𝜎
 

And finally we replace this in the first equation to get the solution: 

𝒘 =
Ʃ−𝟏𝝁

2𝜆
=

Ʃ−𝟏𝝁

2 (
√𝝁′Ʃ−𝟏𝝁

2𝜎 )

=
Ʃ−𝟏𝝁

√𝝁′Ʃ−𝟏𝝁
𝜎 =

𝜎

√𝝁′Ʃ−𝟏𝝁
Ʃ−𝟏𝝁 

Mathematically, these are two equivalent optimization problems (notice the obvious similarities 
between the two solutions). However, it is more intuitive and more common to specify the desired 
mean and minimize the variance. 

 



Also for this problem we can have a more complicated version with the additional constraint of 
weights for the risky assets summing up to 1: 

min
𝒘

𝒘′Ʃ𝒘 

subject to: 

𝒘′𝝁 = 𝑅𝑒 

𝒘′𝟏 = 1 

As usual, we have to write the Lagrangian. As there are two constraints, this time there are two 
Lagrange multipliers: 

𝐿(𝒘, 𝜆1, 𝜆2) =
1

2
𝒘′Ʃ𝒘 + 𝜆1[𝑅𝑒 − 𝒘′𝝁] + 𝜆2[1 − 𝒘′𝟏] 

The first order conditions are: 

𝜕𝐿

𝜕𝒘
= Ʃ𝒘 − 𝜆1𝝁 − 𝜆2𝟏 = 𝟎 

𝜕𝐿

𝜕𝜆1
= 𝑅𝑒 − 𝒘′𝝁 = 0 

𝜕𝐿

𝜕𝜆2
= 1 − 𝒘′𝟏 = 0 

We solve the first equation for 𝒘: 

Ʃ𝒘 − 𝜆1𝝁 − 𝜆2𝟏 = 𝟎 

Ʃ𝒘 = 𝜆1𝝁 + 𝜆2𝟏 

𝒘 = Ʃ−𝟏(𝜆1𝝁 + 𝜆2𝟏) 

𝒘 = 𝜆1Ʃ−𝟏𝝁 + 𝜆2Ʃ−𝟏𝟏 

We need to get a formula for 𝜆1 and one for 𝜆2 that do not contain each other among their terms. 

To this end, notice that if we pre-multiply each side of the equation by 𝝁′ we get 

𝝁′𝒘 = 𝜆1𝝁′Ʃ−𝟏𝝁 + 𝜆2𝝁′Ʃ−𝟏𝟏 

𝑅𝑒 = 𝜆1𝝁′Ʃ−𝟏𝝁 + 𝜆2𝝁′Ʃ−𝟏𝟏 

Likewise, if we pre-multiply each side by 𝟏′ we get 

𝟏′𝒘 = 𝜆1𝟏′Ʃ−𝟏𝝁 + 𝜆2𝟏′Ʃ−𝟏𝟏 

1 = 𝜆1𝟏′Ʃ−𝟏𝝁 + 𝜆2𝟏′Ʃ−𝟏𝟏 

Therefore, we get a system of two equations: 

𝑅𝑒 = 𝜆1𝝁′Ʃ−𝟏𝝁 + 𝜆2𝝁′Ʃ−𝟏𝟏 

1 = 𝜆1𝟏′Ʃ−𝟏𝝁 + 𝜆2𝟏′Ʃ−𝟏𝟏 

Notice that 𝝁′Ʃ−𝟏𝝁, 𝝁′Ʃ−𝟏𝟏, 𝟏′Ʃ−𝟏𝝁 and 𝟏′Ʃ−𝟏𝟏 are scalars. For conveniency, we name them as 

𝐴 = 𝝁′Ʃ−𝟏𝝁           𝐵 = 𝝁′Ʃ−𝟏𝟏 = 𝟏′Ʃ−𝟏𝝁          𝐶 = 𝟏′Ʃ−𝟏𝟏    



So the system of two equations is 

𝜆1𝐴 + 𝜆2𝐵 = 𝑅𝑒 

𝜆1𝐵 + 𝜆2𝐶 = 1 

which in matrix form is 

[
𝐴 𝐵
𝐵 𝐶

] [
𝜆1

𝜆2
] = [

𝑅𝑒
1

] 

We solve the system for 𝜆1 and 𝜆2: 

[
𝜆1

𝜆2
] = [

𝐴 𝐵
𝐵 𝐶

]
−1

[
𝑅𝑒
1

] 

The inverse of 2 × 2 matrix 𝑴 = [
𝑎 𝑏
𝑐 𝑑

] is given by a simple formula: 

𝑴−𝟏 =
1

𝑎𝑑 − 𝑏𝑐
[

𝑑 −𝑏
−𝑐 𝑎

] 

Hence, our system becomes 

[
𝜆1

𝜆2
] =

1

𝐴𝐶 − 𝐵2
[

𝐶 −𝐵
−𝐵 𝐴

] [
𝑅𝑒
1

] 

[
𝜆1

𝜆2
] =

1

𝐴𝐶 − 𝐵2
[

𝐶𝑅𝑒 − 𝐵
−𝐵𝑅𝑒 + 𝐴

] 

So we have obtained the formulas we were looking for, which written in plain form are 

𝜆1 =
𝐶𝑅𝑒 − 𝐵

𝐴𝐶 − 𝐵2
 

𝜆2 =
𝐴 − 𝐵𝑅𝑒

𝐴𝐶 − 𝐵2
 

We can finally plug these terms back in the first equation we obtained for 𝒘: 

𝒘 = 𝜆1Ʃ−𝟏𝝁 + 𝜆2Ʃ−𝟏𝟏 

𝒘 =
𝐶𝑅𝑒 − 𝐵

𝐴𝐶 − 𝐵2
Ʃ−𝟏𝝁 +

𝐴 − 𝐵𝑅𝑒

𝐴𝐶 − 𝐵2
Ʃ−𝟏𝟏 

Hence, with some minimal rearrangement, the set of optimal weights that minimize the variance 
given a target return and the constraint of full investment in the risky assets is: 

𝒘𝒎𝒗∗ = Ʃ−𝟏 [
𝐶𝑅𝑒 − 𝐵

𝐴𝐶 − 𝐵2
𝝁 +

𝐴 − 𝐵𝑅𝑒

𝐴𝐶 − 𝐵2
𝟏] 

where 𝐴 = 𝝁′Ʃ−𝟏𝝁, 𝐵 = 𝟏′Ʃ−𝟏𝝁 and 𝐶 = 𝟏′Ʃ−𝟏𝟏. 

Analogously to what happens with the weights that maximize the utility, given a certain 𝝁 and Ʃ, 
changing the target return alters the relative wealth allocation between the risky assets in 𝒘𝒎𝒗∗, 
but in 𝒘𝒎𝒗 only the value of the sum of the weights of the risky assets changes, while the 
proportions stay the same. 



By applying with different target returns the formulas that we computed, we can obtain the efficient 
frontier, which again will be a line when it is possible to invest also in a risk-free asset, or a curve if 
all the wealth must be placed in the risky assets. As with the one that can be obtained by maximizing 
utility, the full frontier also includes inefficient allocations. In the picture below, obtained from 29 
assets, we plot in red and blue the efficient frontier with and without a risk-free asset respectively, 
and in orange and green the inefficient frontier allocations. The black dots are individual stocks. 

 

The frontier obtainable by minimizing the variance given a target return (or by maximizing the mean 
return given a target variance) is, of course, identical to the one obtainable by maximizing the mean-
variance utility. In both cases we are facing the same trade-off between mean and variance and, 
given a certain 𝝁 and Ʃ, the set of achievable efficient portfolios is the same. The problem of 
maximizing utility is a bit easier to solve because the risk-aversion parameter 𝛾 directly tells us how 
to weigh mean and variance in this trade-off. The value 𝛾 is however not very meaningful in practice, 
and so in a practical setting we need to solve the slightly more complex (but based on the same 
premises) problem of minimizing the variance given a target mean or vice versa. 

As you can see, there is a point at which the efficient frontiers with and without a risk-free asset 
touch each other. That corresponds to the mean and standard deviation of the tangency portfolio. 
This portfolio is the one portfolio of risky assets which has the highest possible Sharpe ratio. The 
Sharpe ratio of an investment can be geometrically interpreted as the slope of the line that connects 
the risk-free rate with an investment in the plot above. Therefore, the highest Sharpe ratio can 
always be achieved with the optimal weights given by the optimization procedures with a risk-free 
asset that we derived. The weights 𝒘𝑼 or 𝒘𝒎𝒗 are used for the risky assets, and 1 − 𝒘𝑼′𝟏 or 1 −
𝒘𝒎𝒘′𝟏 is the weigh for the risk-free asset (which can also be negative). This result (i.e., that the 
combination of the tangency portfolio and a risk-free asset gives the highest utility for a given risk-
aversion level) is known as two-fund separation theorem, and dates back to Tobin (1958). It played 
a large role in the development of CAPM, where the tangency portfolio is identified (under a series 
or rather stringent assumptions) as the market portfolio. 

 



But what if we want or can invest only in the risky assets, and we still want to achieve the highest 
possible Sharpe ratio? In other words, how can we compute the weights for the tangency portfolio? 

To this end, working with excess returns, we need to solve the following optimization problem: 

max
𝒘

𝒘′𝝁

√𝒘′Ʃ𝒘
 

subject to: 

𝒘′𝟏 = 1 

This can be solved with the usual Lagrange multiplier method, but the computations are rather long 
and intricate, so we do not show them. The resulting closed form solution is: 

𝒘𝒕𝒂𝒏 =
Ʃ−𝟏𝝁

𝟏′Ʃ−𝟏𝝁
 

However, there is another very easy way to arrive at this solution. Notice that the weights of the 
tangency portfolio are simply the weights of the portfolio that maximizes the mean-variance utility 
with any given value of 𝛾 in the presence of the risk-free asset, normalized so that they sum to 1. 
This is because 𝒘𝑼 (and 𝒘𝒎𝒗) are in fact just the weights of the tangency portfolio scaled according 
to the risk preferences of the investor: they sum to less than 1 or more than 1 depending on how 
risk-averse is the investor, but their proportions do not change. Therefore, we can simply take the 
formula for 𝒘𝑼 and divide it by its own sum: 

𝒘𝒕𝒂𝒏 =

1
𝛾 Ʃ−𝟏𝝁

𝟏′ (
1
𝛾

Ʃ−𝟏𝝁)
=

Ʃ−𝟏𝝁

𝟏′Ʃ−𝟏𝝁
 

We plot in purple the tangency portfolio in the graph with the frontier: 

 

 



GLOBAL MINIMUM VARIANCE AND EQUALLY WEIGHTED PORTFOLIO 

So far we treated the inputs 𝝁 and Ʃ as if they are given, but in practice they need to be estimated. 
The simplest approach is called plug-in approach: the sample estimates of the inputs are computed 
from past data, and are then plugged into the optimization problem as if they were the true values. 
Obviously, this is not really the case, as sample estimates can be poor estimates of the true 
parameter values. This typically causes theoretically optimal mean-variance optimized portfolios to 
perform poorly out-of-sample. 

In particular, the estimation error in the sample mean is typically so big that minimizing the variance 
while ignoring 𝝁 usually leads to portfolios with a higher Sharpe ratio than those computed via 
mean-variance optimization. Therefore, the investor might want to compute the global minimum 
variance portfolio (GMV), also simply called minimum variance portfolio. Obviously, we need to 
impose the constraint that the sum of the weights of the risky assets is equal to 1, which means that 
nothing is invested in the risk-free asset. Otherwise, everything would be invested in the risk-free 
asset. Hence, we have to solve the following constrained optimization problem: 

min
𝒘

𝒘′Ʃ𝒘 

subject to: 

𝒘′𝟏 = 1 

We write the Lagrangian function: 

𝐿(𝒘, 𝜆) = 𝒘′Ʃ𝒘 + 𝜆[1 − 𝒘′𝟏] 

As done before, we multiply the first term by 0.5, so the Lagrangian becomes: 

𝐿(𝒘, 𝜆) =
1

2
𝒘′Ʃ𝒘 + 𝜆[1 − 𝒘′𝟏] 

The first order conditions are: 

𝜕𝐿

𝜕𝒘
= Ʃ𝒘 − 𝜆𝟏 = 𝟎 

𝜕𝐿

𝜕𝜆
= 1 − 𝒘′𝟏 = 0 

Through some simple rearrangement we get: 

𝒘 = 𝜆Ʃ−𝟏𝟏 

𝒘′𝟏 = 1 

In the first equation, we can multiply both sides by 𝟏′, obtaining: 

𝟏′𝒘 = 𝜆𝟏′Ʃ−𝟏𝟏 

From the second equation we know that: 

𝒘′𝟏 = 𝟏′𝒘 = 1 

Hence, the first equation becomes: 

1 = 𝜆𝟏′Ʃ−𝟏𝟏 

𝜆 =
1

𝟏′Ʃ−𝟏𝟏
 

 



So, finally, we can take this last result and replace 𝜆 in 𝒘 = 𝜆Ʃ−𝟏𝟏, obtaining: 

𝒘 =
1

𝟏′Ʃ−𝟏𝟏
Ʃ−𝟏𝟏 

Therefore, the closed form-solution that gives the minimum variance weights is: 

𝒘𝒗 =
1

𝟏′Ʃ−𝟏𝟏
Ʃ−𝟏𝟏 

As nothing is invested in the risk-free rate (since we require that the weights for the risky assets 
must sum up to 1), it is equivalent to work with returns or excess returns. However, it might be 
convenient to still work with excess returns, so that the results will be easily comparable with those 
obtained by the mean-variance portfolio. 

A further improvement can come from restricting the minimum variance portfolio to only have long 
positions. In other words, we add another constraint that prohibits short selling positions, to get a 
long-only minimum variance portfolio: 

min
𝒘

𝒘′Ʃ𝒘 

subject to: 

𝒘′𝟏 = 1 

𝒘 ≥ 𝟎 

This problem does not have a closed form solution, but it is a quadratic programming problem (i.e., 
a problem with a quadratic objective function subject to linear constraints) that can easily be solved 
with computer programs using various algorithms. 

Notice that this solution is theoretically sub-optimal: if we actually knew the true parameters, it 
would lead to a loss compared to the unconstrained minimum variance portfolio (which is itself 
already theoretically sub-optimal compared to mean-variance portfolio). However, because it limits 
the impact of parameter uncertainty, disallowing short selling generally leads to a performance 
increase out-of-sample. 

When a value for 𝛾 is specified, another strategy that mitigates the impact of the estimation error 
is the 1/N rule.1 In this case we do not ignore the mean, as we want to somehow take into account 
the mean-variance preferences given by the value of 𝛾. What we do instead is using the (sample) 
estimates of 𝝁 and Ʃ to optimally allocate the wealth between the risk-free asset and the equally 
weighted risky assets. Remember that the mean-variance utility optimization problem is  

max
𝒘

𝒘′𝝁 −
𝛾

2
𝒘′Ʃ𝒘 

If all the risky assets must have the same weight, it means we are imposing that 𝒘 = 𝑐𝟏, where 𝑐 is 
a scalar that determines the weight of the assets. Therefore, what we need to find is the value of 𝑐. 
Hence, we substitute 𝒘 = 𝑐𝟏 in the original problem: 

max
𝑐

 (𝑐𝟏)′𝝁 −
𝛾

2
(𝑐𝟏)′Ʃ(𝑐𝟏) 

max
𝑐

𝑐𝟏′𝝁 −
𝛾

2
𝑐2𝟏′Ʃ𝟏 

 
1 The name “1/N rule” is often used to refer to a naive rule where one simply places all the wealth on risky assets with all 

weights equal to 1/N, without estimating any input. In these notes we refer instead to the more elaborate rule described in 

the text. 



So we are back to an unconstrained problem. The first order condition is: 

𝜕𝑈(𝑐)

𝜕𝑐
= 𝟏′𝝁 − 𝛾𝑐𝟏′Ʃ𝟏 = 𝟎 

from which we easily get 

𝑐 =
1

𝛾

𝟏′𝝁

𝟏′Ʃ𝟏
 

We then get the optimal weights for the risky assets by simply plugging this expression into 𝒘 = 𝑐𝟏 

𝒘𝟏/𝑵 =
1

𝛾

𝟏′𝝁

𝟏′Ʃ𝟏
𝟏 

while the weight for the riskless asset is given by 1 − 𝒘′𝟏/𝑵𝟏. 

For example, if 𝑁 = 5 and this rule returns a weight of 0.15 for each risky asset, we equally divide 
75% of our wealth among the risky assets (i.e., 15% on each risky asset), and then place the 
remaining 25% on the risk-free asset. 

 

FACTOR INVESTING WITH LONG-SHORT PORTFOLIOS 

Computing optimal weights is not the only possibility. An alternative approach involves creating 
long-short portfolios. Suppose we want to invest into N assets. First, assets are ranked according to 
their predicted return. We then assemble a portfolio with two legs: a long leg which contains a given 
number of assets with the highest predicted returns, and a short leg with a given number of assets 
predicted to have the lowest returns. Within a certain leg the assets are often equally weighted, 
although other weighting systems that assign different weights based on the predicted return are 
of course possible. 

One of the advantages of this approach is that it allows the investor to consider predicted returns 
without amplifying the effects of the estimation error in the mean. Optimization procedures like the 
mean-variance one are in fact error-maximizing: errors in the inputs lead to extreme weights, which 
can lead to abysmal performance. This is why standard mean-variance optimization rarely works 
well and is generally replaced either with more advanced techniques that limit extreme allocations, 
or with a minimum variance portfolio. A long-short portfolio does not have theoretically optimal 
weights, but it can still work better by avoiding this error-maximization trap. 

The other advantage is that a long-short portfolio can be self-financing: the money obtained from 
shorting the assets predicted to perform poorly is used to go long on the assets with predicted high 
return. As short positions tend to be more risky than long positions, using a partially self-financing 
portfolio is also common. In this case, less than half (e.g., 30%) of the wealth is placed on the short 
leg, and the long leg is financed partly from the shorting and partly from the investor’s initial wealth 
(in our example where 70% of the invested sum goes to the long leg, 30% of the money comes for 
the shorting and the other 40% from the investor’s funds). 

A practical disadvantage of such a portfolio is that in the real world it is generally difficult to short a 
large number of stocks. So in practice N has to be relatively small, and therefore it can be more risky, 
as it is not very well diversified. A long-short portfolio can also be particularly vulnerable in turbulent 
market conditions, when the price of virtually all stocks are either increasing or decreasing at the 
same time. The latter problem can be eased by making the portfolio construction more flexible (e.g., 
by varying the number of stocks and/or the amount of wealth in the long and short leg depending 
on the market conditions). 



Obviously, a pre-condition for creating a long-short portfolio is having a ranking based on how we 
expect the assets to perform. How can we obtain it? Using the sample means is not appropriate, as 
we pointed out that such estimates are too unreliable. A much better alternative is to use a factor-
based approach. In fact, long-short portfolios are a typical way factor investing is performed. This 
generally involves computing expected returns using multifactor models. 

Remember that the formula of a multifactor model with 𝑘 factors is: 

𝑅𝑖 = 𝛼𝑖 + 𝑏𝑖1𝑓1 + 𝑏𝑖2𝑓2 + ⋯ + 𝑏𝑖𝑘𝑓𝑘 + 𝜀𝑖 

In practice, the expected return of a stock given a certain multifactor model is computed as: 

𝐸[𝑅𝑖] = 𝛼𝑖 + 𝑏𝑖1𝛾1 + 𝑏𝑖2𝛾2 + ⋯ + 𝑏𝑖𝑘𝑓𝛾𝑘 

where 𝛾 is the factor risk premium.2 

Therefore, we need to estimate the loadings 𝑏𝑖𝑘 and the risk premia. This is typically done using the 
Fama-MacBeth regression. It is a two-stage linear regression. Consider an estimation sample with 
𝑁 assets and 𝑇 periods. 

In the first stage, the loadings are estimated by regressing the returns of each asset 𝑖 on the 𝑘 
factors, using the entire set of 𝑇 periods: 

𝑅1𝑡 = 𝛼1 + 𝑏11𝑓1𝑡 + 𝑏12𝑓2𝑡 + ⋯ + 𝑏1𝑘𝑓𝑘

𝑅2𝑡 = 𝛼2 + 𝑏21𝑓1𝑡 + 𝑏22𝑓2𝑡 + ⋯ + 𝑏2𝑘𝑓𝑘

⋮
𝑅𝑖𝑡 = 𝛼𝑖 + 𝑏𝑖1𝑓1𝑡 + 𝑏𝑖2𝑓2𝑡 + ⋯ + 𝑏𝑖𝑘𝑓𝑘

⋮
𝑅𝑁𝑡 = 𝛼𝑁 + 𝑏𝑁1𝑓1𝑡 + 𝑏𝑁2𝑓2𝑡 + ⋯ + 𝑏𝑁𝑘𝑓𝑘𝑡

 

The estimated loadings are then used as explanatory variables in a second regression that, for each 
period 𝑡, regresses the asset returns of the entire set of 𝑁 assets: 

𝑅𝑖1 = 𝛾10 + 𝛾11𝑏𝑖1̂ + 𝛾12𝑏𝑖2̂ + ⋯ + 𝛾1𝑘𝑏𝑖�̂�

𝑅𝑖2 = 𝛾20 + 𝛾21𝑏𝑖1̂ + 𝛾22𝑏𝑖2̂ + ⋯ + 𝛾2𝑘𝑏𝑖�̂�

⋮
𝑅𝑖𝑡 = 𝛾𝑡0 + 𝛾𝑡1𝑏𝑖1̂ + 𝛾𝑡2𝑏𝑖2̂ + ⋯ + 𝛾𝑡𝑘𝑏𝑖�̂�

⋮
𝑅𝑖𝑇 = 𝛾𝑇0 + 𝛾𝑇1𝑏𝑖1̂ + 𝛾𝑇2𝑏𝑖2̂ + ⋯ + 𝛾𝑇𝑘𝑏𝑖�̂�

 

Ideally we should use the true loadings, but their value is of course unknown in practice. 

To compute the expected returns of each asset 𝑖 we need the loadings, estimated in the first 
regression, and the risk premia, estimated in the second regression. Notice however that the risk 
premia are time-varying. A common approach is to compute their average value over the 𝑇 periods 
(just like it is common to compute the average market excess return when using the CAPM). The 
expected return of asset 𝑖 according to the chosen multifactor model is given by (we omit the ^ to 
keep the notation light): 

𝐸[𝑅𝑖] = 𝑏𝑖1𝛾1 + 𝑏𝑖2𝛾2 + ⋯ + 𝑏𝑖𝑘𝛾𝑘 

For greater clarity, let us consider how this works with the Fama-French three-factor model, which 
is probably the most important factor model. 

 
2 In the CAPM, and in single factor models in general, we can directly use the factor value (the excess market return in 

the case of CAPM). In multifactor models we cannot do this, and we need to use the risk premia of the factors instead. 



Recall that the model is: 

𝑅𝑖 = 𝑅𝑓 + 𝑏𝑖1(𝑅𝑚 − 𝑅𝑓) + 𝑏𝑖2𝑆𝑀𝐵 + 𝑏𝑖3𝐻𝑀𝐿 

In practice the expected return of asset 𝑖 will be computed as: 

𝐸[𝑅𝑖] = 𝑅𝑓 + 𝑏𝑖1𝛾(𝑅𝑚−𝑅𝑓) + 𝑏𝑖2𝛾𝑆𝑀𝐵 + 𝑏𝑖3𝛾𝐻𝑀𝐿 

We use the Fama-MacBeth regression to estimate the loadings and the risk premia. Usually, the 
excess return is used as dependent variable, to focus on the component of the return that is 
dependent on factor exposure. Therefore, the first stage regression for each asset 𝑖 is: 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝑏𝑖1(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑏𝑖2𝑆𝑀𝐵𝑡 + 𝑏𝑖3𝐻𝑀𝐿𝑡 

To simplify the notation, we indicate the first factor as 𝑀𝐾𝑇: 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝑏𝑖1𝑀𝐾𝑇𝑡 + 𝑏𝑖2𝑆𝑀𝐵𝑡 + 𝑏𝑖3𝐻𝑀𝐿𝑡 

As explained before, this regression needs to be carried out separately for each of the 𝑁 assets. 

Now that we have the estimates for the loadings, we can set up the second stage regression: 

𝑅𝑖 − 𝑅𝑓 = 𝛾𝑡0 + 𝛾𝑡1𝑏𝑖1̂ + 𝛾𝑡2𝑏𝑖2̂ + 𝛾𝑡3𝑏𝑖3̂ 

This regression needs to be carried out separately for each of the 𝑇 periods in the estimation 
window, obtaining 𝑇 values for 𝛾𝑡1, 𝛾𝑡2 and 𝛾𝑡3 . We then compute their average in order to have a 
single value. We rename the average of 𝛾𝑡1, 𝛾𝑡2 and 𝛾𝑡3 as 𝛾𝑀𝐾𝑇, 𝛾𝑆𝑀𝐵 and 𝛾𝐻𝑀𝐿 respectively, for 
better clarity. We also compute the average risk-free rate in order to have a single value for 𝑅𝑓.3 

We can now compute the expected return of each asset 𝑖 as: 

𝐸[𝑅𝑖] = 𝑅𝑓 + 𝑏𝑖1𝛾𝑀𝐾𝑇 + 𝑏𝑖2𝛾𝑆𝑀𝐵 + 𝑏𝑖3𝛾𝐻𝑀𝐿 

It is now straightforward to create the long-short portfolio. We simply rank the assets according to 
their expected return, and take a long position on those positioned in the upper part of the ranking, 
and a short position on those in lower part of the ranking. 

Each time the portfolio has to be updated, we need to compute new estimates of the expected 
returns. So, for example, if we want to update the portfolio monthly, we ne need to repeat the 
procedure every month, using the up-to-date data. 

 

IMPROVING PORTFOLIO OPTIMIZATION 

Let us consider again the portfolio optimization problem. Whatever metrics we will use to evaluate 
the results, we need to compare them with appropriate benchmarks in order to know if the results 
are satisfying. A benchmark portfolio surprisingly difficult to beat is the one created with a naïve 
1/N rule.4 This portfolio simply assigns equal weights to all the assets in all periods, and therefore 
does not require to estimate any input and to perform any optimization procedure. This is indeed 
one of its main strengths: it is completely immune to estimation errors. Another advantage is that 
it has a very low turnover, which translates into very low transaction costs. 

 
3 Computing the average value of the risk premia and of the risk-free rate is a reasonable approach, and the one 

commonly used. However, it is not “the” right approach. Other approaches might also be appropriate depending on the 

specific situation. 
4 We will refer to this rule/portfolio as “naive” or “naïve 1/N”, to not confuse it with the 1/N rule we described before. 

However, it is also commonly called simply “1/N” rule/portfolio in the literature. 



Another possible benchmark is the market, or more precisely the returns of a large stock market 
index, like the S&P 500. While it is not possible to buy an index, it is possible to buy ETFs. An ETF 
(Exchange-Traded Fund) is a fund that is traded on the financial markets and which tries to replicate 
a certain index. By investing in such fund, the investor can invest in a certain index without having 
to trade al the stocks contained in such index. Stock markets sometimes go through periods of poor 
performance that can last years, but over the long run they provide good returns (in countries with 
a solid  economy). Therefore, such passive investing solution, which also does not require to perform 
estimation and optimization procedures, is another reasonable benchmark (over long enough 
periods of time). 

Basic mean-variance optimization with sample estimates often struggles to beat common 
benchmarks, especially the naïve rule mentioned above. To improve optimization performance we 
need to reduce the severity of the estimation errors in the inputs, and/or reduce the impact of such 
errors on portfolio formation. Plenty of solutions have been proposed. We focus on some of them 
that proved to be effective and not too difficult to apply. 

On the side of parameter estimation, we consider techniques developed to improve the estimation 
of the covariance matrix. While in general the error in the vector of sample means in more severe 
than the error in the sample covariance matrix, solutions proposed to improve over the latter are 
simpler and more effective. Moreover, while the number of parameters in 𝝁 is equal to the number 
of assets 𝑁, the number of parameters in Ʃ is equal to 𝑁2. Therefore, as the portfolio gets larger, 
estimation error in Ʃ becomes worse much faster than in does in 𝝁, which might jeopardize the 
performance benefit that we theoretically get from a larger 𝑁 thanks to the greater diversification 
potential. 

The approach arguably more successful in dealing with the estimation of the covariance matrix is 
given by shrinkage estimators. Ledoit & Wolf (2004) define the shrinkage estimator 

Ʃ𝑳𝑾 = 𝛿𝑰𝜇�̂� + (1 − 𝛿)Ʃ 

where Ʃ is the usual sample covariance matrix, 𝑰 is the identity matrix, 𝜇�̂� is the average sample 
variance of all the variables (so the product 𝑰𝜇�̂� gives a diagonal matrix whose elements on the 
diagonal are equal to the average sample variance and all the other elements are equal to zero), 
and 𝛿 is the shrinkage parameter whose value is between 0 and 1. 

It is called “shrinkage” estimator because the sample estimate is shrunk toward a target matrix. Ʃ𝑳𝑾 
is basically the result of a weighted average between the sample covariance matrix and the target 
matrix. The intensity of the shrinkage is controlled by the shrinkage parameter 𝛿. Ledoit and Wolf 
(2004) select an optimal value for 𝛿 with a procedure whose details are beyond our scope here. This 
shrunk estimator improves over the sample estimator, which translate in better performance of the 
mean-variance and minimum variance portfolios (and portfolios computed using the covariance 
matrix as input in general). Moreover, it gives a nonsingular covariance matrix even when the 
number of periods 𝑇 used for estimation is smaller than the number of assets 𝑁. The sample 
covariance matrix, on the contrary, in such case is singular and therefore not invertible, which makes 
it impossible to perform the optimization procedures. It is also very easy to use this estimator in 
common statistical environments like R. Hence, it is now standard to use this estimator instead of 
the sample covariance in many applications, including portfolio optimization. 

We now turn to solutions that mitigate the impact of estimation errors on portfolio formation. One 
of such solutions relies on a logic similar to the one we just described, and consists in computing 
shrinkage portfolios. The idea, proposed by Tu and Zhou (2011), is that we can improve over the 
mean-variance portfolio by shrinking it toward the naïve 1/N portfolio. In this way we can combine 



a portfolio that optimizes the weights but suffers from estimation errors with one that is not 
optimized but is also immune from estimation errors, obtaining a portfolio that improves over both. 

The weights of such portfolio are given by 

𝒘∗ = 𝛿𝒘𝑵𝑨𝑰𝑽𝑬 + (1 − 𝛿)𝒘 

where 𝒘𝑵𝑨𝑰𝑽𝑬 is the vector of weights of the naïve 1/N portfolio, 𝒘 is the vector of weights of the 
optimized portfolio (usually the mean-variance portfolio, but can be also other portfolios), and 𝛿 is 
again the parameter that controls the shrinkage intensity. The value of 𝛿 can be chosen using 
optimization rules, heuristics, or cross-validation. 

Another solution to improve over the standard mean-variance portfolio is the grouping strategy 
proposed by Branger et al. (2019). The idea is that since the performance of mean-variance (or 
minimum variance) optimization suffers more and more as 𝑁 increases, due to the growing number 
of parameters to estimate, one could achieve better performance by grouping together the assets 
in a certain number of groups. The optimization procedure is than performed between the groups, 
while within a group the assets are equally weighted. This reduces the dimension of the problem, 
and therefore the number of parameters to estimate. In other words, it is another strategy that 
combines the benefits of the naïve 1/N rule (which is applied within groups) and of optimization 
(which is applied between groups). The stocks can be grouped according to how similar they are in 
terms of estimated mean, variance or beta, and the number of groups can be chosen using 
optimization rules, heuristics, or cross-validation. The higher the number of groups, the closer we 
get to the usual optimization; the smaller the number of groups, the closer we get to the naïve 1/N 
rule. In the extreme case where we only have one group we obtain the naïve 1/N portfolio; in the 
extreme case where the number of groups is equal to N, we get the usual optimized portfolio. 

 

DOWNSIDE RISK MEASURES 

So far we measured risk using the variance (or the standard deviation, which is simply its square 
root).  This is based on the assumption that returns are symmetrically distributed, or at least that 
the investor only cares about volatility as a whole, without distinguishing between upside and 
downside movements. While this is not realistic (because investors want to minimize the losses but 
not the gains), it greatly simplifies optimization procedures. Moreover, downside risk measures 
tend to be more difficult to estimate as inputs for optimization procedures, which may lead to worse 
performance despite targeting a more appropriate measure of risk. For these reasons, here we do 
not consider portfolio optimization techniques targeting downside risk. However, it is still important 
to be familiar with the most popular downside risk measures, as they are useful for performance 
evaluation, and some of them are also employed by regulatory authorities supervising the banking 
sector. 

The downside risk measure most closely related to the variance is the semivariance, which is 
defined as:5 

𝜎𝐵
2 =

1

𝑇
∑[Min(𝑅𝑡 − 𝐵, 0)]2

𝑇

𝑡=1

 

where 𝑇 is the number of periods in the estimation window, and 𝐵 is the benchmark below which 
the investor considers volatility to account as risk. To apply this formula, one has to replace all the 

 
5 Technically, this is the downside semivariance, as it is also possible to compute an upside semivariance by replacing 

Min with Max in the formula. However, we are generally interested in the downside semivariance, which we therefore 

simply call “semivariance”. 



portfolio returns above the benchmark with 0, and then the computations are exactly the same 
done to compute the variance. 

𝐵 depends on the preferences of the investor. It is convenient (and also has some nice theoretical 
properties) to set 𝐵 equal to the risk-free rate. In this way if one works with excess returns, 𝐵 can 
be treated as equal to zero. However, in principle, it can be set to any value. 

The square root of 𝜎𝐵
2 is called downside deviation, which we indicate with 𝜎𝐵. The downside 

deviation is to the semivariance, what the standard deviation is to the variance. 

Theoretically, one can compute an optimal mean-semivariance or minimum semivariance portfolio 
by simply replacing the covariance matrix with the semicovariance matrix (the analogous to the 
covariance matrix in a downside risk setting) in the optimization procedures. However, estimating 
this matrix presents several challenges, and therefore we do not address this topic, but we still 
provide some intuition regarding what it means to target the semivariance. We distinguish between 
different scenarios: 

• If the distribution is symmetric and the benchmark is equal to the sample mean, targeting 
the variance or the semivariance is always equivalent. One should therefore target the 
former, as sample estimates for it are more accurate than the sample estimates for the 
latter. 

• If the distribution is symmetric but the benchmark is not equal to the sample mean, targeting 
the variance or the semivariance is only equivalent if we set a target return (i.e., mean-
semivariance optimization). Minimize the variance or the semivariance without a target 
return is not equivalent in this setting. 

• If the distribution is not symmetric, targeting the variance is never equivalent to targeting 
the semivariance. 

The following figure provides a graphical illustration. 

 

To compute the risk-adjusted return in this context, the Sharpe ratio should be replaced by the 
Sortino ratio, which is similar to the Sharpe ratio but replaces the risk-free rate with the benchmark 
𝐵, and the standard deviation with the downside deviation 𝜎𝐵: 

Sortino =
𝑅 − 𝐵

𝜎𝐵
 



Another popular downside risk measure is the Value at Risk (VaR). VaR measures the maximum 
potential loss that an investor can suffer over a certain period, with a 1 − 𝛼 confidence level. 𝛼 is 
set by the investor; for example, an 𝛼 = 0.05 corresponds to a 95% confidence level. 

More formally, given a profit and loss distribution 𝑌 we can define VaR as: 

𝑉𝑎𝑅𝛼(𝑌) = −inf{𝑦 ∈ R: (𝑌 ≤ 𝑦) > 𝛼} 

For example, if we set 𝛼 = 0.05 and when evaluating a set of returns we get a 𝑉𝑎𝑅 = 0.04, it means 
that we have a 5% chance of losing 4% or more in one period over the time horizon considered. 

VaR can be computed in different ways. The most commonly used is the historical method: we 
simply rank the historical returns in increasing order and then check the (typically negative) return 
that we have at the 𝛼 percentile. Another possibility is the parametric method: we assume that 
returns follow a certain distribution and we compute the loss at the chosen percentile. Simulation 
(“Monte Carlo”) approaches are also possible. 

The main problem with VaR is that it is not a coherent risk measure. Consider the outcomes 𝑉1 and 
𝑉2 of two investments. A risk measure is said to be coherent if it possesses the following desirable 
properties: 

• Monotonicity: if 𝑉1 is larger or equal to 𝑉2 in every possible scenario, then the risk of 𝑉1 must 
be lower than 𝑉2. Formally: if 𝑉1 ≥ 𝑉2, then 𝑅𝑖𝑠𝑘(𝑉1) < 𝑅𝑖𝑠𝑘(𝑉2). 

• Translation invariance: for any outcome 𝑉, adding an additional outcome C with a certain 
return reduces the risk by that amount. Formally: 𝑅𝑖𝑠𝑘(𝑉 + 𝐶) = 𝑅𝑖𝑠𝑘(𝑉) − 𝐶. 

• Positive homogeneity: multiplying all outcomes by a constant should result in a scaling of 
the risk measure by the same constant. In other words, if we invest, say, twice the original 
amount, the risk measure should also double. Formally: 𝑅𝑖𝑠𝑘(𝜆𝑉) = 𝜆𝑅𝑖𝑠𝑘(𝑉). 

• Subadditivity: the risk of a combination of two risky positions should be lower or equal to 
the risk of the individual positions. In other words, diversifying by combining different assets 
should reduce risk, or at worst leave it unaffected, but it cannot increase it. Formally: 
𝑅𝑖𝑠𝑘(𝑉1 + 𝑉2) ≤ 𝑅𝑖𝑠𝑘(𝑉1) + 𝑅𝑖𝑠𝑘(𝑉2). 

The Value at Risk satisfies the first three conditions, but not the last one. As it violates subadditivity, 
risk quantified using VaR can sometimes increase with greater diversification, which is not very 
meaningful. 

To overcome this problem, the Conditional Value at Risk (CVaR), also known as Expected Shortfall 
(ES), has been proposed: 

𝐶𝑉𝑎𝑅𝛼(𝑌) = −
1

𝛼
∫ 𝑉𝑎𝑅𝑢𝑑𝑢

𝛼

0

 

where 𝑢 is just the variable of integration and 𝑑𝑢 is the differential of this variable (i.e., we are 
integrating from 0 to 𝛼 using infinitesimal increments in 𝑢 from 0 until we reach 𝛼). 

In more intuitive terms, the CVaR measures the average (the “expected”) loss that we get, given 
that the loss exceeds the VaR. As it is a coherent measure of risk, it is preferred and more commonly 
used than the VaR. Of course, in order to compute the CVaR, you first need to compute the VaR. 

 

 

 

 



The following figure provides a graphical intuition of VaR and CVaR: 

 

CVaR is always lower than the VaR, because it is the value that we get by computing the average 
loss that we have when we find ourselves in the red area left of the VaR. 

Finally, another popular measure of downside risk is the drawdown (DD). The drawdown is the 
decline in the value of an investment from a peak to a low point. Different drawdown measures can 
be computed. A popular and easy to compute one is the maximum drawdown (MDD): 

𝑀𝐷𝐷 =
𝑇𝑟𝑜𝑢𝑔ℎ 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘 𝑉𝑎𝑢𝑒
 

where the “Trough Value” is the lowest point in the series that is reached after the highest peak. 

Obviously, a lower MDD is preferable to a higher MDD. In the worst possible case, MDD is equal to 
100%, i.e., the value of the investment drops to zero. 

 

Source: https://financetrain.com 

MDD fails to consider the frequency and duration of losses, and does not account for the size of any 
gains. To account for the gains, we can use a more informative measure called Calmar Ratio: 

𝐶𝑎𝑙𝑚𝑎𝑟 =
𝑅 − 𝑟𝑓

𝑀𝐷𝐷
 

This is similar to the Sharpe ratio, but the MDD is used instead of the standard deviation. 



PERFORMANCE EVALUATION 

After we obtain the series of portfolio returns, we need to appropriately evaluate results in order 
to gauge how well our investment strategy performed. We may start with some basic statistics 
about the distribution of the returns: 

• Mean: the higher the better 

• Standard deviation: the lower the better 

• Skewness: a positive value is preferable 

• (Excess) Kurtosis: a lower value is preferable unless the skewness is significantly positive 

We then compute the Sharpe ratio to quantify the risk-adjusted return. 

If we are interested in evaluating downside risk we may compute, instead or in addition to the 
standard deviation and the Sharpe ratio, some or all of these measures: 

• Downside deviation: the lower the better 

• CVaR: the lower (in absolute value) the better 

• (Maximum) drawdown: the lower the better 

We then quantify the risk-adjusted return with an appropriate measure, like the Sortino ratio. 

Another important financial indicator is the alpha, used to check if the returns of the investments 
are explained by a given asset pricing model. The alpha is obtained as the intercept in a regression 
of the portfolio returns over the returns of the factors of the model considered. Usually, the CAPM 
(in which case the alpha is called “Jensen’s alpha”) or the Fama-French three-factor model are used. 
In the first case the regression takes the form: 

𝑅 = 𝛼 + 𝛽(𝑅𝑀𝑘𝑡 − 𝑅𝑓) 

while in the second case it is: 

𝑅 = 𝛼 + 𝑏1(𝑅𝑀𝑘𝑡 − 𝑅𝑓) + 𝑏2𝑆𝑀𝐵 + 𝑏3𝐻𝑀𝐿 

If 𝛼 is significantly greater than zero, it means that our strategy achieves returns higher than those 
predicted by the model based on the portfolio exposure to the factors. In order to check if we have 
a significant positive 𝛼, we compute its standard errors and then perform a test of hypothesis. The 
usual standard errors for the linear regression are generally not appropriate, as they assume 
homoskedasticity (i.e., constant variance) and no autocorrelation (i.e., no temporal dependency in 
the standard errors). These conditions are usually not met in financial time series, where 
heteroskedasticity and/or autocorrelation are often observed. To account for this, we may use 
instead the Newey-West standard errors. The technical details of such estimator are somewhat 
complicated, but not relevant here, and Newey-West standard errors can be easily computed in R. 
Using them, we can test whether the 𝛼 of our investment is significantly greater than zero. 

A proper evaluation, however, should also account for the turnover, i.e., how much trading the 
strategy requires. The higher the turnover, the higher the transaction costs, which of course 
translates into lower net returns. To get an idea of the amount of trading required we can compute 
the average turnover. The turnover at a certain period 𝑡 is given by: 

𝑇𝑂𝑡 = ∑|𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−1|

𝑁

𝑖=1

 

Basically, for each stock we compute the absolute value of the change in the corresponding weight 
compared to the previous period, and we sum all these 𝑁 values. 



We do this for each of the 𝑇 periods in which we applied our strategy, and then we compute the 
mean. This gives us the average turnover. 

However, applying this formula using the set of weights we selected for the previous period as the 
value for 𝑤𝑖,𝑡−1 is not entirely correct. This is because when we update the weights at the beginning 
of each new period we need to account for the fact that, due to the realized returns during the 
period that just ended, the allocation of wealth changed compared to what was at the beginning of 
the previous period. We clarify this with an example. 

Suppose we have a portfolio with two assets updated monthly, and the weights at time 𝑡 − 1 were 
0.5 and 0.5, while now at time 𝑡 we want to change them to 0.4 and 0.6. We might think that the 
turnover is |0.4 − 0.5| + |0.6 − 0.5| = 0.2, which means we have to trade 20% of our wealth to 
update the portfolio. If the price of the two assets did not change over the month that just ended, 
this would indeed be correct. Suppose however that during that month the first asset experienced 
a +10% return, and the second one a -20% return. When we update the portfolio at time 𝑡, we no 
longer have the two original weights, but 0.5 + 0.5 × 0.1 = 0.55 for the first asset and 0.5 −
0.5 × 0.2 = 0.4 for the second. The weights computed like this do not sum up to 1 because the total 
value of the portfolio changed compared to period 𝑡 − 1. We need to account for this by dividing 
both weights by their sum. So in this example where they sum to 0.55 + 0.4 = 0.95 we have 
0.55 0.95⁄ ≈ 0.58 for the first weight and 0.4 0.95⁄ ≈ 0.42 for the second. Therefore, the actual 
turnover is |0.4 − 0.58| + |0.6 − 0.42| = 0.36. 

We might express this concept by rewriting the formula for the turnover as 

𝑇𝑂𝑡 = ∑|𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−1
+ |

𝑁

𝑖=1

 

where 𝑤𝑖,𝑡−1
+  indicates that we are considering the returns from the previous period after 

accounting for the redistributing effect of the realized returns. We can then compute the average 
turnover as before. 

While the turnover certainly provides some useful information, we can get an even better figure by 
considering the portfolio returns net of transaction costs. Transaction costs can be fixed or 
proportional to the amount of trading. It is generally considered more appropriate to use 
proportional transaction costs. These can be accounted for by multiplying the turnover of each asset 
for the proportional cost. Frazzini (2012) suggests using transaction costs equal to 10 basis points 
(bp). A basis point is equal to 0.01%. Therefore, for example, if we need to buy or sell 5% of the 
positions we have in a certain asset, we face transaction costs equal to 0.05 × 0.001 = 0.00005, 
which means that 0.005% of the money invested in that position is lost in transaction costs. 

Once we have the portfolio returns net of transaction costs, we can use them to compute all the 
other statistics we listed before. 

Finally, it is useful to visualize the value 𝑉 of the portfolio over time, which can be computed as 

𝑉𝑇 = 𝑉0 + ∑(

𝑇

𝑡=1

𝑉𝑡−1𝑅𝑡) 

It is appropriate to compute the value both ignoring and net of transaction costs. The result is then 
plotted in a graph, which provides a visual representation of the effectiveness of our strategy. 

We might want to also compute the evolution of real wealth in addition to the nominal wealth. In 
other words, we might want to account for the inflation. We can do this by dividing the value of the 
portfolio over time by the deflator.  



We can compute the deflator 𝐷 using a formula analogous to the one used to compute the value of 
the portfolio, simply replacing the return with the inflation rate 𝐼: 

𝐷𝑇 = 𝐷0 + ∑(

𝑇

𝑡=1

𝐷𝑡−1𝐼𝑡) 

Of course, the two series need to have the same starting value (e.g., 1 unit of wealth), and the same 
frequency (e.g., monthly). 


