clc clear all close all %{ vlastnosti odhadu OLS pro dvourovnicovy model model y1 = a1 + a2*x1 + e y2 = b1*y1 + b2 + b3*x2 + e -konzistence -nestrannost -asymptoticka nestrannost %} a1 = 1.0; a2 = 1.0; b1 = 1.0; b2 = 1.0; b3 = 1.0; disp('KONZISTENCE'); maxnobs = 1000; aOLS = zeros(2,maxnobs-10); bOLS = zeros(3,maxnobs-10); disp('probihaji regrese pro konzistenci!'); tic; for i=10:maxnobs x1 = randn(i,1); x2 = randn(i,1); iota = ones(i,1); y1 = zeros(i,1); y2 = zeros(i,1); evec = randn(i,1); for j = 1:i y1(j,1) = iota(j,1)*a1 + x1(j,1)*a2 + evec(j,1); y2(j,1) = iota(j,1)*b1 + y1(j,1)*b2 + x2(j,1)*b3 +evec(j,1); end; resulta = ols(y1,[iota x1]); resultb = tsls(y2,[y1],[iota x2],[iota x1 x2]); aOLS(:,i-9) = resulta.beta; bOLS(:,i-9) = resultb.beta; end; fprintf('\n Celkovy cas vypoctu pro konzistenci %6.2f sekund \n \n',toc); figure subplot(2,1,1) plot(aOLS(1,:)); title('a1'); subplot(2,1,2) plot(aOLS(2,:)); title('a2'); figure subplot(3,1,1) plot(bOLS(1,:)); title('b1'); subplot(3,1,2) plot(bOLS(2,:)); title('b2'); subplot(3,1,3) plot(bOLS(3,:)); title('b3'); disp('NESTRANNOST'); nobs = 50; niter = 1000; disp('probihaji regrese pro nestrannost!'); tic; aOLS = zeros(2,niter); bOLS = zeros(3,niter); x1 = randn(nobs,1); x2 = randn(nobs,1); iota = ones(nobs,1); for iter = 1:niter; y1 = zeros(nobs,1); y2 = zeros(nobs,1); evec = randn(nobs,1); for j = 1:nobs y1(j,1) = iota(j,1)*a1 + x1(j,1)*a2 + evec(j,1); y2(j,1) = iota(j,1)*b1 + y1(j,1)*b2 + x2(j,1)*b3 +evec(j,1); end; resulta = ols(y1,[iota x1]); resultb = tsls(y2,[y1],[iota x2],[iota x1 x2]); aOLS(:,iter) = resulta.beta; bOLS(:,iter) = resultb.beta; end; aOLSm = mean(aOLS,2); bOLSm = mean(bOLS,2); fprintf('\n Celkovy cas vypoctu pro nestrannost %6.2f sekund \n \n',toc); fprintf(['\n Delka vzorku je ',num2str(nobs),'\n']); fprintf(['OLS vysledky prvni rovnice pres ', num2str(niter),' iteraci \n']); in.rnames = strvcat('Koeficient','a1','a2'); in.cnames = strvcat('mean'); mprint([aOLSm],in); fprintf(['2SLS vysledky druhe rovnice pres ', num2str(niter),' iteraci \n']); in.rnames = strvcat('Koeficient','b1','b2','b3'); mprint([bOLSm],in); disp('ASYMPTOTICKA NESTRANNOST') niter = 50; maxnobs = 200; aOLS = zeros(2,niter); bOLS = zeros(3,niter); aOLSm=zeros(2,maxnobs-10); bOLSm=zeros(3,maxnobs-10); disp('probihaji regrese pro asymptotickou nestrannost!'); tic; for i=10:maxnobs x1 = randn(i,1); x2 = randn(i,1); iota = ones(i,1); for iter = 1:niter; y1 = zeros(i,1); y2 = zeros(i,1); evec = randn(i,1); for j = 1:i y1(j,1) = iota(j,1)*a1 + x1(j,1)*a2 + evec(j,1); y2(j,1) = iota(j,1)*b1 + y1(j,1)*b2 + x2(j,1)*b3 +evec(j,1); end; resulta = ols(y1,[iota x1]); resultb = tsls(y2,[y1],[iota x2],[iota x1 x2]); aOLS(:,iter) = resulta.beta; bOLS(:,iter) = resultb.beta; end; aOLSm(:,i-9) = mean(aOLS,2); bOLSm(:,i-9) = mean(bOLS,2); end; fprintf('\n Celkovy cas vypoctu pro asymptotickou nestrannost %6.2f sekund \n \n',toc); figure subplot(2,1,1) plot(aOLSm(1,:)); title('mean a1'); subplot(2,1,2) plot(aOLSm(2,:)); title('mean a2'); figure subplot(3,1,1) plot(bOLSm(1,:)); title('mean b1'); subplot(3,1,2) plot(bOLSm(2,:)); title('mean b2'); subplot(3,1,3) plot(bOLSm(3,:)); title('mean b3'); %}