Zkouska zacina priblizne ve 13:15, konci v 17h. -----------------------------Priklad 9: Agregovane ceny maji v cas t (mereno od zacatku roku, jednotkou casu je den) hodnotu t -> 2*(103/100)^t+3*sin(t)+5*sin(2*t)+3*sin(3*t). Jaka je rocni mira inflace za poslednich 100 dni roku? (mysleno za obdobi, ktere konci pulnoci posledniho dne roku, rok je neprestupny) (Pozn.: Rok začíná půlnocí na začátku dne 1. 1. a to je čas t=0 a končí půlnocí na konci dne 31. 12. Rocni mira inflace je mira inflace za 365 dni.) ------------------------------ Rekapitulace dat: Priklad 9.: t -> 2*(103/100)^t+3*sin(t)+5*sin(2*t)+3*sin(3*t) -----------------------------Priklad 11: Mate libovolne delitelny kapital velikosti 1 a pro kazde N mate tuto investicni moznost: pro N=1 ulozite polovinu na zacatku a polovinu na konci roku pro N=2 ulozite tretinu na zacatku, tretinu uprostred a tretinu na konci roku pro N=3 ulozite ctvrtinu na zacatku, po prvni a druhe tretine roku a na konci roku . . . Obecne pro kazde prirozene N ulozite N+1 ulozek v ekvidistantnich okamzicich, tak ze prvni bude na zacatku a posledni na konci roku a vsechny budou mit stejnou velikost: castka/(N+1) jaka je limita budouci hodnoty kapitalu pro N jdouci k nekonecnu na konci roku pri urokove mire xi = 5971/25000, pokud je pocatecni velikost kapitalu 1? -----------------------------Priklad 12: Produkty jako je preklenovaci uver stavebniho sporeni, nebo moznost splatit hypoteku zivotnim pojistenim maji spolecny princip. Cilem tohoto ukolu je kvantifikovat jejich vyhodnost. Odhlizime pritom od danovych ulev. Chcete si pujcit 133000.000000 korun na dobu 256 mesicu (behem niz dluh splatite). Urokova mira je 51/1000 p. a. Po celou dobu budete splacet jen uroky (mesicne) a soucasne budete sporit mesicnimi ulozkami s urokovou mirou 3/100 p. a. tak, abyste za dobu 256 mesicu nasporili castku 133000.000000 korun kterou pak splatite zbytek dluhu. Najdete urokovou miru, pri ktere by pro vas bylo splaceni dluhu o velikosti 133000.000000 korun stejnymi platbami ve stejnych okamzicich jako v pripde predchozim, tj. anuitnimi splatkami po dobu 256 mesicu, stejne vyhodne jako je shora uvedena moznost umoreni. Priklad 12: UCO: 85995 Rekapitulace dat: [xi[1] = 3/100, xi[2] = 51/1000, T = 256, Z = 133000] -----------------------------Priklad 20: Uvažujme dvě měny, CZK a USD, jejich kurzy v čase 0 a (skutečný) a v čase 1 (předpokládaný) jsou 25.450000 a 30.580000 (je to cena dolaru v korunách v čase 0 resp. 1). V case 0 je úroková sazba z depozit denominovanych v CZK 0.043000 a z depozit denominovanych v USD 0.041500. Investice vytvori tlak na urokovou miru depozit denominovnych v CZK a ta se postupne zmeni na hodnotu rovnovazneho stavu, ktery zajisti investorum investujicim v case 0 stejny vynos v case 1 v depocitech denominovanych CZK jako v USD. Jaka urokova mira to je? -----------------------------Priklad 24: S pravdě podobností 0.130000 bude ekonomika ve stavu recese a návratnost investic bude 0.019000. S pravdě podobností 0.650000 bude ekonomika v normálním stavu a návratnost investic bude 0.140000. S pravdě podobností 0.220000 bude ekonomika ve stavu prudkeho rozvoje a návratnost investic bude 0.330000. Jake je riziko investice (tj. variance, alias rozptyl, tj. druha odmocnina centrálního momentu druheho radu, sigma = (E(rho-E(rho))^2)^(1/2)=(E(rho^2)-E(rho)^2)^(1/2))?E je stredni hodnota, rho nahodna velicina, sigma rozptyl ------------------------------ Rekapitulace dat: Priklad 23.: nu = (.130000000000, .650000000000, .220000000000) xi = (.190000000000e-1, .140000000000, .330000000000)Priklady vypocitejte, a vysledky zapiste pod sebe na jednotlive radky takto: Na vsech budou pouze cisla: 1. radek UCO 2. radek cislo prvniho tj. 20 3. radek vysledek prvniho prikladu . . . 7. radek vysledek 3. prikladu Jako oddelovace desetin pouzivejte tecku, ne carku. Na znamku e je treba ze zadanych spocitt tripriklady. )