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1. Preliminaries

1.1. Some general notation and abbreviations.
s := v or v =: s . . . denoting expression v by symbol s.
iff stands for if and only if .

Sets and mappings:
• N,Z,R,C . . . natural numbers, integers, real and com-

plex numbers, respectively.
• ZN := {0, 1, . . . , N − 1} . . . residuals modulo N ∈ N.
• R+ . . . the set of all non-negative real numbers.
• exp X . . . class of all subsets of the set X.
• card M . . . cardinality of a set M .
• (·)+ : R→ R+ . . . mapping defined as (x)+ = max(0, x).
• (a, b), [a, b], (a, b], [a, b) . . . intervals on real line.

• I(a, b) = {x | min(a, b) < x < max(a, b)}
I[a, b] = {x | min(a, b) ≤ x ≤ max(a, b)}.

• f(A) := {y ∈ Y | y = f(x), x ∈ A ⊆ X} . . . range
(image) of set A under mapping f : X → Y .

• f−1(B) := {x ∈ X | f(x) ∈ B} ⊆ X . . . inverse image
of set B ⊆ Y under mapping f : X → Y .

• IA . . . indicator function of set A ⊆ X:

IA(x) =

(
1 for x ∈ A

0 otherwise
.

• An ↑ . . . increasing or non-decreasing sequence of num-
bers or sets.

• An ↓ . . . decreasing or non-increasing sequence of num-
bers or sets.

• Pn
i=1 Ai :=

Sn
i=1 Ai . . . union of a family of sets which

are pairwise disjoint.
• Ac := X−A . . . complement of set A ⊆ X in X where

X is a priori known from the context.
• A := lim infn→∞An :=

S∞
n=1

T∞
j=n Aj . . . inferior limit

of a sequence of sets.
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• A := lim supn→∞An :=
T∞

n=1

S∞
j=n Aj . . . superior

limit of a sequence of sets.
• A = limn→∞An iff A = A, clearly

An ↑ A implies limn→∞An =
S∞

n=1 An and
An ↓ A implies limn→∞An =

T∞
n=1 An.

Vectors and matrices:
• x := [x1, . . . , xn]T . . . vector of numbers (by default

column vector if not stated otherwise).
• x + h := [x1 + h, . . . , xn + h]T , h ∈ C.

• xt := [xt1 , . . . , xtk ]T ∈ Ck where t = [t1, . . . , tk]T ∈
Nk, ti ∈ {1, . . . , n} for i = 1, . . . , k.

• x(i) := [x1, . . . , xi−1, xi+1, . . . , xn]T for any 1 ≤ i ≤ n.
• f(x) := f(x1, . . . , xn), dx := dx1 . . . dxn.
• 0,0n×1 . . . vector of n zero entries.
• A, Am×n := [aij ] = [A(i, j)] . . .matrix of size m× n.
• R(A) := {y |y = Ax} . . . range space of matrix oper-

ator A.
• N (A) := {x |Ax = 0} . . . null space (kernel) of matrix

operator A.
• AT := [aji] . . .matrix transpose.
• A∗ := [āji] . . .matrix adjoint.
• I, In := In×n = [δij ] . . . identity matrix of order n.
• det A . . . determinant of a square matrix A.
• 0, 0m×n . . . zero matrix of size m× n.

• diag(x) :=

26664
x1 0 . . . 0
0 x2 . . . 0

...
0 0 . . . xn

37775 . . . diagonal ma-

trix.
• A(i, :) := [ai1, . . . , ain] . . . i-th row of matrix A using

MATLAB style.
• A(:, j) := [a1j , . . . , amj ]

T . . . j-th column of matrix A
using MATLAB style.
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• A := [r1; . . . ; rm] = [s1, . . . , sn] . . . forming matrix A
row-by-row or columnwise using MATLAB style.

• A > 0 (or A ≥ 0) . . . positively (semi)definite (non-
negatively definite) matrix.

• 〈x, y〉 :=
Pn

i=1 xiȳi = y∗x . . . scalar (inner) product
of vectors x and y.

• ‖x‖ :=
pPn

i=1|xi|2 =
p
〈x, x〉 . . . Euclidean norm of

vector x.

1.2. Measurable spaces and measurable mappings.

Measurable spaces:

Definition 1.1. The pair (Ω,A), Ω 6= ∅ is called measurable
space if A ⊆ expΩ is a σ-field (σ-algebra) of so-called measur-
able sets on Ω satisfying:

(M1) A 6= ∅
(M2) A ∈ A ⇒ Ac ∈ A
(M3) Ai ∈ A ∀ i ∈ N⇒ S∞

i=1 Ai ∈ A
(M4) Ai ∈ A ∀ i ∈ N⇒ T∞

i=1 Ai ∈ A
(M5) ∅ ∈ A
(M6) Ω ∈ A
(M7) A1, A2 ∈ A ⇒ A1 ∪A2 ∈ A
(M8) A1, A2 ∈ A ⇒ A1 ∩A2 ∈ A
(M9) A1, A2 ∈ A ⇒ A1 −A2 ∈ A

(M10) Ai ∈ A ∀ i ∈ N⇒ lim supn→∞An ∈ A
(M11) Ai ∈ A ∀ i ∈ N⇒ lim infn→∞An ∈ A
(M12) Ai ∈ A ∀ i ∈ N⇒ limn→∞An ∈ A if such limit exists.

Properties (M1)-(M3) are axioms (typeset boldfaced), the remain-
ing ones are their easy consequences in that order. Observe that
this choice is not unique as there can be found other subsets of
properties which may play the role of axioms.

Theorem 1.2. Let Ai ⊆ expΩ be a family of σ-fields i ∈ I 6= ∅,
then

T
i∈I Ai is a σ-field as well.

4



Corollary 1.3. Let C ⊆ expΩ be arbitrary class of subsets of Ω
then σ(C) :=

T{C | C ⊆ C ⊆ expΩ, C a σ-field } is the unique
minimal σ-field on Ω containing C. We say also that σ(C) is a
σ-field on Ω generated by C.

Definition 1.4. Let (Ω,A) be a measurable space. A mapping
µ : A → [0,∞] is called measure on (Ω,A) if

µ(∅) = 0 and µ
� ∞X

i=1

Ai

�
=

∞X
i=1

µ(Ai)

holds for any sequence Ai ∈ A, i ∈ N, of pairwise disjoint measur-
able sets. In such a case we write (Ω,A, µ) instead of (Ω,A).

Definition 1.5. If P is a measure on (Ω,A) with additional prop-
erty P (Ω) = 1 then the triple (Ω,A, P ) is called probability space,
P probability measure on it and Ω sample space of sample
points ω ∈ Ω (outcomes of random experiments). Measur-
able sets A ∈ A are called events. To some events are given specific
names:
∅ . . . impossible event,
{ω} . . . simple event,
A ∈ A, card A > 1 . . . composite event and
Ω . . . sure (certain) event.

Theorem 1.6 (Additive Theorem). For any finite number of events
Aj, we have

P
� n[

j=1

Aj

�
=

nX
k=1

(−1)k+1
X

1≤j1<···<jk≤n

P (Aj1 ∩ · · · ∩Ajk )

.

Theorem 1.7 (Summary of measure properties). Let µ and P be
measures introduced in 1.4 and 1.5. They satisfy properties summa-
rized in the following table where (•) denotes axiom, (◦) consequence
of axioms and (−) property not valid in general.
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No. Description of the property µ µ = P

(P1) µ(A) ≥ 0 for any A ∈ A • •
(P2) µ(Ω) = 1 − •
(P3) µ

�P∞
i=1 Ai

�
=
P∞

i=1 µ(Ai) • •
(P4) µ(A1 + A2) = µ(A1) + µ(A2) ◦ ◦
(P5) A1 ⊆ A2 ⇒ µ(A2) = µ(A1) + µ(A2 −A1) ◦ ◦
(P6) A1 ⊆ A2 ⇒ µ(A1) ≤ µ(A2) ◦ ◦
(P7) µ(A) ≤ 1 − ◦
(P8) A1 ⊆ A2 ⇒ µ(A2 −A1) = µ(A2)− µ(A1) − ◦
(P9) µ(Ac) = 1− µ(A) − ◦
(P10) µ(∅) = 0 • ◦
(P11) µ(A1 ∪A2) ≤ µ(A1) + µ(A2) ◦ ◦
(P12) µ

�∪∞i=1Ai

� ≤P∞
i=1 µ(Ai) ◦ ◦

(P13) An ↑ A or An ↓ A, µ(A) < ∞⇒
µ(A) = limn→∞ µ(An) ◦ ◦

(P14) Additive theorem 1.6 − ◦
Proof. The properties are listed in the table in the order allowing
us to prove each property as a logical consequence of one or more
preceding ones. The derivation of (P13) and (P14) is a little labori-
ous. In case of µ = P the details can be found in [Rou97, p.17–20].
Let us also note that (P13) might be stated in a more general form,
namely assuming A = limn→∞An provided that such limit exists
and µ(A) < ∞. The latter assumption may be omitted in case of
µ = P in view of (P7). ¤

Lemma 1.8. Let (Ω,A) be a measurable space and µ a measure on
it. Then for any A ∈ A, µ(A) > 0, is AA := {C |C = A∩B, B ∈ A}
a σ-field on A yielding measurable space (A,AA) on which induced

measure µA may be introduced by µA(C) := µ(C)
µ(A)

, C ∈ AA. If

µ = P is a probability measure then PA := µA is a probability
measure as well.

Proof. It is straightforward to verify (M1)–(M3) for AA and (P1),
(P3), (P10) for µA or (P1)–(P3) for PA. ¤
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Definition 1.9. If (Ω,A, P ) is a probability space and A ∈ A,
P (A) > 0, arbitrary event then (A,AA, PA) is in view of 1.8 a prob-
ability space as well. We call it conditional probability space

given A and P (B|A) := PA(A∩B) := P (A∩B)
P (A)

conditional prob-

ability of B given A.

Measurable mappings:

Definition 1.10. Let (Ω1,A) and (Ω2,B) be two measurable spaces.
The mapping X : Ω1 → Ω2 is called measurable if X−1(B) ∈ A
for all B ∈ B. We write X : (Ω1,A) → (Ω2,B).

Lemma 1.11. If B is a σ-field on Ω2 and X : Ω1 → Ω2 arbitrary
mapping then X−1(B) := {A |A = X−1(B) for some B ∈ B} is a
σ-field on Ω1.

Proof. Inverse image X−1 preserves (may be interchanged with) any
of
S

,
P

,
T

and c. Along with evident identities X−1(Ω2) = Ω1

and X−1(∅) = ∅ we get immediately the properties (M1)-(M3) for
X−1(B). ¤

A similar argumentation gives a converse of the above lemma:

Lemma 1.12. If A is a σ-field on Ω1 and X : Ω1 → Ω2 arbitrary
mapping then C∗ := {B ⊆ Ω2 |X−1(B) ∈ A} is a σ-field on Ω2.

Corollary 1.13. Let B = σ(C) for some subclass C ⊆ expΩ2.
Then mapping X : (Ω1,A) → (Ω2,B) is measurable iff X−1(B) ∈ A
for each B ∈ C.

Proof. Let X−1(B) ∈ A for each B ∈ C. Clearly C ⊆ C∗ in
view of 1.12. As C∗ is σ-field on Ω2 and B = σ(C) is a minimal
one containing C, we have B ⊆ C∗ and consequently X−1(B) ⊆
X−1(C∗) ⊆ A which proves inverse implication. The converse is
immediate by the definition of measurability. ¤

Theorem 1.14. Let X : (Ω1,A) → (Ω2,B) be a measurable map-
ping, and µ a measure on (Ω1,A). Then µX(B) := µ(X−1(B)),
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B ∈ B, defines a measure on (Ω2,B) which is called measure in-
duced by X. If µ = P is a probability measure then PX := µX is a
probability measure as well.

Proof. We have to verify (P1), (P3) and (P10) for µX , and in ad-
dition (P2) for PX . (P1), (P2) and (P10) follow immediately using
the same properties for µ and the identities X−1(Ω2) = Ω1 and
X−1(∅) = ∅. µX(

P∞
i=1 Ai)= µ(X−1(

P∞
i=1 Ai)) = µ(

P∞
i=1 X−1(Ai))

(P3)
=
P∞

i=1 µ(X−1(Ai)) =
P∞

i=1 µX(Ai) gives (P3) for µX . ¤

2. Multivariate Probabilistic Concepts

2.1. Borel σ-fields and Borel functions.

Definition 2.1. Putting In := {J1×· · ·×Jn | Ji ⊆ R subinterval for
i = 1, 2, . . . , n} , n ∈ N, then σ-field Bn := σ(In) generated by all
rectangular regions from In ⊆ Rn is called n-dimensional Borel
σ-field and its elements Borel sets. In particular B := B1 = σ(I)
stands for the Borel σ-field over real line R which is generated
by all subintervals I := I1 ⊆ R.

Remark 2.2. As (−∞, b] =
T∞

m=1(−∞, bm) for any bm ↓ b, bm > b
and conversely (−∞, b) =

S∞
m=1(−∞, bm] for any bm ↑ b, bm <

b. We see that any interval from I can be obtained either from
{(−∞, b]}b∈R or from {(−∞, b)}b∈R applying unions, intersections
and complementing. Indeed, B is closed under such operations in
view of (M2)-(M4) and, consequently, it may be generated by either
of those restricted families of intervals. There are a lot of other
generating subfamilies, for example complements to those above
mentioned, or the family of all open intervals, to mention a few. The
same reasoning may apply to the n-dimensional case: subfamilies
of rectangular regions from In either of type Ri−1× (−∞, b]×Rn−i

or Ri−1 × (−∞, b) × Rn−i are sufficient to generate Bn for all i =
1, 2, . . . , k and b ∈ R. Later on the former family will be of interest
for us. Let us therefore state the following lemma.
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Lemma 2.3. Bn = σ(In,0) where In,0 := {Ri−1×(−∞, b]×Rn−i | i =
1, 2, . . . , n; b ∈ R}. In particular B = σ(I0) where I0 := I1,0 =
{(−∞, b] | b ∈ R}.
Definition 2.4. Every measurable mapping ϕ : (Rk, Bk) → (Rn, Bn),
k, n ∈ N, is called Borel function. We write explicitly ϕ(·) =
[ϕ1(·), ϕ2(·), . . . , ϕn(·)]T where ϕi(·) are the respective component

mappings Rk → R.

2.2. Random variables, random vectors and their distribu-
tion.

Definition 2.5. Every measurable mapping X : (Ω,A, P ) → (Rn, Bn),
n ∈ N, is called n-dimensional random vector on (Ω,A, P ). In
particular with n = 1 we obtain random variable as a measurable
mapping X : (Ω,A, P ) → (R, B) and with n = 2 the bivariate ran-
dom variable as a measurable mapping X : (Ω,A, P ) → (R2, B2).
We write explicitly X = [X1, X2, . . . , Xn]T where Xi are the respec-
tive component mappings Ω → R. For fixed ω ∈ Ω we get sample
vector x = [X1(ω), X2(ω), . . . , Xn(ω)]T as an outcome of a random
experiment.
Probability measure PX induced on (Rn, Bn) by X is called proba-
bility distribution of X and will be denoted later on as L(X).

Remark 2.6. Clearly, Borel function of 2.4 may be considered as
a special case of random variable or random vector provided that
there has been defined a suitable probability measure on (Rk, Bk),
for example probability distribution L(X) of some k-dimensional
random vector X. It is a matter of interpreting Rk as a sample
space, and Borel sets from Bk as events.

Theorem 2.7. A mapping X : Ω → Rn is a random vector on
(Ω,A, P ) iff X−1(J) ∈ A for each J ∈ In,0. In particular (cf.

remark 2.6) a mapping ϕ : Rk → Rn is a Borel function iff ϕ−1(J) ∈
Bk for each J ∈ In,0.
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Proof. The statement is a consequence of Corollary 1.13. ¤

Corollary 2.8. A mapping X : Ω → Rn is a random vector on
(Ω,A, P ) iff each component mapping Xi : Ω → R is a random
variable on (Ω,A, P ). In particular a mapping ϕ : Rk → Rn is a

Borel function iff each component mapping ϕi : Rk → R is a Borel
function.

Proof. For arbitrary J = Ri−1×(−∞, b]×Rn−i ∈ In,0 clearly holds
X−1

i ((−∞, b]) = X−1(J) which confirms the statement in view of
2.7. ¤

Corollary 2.9. A mapping X : Ω → Rn is a random vector on
(Ω,A, P ) iff for each {t1, t2, . . . , tm} ⊆ {1, 2, . . . , n} the marginal
mapping Xt := [Xt1 , Xt2 , . . . , Xtm ]T : Ω → Rm is a random vector
on (Ω,A, P ). In such a case Xt is called marginal random vector
of X. In particular a mapping ϕ : Rk → Rn is a Borel function iff
the marginal mapping ϕt : Rk → Rm is a Borel function for each t.

Corollary 2.10. Every continuous function Rk → Rn is a Borel
function.

Proof. Bn is generated by open rectangular regions in view of re-
mark 2.2. Inverse images of them under continuous mappings are
open sets in Rk. Every open set belongs to Bk because it is a union
of at most countably many open rectangular regions which belong
to Bk as well. ¤

Theorem 2.11. If X is a k-dimensional random vector on (Ω,A, P )
and ϕ : Rk → Rn then ϕ(X) : Ω → Rn is an n-dimensional random
vector on the same probability space.

Proof. Let J ∈ In,0 be arbitrary. Then (ϕX)−1(J) = X−1(ϕ−1(J)) ∈
A when applying theorem 2.7 in succession to Borel mapping ϕ and
random vector X. ¤
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2.3. Conditional Probability and Stochastic Independence.

Consider fixed probability space (Ω,A, P ) in this subsection and all
events belonging to the σ-field A by default.
By definition 1.9 conditional probability of event B given event A,
P (A) > 0, is defined as follows:

P (B |A) =
P (A ∩B)

P (A)
. (2.1)

Example 2.12.

(1) Casting a die with odd-numbered sides painted white and
even-numbered sides painted black [Rou97, p.21].

(2) Gender of children in two-children families [Rou97, p.22].

Theorem 2.13 (Multiplicative theorem). Let Aj , j = 1, 2, . . . , n,
n > 1, be events such that P

�Tn
j=1 Aj

�
> 0. Then

P
� n\

j=1

Aj

�
= P (An |A1 ∩A2 ∩ . . . An−1)×

× P (An−1 |A1 ∩A2 ∩ . . . An−2) . . . P (A2 |A1)P (A1).

Example 2.14. Drawing balls painted to various colours from an
urn without replacement [Rou97, p.23].

Theorem 2.15 (Total probability theorem). Let Ω =
P

j Aj be a

partition of Ω with P (Aj) > 0 for all j. Then for any event B we
have P (B) =

P
j P (B |Aj)P (Aj).

Corollary 2.16 (Bayes formula). Let Ω =
P

j Aj be a partition of

Ω with P (Aj) > 0 for all j. Then for any event B, P (B) > 0, we
have

P (Aj |B) =
P (B |Aj)P (Aj)P
i P (B |Ai)P (Ai)

.
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Example 2.17. An example illustrating that with P (A) > 0 all sit-
uations out of P (B |A) > P (B), P (B |A) < P (B) and P (B |A) =
P (B) may occur [Rou97, p.27].
The last case P (B |A) = P (B) is a good basis for saying that event
B is stochastically independent of the event A because additional
knowledge of the event A provides no additional information when
calculating the probability of the event B.
Another example illustrating that case [Rou97, p.28].

Remark 2.18. If both P (A) > 0 and P (B) > 0 holds, and B is inde-
pendent of A then also the symmetric statement A is independent
of B is valid. Indeed, applying (2.1) symmetrically twice we obtain

P (A |B) =
P (A ∩B)

P (B)
=

P (B |A)P (A)

P (B)
=

P (B)P (A)

P (B)
= P (A).

Thus independence is a symmetric property quite in accordance
with our expectation.

Due to (2.1) the assumption of independence leads to the equation

P (B) = P (A∩B)
P (A)

and hence to the following definition of stochastic

independence which is valid also with P (A) = 0 and/or P (B) = 0.
Indeed, it is because A∩B ⊆ A, B gives 0 ≤ P (A∩B) ≤ P (A), P (B)
in view of (P1) and (P6). Consequently, P (A) = 0 or P (B) = 0
implies P (A ∩B) = 0 confirming the statement.

Definition 2.19. The events A and B are said to be stochasti-
cally (or statistically or in the probability sense) indepen-
dent if P (A ∩B) = P (A)P (B).

Definition 2.20. The events Aj , j = 1, 2, . . . , n, n > 1, are said
to be (mutually or completely) independent if the following
relationships

P (Aj1 ∩ · · · ∩Ajk ) = P (Aj1) . . . P (Ajk )

hold for any k = 2, . . . , n and any integers 1 ≤ j1 < · · · < jk ≤ n.
These events are said to be pairwise independent if the above
identities hold only with k = 2.
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Theorem 2.21 (Basic statements on independence). Given events
Aj, j = 1, 2, . . . , n, n > 1, then the following statements are true:

(1) If A1, . . . , An are independent, so are the events A′1, . . . , A
′
n

where A′j is either Aj or Ac
j.

(2) Any subset of independent events A1, . . . , An is independent
as well.

(3) If A1, . . . , An are independent, 1 ≤ i1 < · · · < im ≤ n and
1 ≤ j1 < · · · < jk ≤ n two nonempty disjoint index subsets,
then the intersections Ai1 ∩· · ·∩Aim and Aj1 ∩· · ·∩Ajk are
independent as well, i.e. P (Ai1∩· · ·∩Aim∩Aj1∩· · ·∩Ajk ) =
P (Ai1 ∩ · · · ∩Aim)P (Aj1 ∩ · · · ∩Ajk ).

(4) If Ai ∩ Aj = ∅ for some i 6= j and P (Ak) > 0 for all
k = 1, . . . , n, then A1, . . . , An cannot be independent.

(5) Events A and Ω are independent for each A ∈ A.
(6) Events A and ∅ are independent for each A ∈ A.
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3. Multivariate Density and Distribution Functions

Notation .
Given a random vector X = [X1, . . . , Xn]T on the probability space
(Ω,A, P ), we introduce a simplified notation for probability PX in-
duced by X on B ∈ Bn and Bi ∈ B:
• P (X ∈ B) := P ({ω ∈ Ω |X(ω) ∈ B}) = P (X−1(B)) = PX(B).
• P (X1 ∈ B1, . . . , Xn ∈ Bn) :=
P ({ω ∈ Ω |X1(ω) ∈ B1& . . . &Xn(ω) ∈ Bn) = P (∩n

i=1X
−1
i (Bi)) =

PX(∩n
i=1(Ri−1 ×Bi × Rn−i)).

If Bi is an interval, for example Bi = Ji = (ai, bi] we prefer writing
ai < Xi ≤ Bi rather than Xi ∈ Ji or simply Xi ≤ bi if ai = −∞ or
ai < Xi if bi = ∞.
• P (a < X ≤ b) := P (a1 < X1 ≤ b1, . . . , an < Xn ≤ bn) and
similarly for other relations.

3.1. The Distribution Function of a Random Vector and Its
Properties.

Definition 3.1. Let X = [X1, . . . , Xn]T be a random vector. The
function FX(x) := P (X ≤ x) (or more explicitly FX(x1, . . . , xn) :=
P (X1 ≤ x1, . . . , Xn ≤ xn)) is called (cumulative) distribution
function of X (c.d.f.), or for n > 1 sometimes also joint distribu-
tion function of X to emphasize dimension n > 1. We obtain as
special cases the distribution function FX(x) := P (X ≤ x) of a ran-
dom variable X with n = 1, and FX(x1, x2) := P (X1 ≤ x1, X2 ≤ x2)
of the bivariate random variable X = [X1, X2]

T with n = 2. The
subscript may be omitted if there is no danger of misunderstanding.

Theorem 3.2. Let X = [X1, . . . , Xn]T be a random vector and F
its distribution function. For any a, b ∈ Rn, a ≤ b, we define for
each i = 1, . . . , n an operator ∆i

a,b by the formula

∆i
a,bF (x1, . . . , xn) := F (x1, . . . , xi−1, bi, xi+1, . . . , xn)−

F (x1, . . . , xi−1, ai, xi+1, . . . , xn).
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Then

P (a < X ≤ b) = ∆n
a,b . . . ∆1

a,bF (x1, . . . , xn)

where the operators ∆i
a,b may be applied in any than natural order

as well.

Corollary 3.3.
(1) If X is a random variable then P (a < X ≤ b) = F (b) − F (a)
holds for all a, b ∈ R, a ≤ b.
(2) If X = [X1, X2]

T is a bivariate random variable then

P (a1 < X1 ≤ b1, a2 < X2 ≤ b2) = F (a1, a2) + F (b1, b2)

− F (a1, b2)− F (b1, a2)

holds for all a1, a2, b1, b2 ∈ R, a1 ≤ b1 and a2 ≤ b2.

Theorem 3.4. Distribution function of each random vector X =
[X1, . . . , Xn]T has the following properties:
(1) ∆n

a,b . . . ∆1
a,bF (x1, . . . , xn) ≥ 0 for all a, b ∈ Rn, a ≤ b;

(2) F is continuous from the right in the sense that
limy↓x F (y) = F (x) for all x ∈ Rn

(y ↓ x stands for yi ↓ xi for all i = 1, . . . , n);
(3) limx1→∞,...,xn→∞ F (x) = 1;
(4) limxi→−∞ F (x) = 0 for any i ∈ {1, . . . , n}.
Corollary 3.5. Distribution function of each random variable X
has the following properties:
(1) F is a non-decreasing function;
(2) F is continuous from the right:
limy↓x F (y) = F (x) for all x ∈ R;
(3) limx→∞ F (x) = 1;
(4) limx→−∞ F (x) = 0.

Theorem 3.6. The probability distribution of each random vector
(variable) is fully determined by its distribution function.
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Remark 3.7.
(1) Every function with properties (1)–(4) is a distribution function
of a random vector (variable) defined on a suitable probability space
(Kolmogorov-type theorems).
(2) Frequently distribution functions are introduced alternatively
using sharp inequality
FX(x1, . . . , xn) := P (X < x) = P (X1 < x1, . . . , Xn < xn).
When using this definition, all properties remain valid except (2)
where continuity from the right is to be replaced by continuity from
the left.
(3) Simplified notation for limits similar to those of 3.4(3)(4):
F (∞, . . . ,∞) := limx1→∞,...,xn→∞ F (x1, . . . , xn) or
F (x1, . . . , xi−1,±∞, xi+1, . . . , xn) := limxi→±∞ F (x1, . . . , xn). Ana-
logical shortcuts may be used if xi → ±∞ for any subset of sub-
scripts i ∈ I ⊆ {1, . . . , n}.
(4) We denote the respective limits from the left and right at x by

F (x−) := limy↑x F (y) if yi < xi for some i, and

F (x+) := limy↓x F (y) if yi > xi for some i.
The property (2) of 3.4 may be then rewritten as F (x+) = F (x).

Theorem 3.8. Let X = [X1, . . . , Xn]T be n-dimensional random
vector. Then P (X = x) = FX(x)− FX(x

−) holds for each x ∈ Rn.

Proof. xn ↑ x, xn < x ⇒ limxn↑x(xn, x]= ∩∞n=1(xn, x] = {x} ⇒
PX({x}) = PX(limxn↑x(xn, x])

(P13)
= limxn↑x PX((xn, x]) =

limxn↑x PX((−∞, x]− (−∞, xn])
(P8)
=

limxn↑x(PX((−∞, x])− PX((−∞, xn])) =
PX((−∞, x])− limxn↑x PX((−∞, xn]) = FX(x)− FX(x

−). ¤

Corollary 3.9. If FX is continuous at x then P (X = x) = 0.
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3.2. The Probability Density Function of a Random Vector
and Its Properties.

Definition 3.10.
The random vector X = [X1, . . . , Xn]T is said to be:
(1) (absolutely) continuous if FX(x) is an absolutely continuous
function on Rn; i.e. there exists a function fX(x) := fX(x1, . . . , xn):
FX(y)=

R y

−∞ fX(x) dx:=
R yn

−∞ . . .
R y1
−∞ fX(x1, . . . , xn) dx1 . . . dxn;

(2) discrete if there exist at most countably many isolated points
ξ1, ξ2, · · · ∈ Rn such that fX(x) := P (X = x) > 0 for each x = ξi,
P (X = x) = 0 elsewhere, and FX(x) =

P
ξi≤x fX(ξi) =

P
x′≤x fX(x

′);
(3) of mixed type if neither (1) nor (2) holds for FX.

Definition 3.11. Let X = [X1, . . . , Xn]T be a random vector. The
function fX(x) of definition 3.10 is called probability density
function of X (p.d.f.), or for n > 1 sometimes also joint prob-
ability density function of X to emphasize dimension n > 1.
We obtain as special cases the p.d.f. fX(x) of a random variable
X with n = 1, and fX(x1, x2) of the bivariate random variable
X = [X1, X2]

T with n = 2. The subscript may be omitted if there
is no danger of misunderstanding.

Theorem 3.12 (Properties of p.d.f.).
Probability density f(x) of each continuous or discrete n-dimensional
random vector X has the following properties:
(1) f(x) ≥ 0 for all x ∈ Rn;
• X continuous:
(2a)

R∞
−∞ . . .

R∞
−∞ f(x) dx = 1;

(3a) P (X = x) = 0 for each x ∈ Rn;

(4a) P (a < X ≤ b)=
R bn

an
. . .
R b1

a1
f(x) dx;

(5a) For each B ∈ Bn: P (X ∈ B) =
R

B
f(x) dx;

(6a) The distribution function F (x) has the n-th order partial deriva-

tives at continuity points of f where ∂n

∂x1...∂xn
F (x1, . . . , xn) = f(x).

• X discrete with positive probabilities concentrated at ξi:
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(2b)
P

ξi
f(ξi) =

P
x′ f(x′) = 1;

(3b) fX(x) := P (X = x) = FX(x)− FX(x
−) is nonzero iff x = ξi;

(4b) P (a < X ≤ b) =
P

a<ξi≤b f(ξi) =
P

a<x′≤b f(x′);
(5b) For each B ∈ Bn: P (X ∈ B) =

P
ξi∈B f(ξi) =

P
x′∈B f(x′);

(6b) The distribution function F (x) is a non-decreasing rectangular
staircase function. The position of each ‘stair’ is given by its ‘angle’
at ξi and ‘height’ f(ξi).
Remark 3.13.
(1) The probability of a continuous random vector is ‘continuously’
spread over Rn with eventually varying intensity (see (5a)). In
contrast with that, the probability of a discrete random vector is
concentrated at finite or countable set of isolated points (see (3b)
and (5b)).
The mixed type lies somewhere in-between: c.d.f. is usually a sum
of absolutely continuous component and discrete component. With
n > 1 there may be semi-discrete components with probability con-
centrated on suitable subsets of dimension less than n: on lines and
curves with n = 2 or even on surfaces with n = 3, or on more com-
plex formations with n > 3.
(2) Exceptionally c.d.f. may contain singular component which is
continuous but unfortunately not absolutely, not allowing us to con-
struct p.d.f. because n-th order derivative of F does not exist on a
countable subset dense in Rn, typically on Qn (Q. . . set of rational
numbers).
(3) Similarly to remark 3.7(1) every function with properties (1)(2a)
or (1)(2b) is p.d.f of a suitable random vector (variable).

Example 3.14.
(1) Continuous type: Ball falling down on a flat interval or rectan-
gle with uniform probability distribution.
(2) Discrete type: Similar as (1) but interval or rectangle fully cov-
ered with triangular or pyramidal hollows.
(3) Mixed type: Similar as (2) but with only partial covering with
triangular or pyramidal hollows or grooves.
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3.3. Marginal and Conditional Distributions.

Definition 3.15. Let X = [X1, . . . , Xn]T be a random vector with
c.d.f. F , and Xt := [Xt1 , Xt2 , . . . , Xtm ]T its marginal vector as of
corollary 2.9, m < n. Its distribution function Ft := FXt is called
(joint) marginal distribution function of F at t. In particular
for all t ∈ {1, . . . , n} we obtain the univariate marginal distributions
Ft := FXt as distributions of the component random variables Xt.

Theorem 3.16.
For the marginal distribution function of definition 3.15 it holds
Ft(xt) := Ft(xt1 , . . . , xtm) =

F (∞, . . . ,∞, xt1 ,∞, . . . ,∞, xtm ,∞, . . . ,∞).
In particular for t ∈ {1, . . . , n} we have
Ft(xt) = F (∞, . . . ,∞, xt,∞, . . . ,∞).

Proof. Ft(xt1 , . . . , xtm)= P ({ω |Xi(ω) ≤ xi for i ∈ {t1, . . . , tm}})=
P ({ω |Xi(ω) ≤ xi for i ∈ {t1, . . . , tm} and Xi(ω) ∈ R otherwise })=
F (∞, . . . ,∞, xt1 ,∞, . . . ,∞, xtm ,∞, . . . ,∞). ¤

Corollary 3.17. If there exists p.d.f. f of X then p.d.f. ft := fXt

exists for each marginal random vector Xt, and is called (joint)
marginal p.d.f. of f at t. Putting s := [s1, . . . , sn−m] where
{s1, . . . , sn−m} := {1, . . . , n} − {t1, . . . , tm}, it holds:
• X continuous:
ft(xt) := ft(xt1 , . . . , xtm) =R∞
−∞ . . .

R∞
−∞ f(x1, . . . , xn) dxs1 . . . dxsn−m =:

R∞
−∞ . . .

R∞
−∞ f(x) dxs.

In particular for t ∈ {1, . . . , n} we have
ft(xt) =

R∞
−∞ . . .

R∞
−∞ f(x1, . . . , xn) dxx1 . . . dxt−1 dxt+1 . . . dxn =:R∞

−∞ . . .
R∞
−∞ f(x) dx(t).

• X discrete:
ft(xt) := ft(xt1 , . . . , xtm) =P

xs1
· · ·Pxsn−m

f(x1, . . . , xn) =:
P

xs
f(x).

In particular for t ∈ {1, . . . , n} we have
ft(xt) =

P
x1
· · ·Pxt−1

P
xt+1

· · ·Pxn
f(x1, . . . , xn) =:

P
x(t) f(x).
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Proof. Using theorem 3.16 we get:
1. X continuous: When interchanging the integration order in defi-
nition 3.10(1) by Fubini’s theorem (due to f(x) ≥ 0), we get:

Ft(yt) =

Z yt1

−∞
. . .

Z ytm

−∞

�Z ∞

−∞
. . .

Z ∞

−∞
f(x1, . . . , xn) dxs

�
| {z }

ft(xt)

dxt.

(3.1a)

2. X discrete: We have by definition 3.10(2) F (y) =
P

x≤y f(x).
When interchanging the summation order due to absolute conver-
gence (f(x) ≥ 0), we get:

Ft(yt) =
X

xt≤yt

� X
xs∈Rn−m

f(x1, . . . , xn)
�

| {z }
ft(xt)

. (3.1b)

It is straightforward to see from equations (3.1a) and (3.1b) that
ft(xt) are probability densities of the marginal random vector Xt in
the sense of definitions 3.10 and 3.11, preserving the type (continu-
ous or discrete) of the original random vector X, and satisfying the
necessary conditions (1),(2a) or (1),(2b) of theorem 3.12. Clearly,
the remaining properties are their consequence in view of remark
3.13(3). ¤

Remark 3.18 (Conditional distribution — introductory remarks).
For simplicity we shall start the discussion with the bivariate ran-
dom vector X = [X1, X2]

T defined on the probability space (Ω,A, P ),
having joint p.d.f. f(x1, x2) and marginal p.d.f. f1(x1) of X1 and
f2(x2) of X2. Given x2 arbitrary but fixed, our goal is to develop
a concept allowing us to evaluate for each Borel set B1 ∈ B the
conditional probability P (X1 ∈ B1 |X2 = x2), or more exactly

P (X−1
1 (B1) |X−1

2 ({x2}) =
P (X−1

1 (B1)∩X−1
2 ({x2}))

P (X−1
2 ({x2}))

in the sense of eq.

(2.1). In accordance with definition 1.9, the fraction defines condi-
tional probability P2 on a new probability space (A2,A2, P2) where
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A2 = X−1
2 ({x2}) ⊆ Ω, P (A2) > 0, is a restricted sample space

and A2 σ-field of restricted events obtained as intersections of the
original ones with A2. Thus restriction of the random variable X2

on A2 yields measurable mapping X ′
1 : (A2,A2, P2) → (R, B) be-

cause X
′−1
1 (B1) = A2 ∩ X−1

1 (B1) ∈ A2 for each B1 ∈ B. Then
P (X1 ∈ B1 |X2 = x2) = P2(X

′
1 ∈ B1) and it is sufficient to find

p.d.f. and c.d.f. of X ′
1, hereafter denoted as f(· |x2) and F (· |x2),

respectively.
1. X discrete: By 3.17 both marginal random variables X1 and X2

are discrete as well, so as is the restriction X ′
1 of X1. In view of

3.12(3b) f(x1 |x2) = P2(X
′
1 = x1) = P (X1 = x1 |X2 = x2) =

P (X1=x1,X2=x2)
P (X2=x2)

= f(x1,x2)
f2(x2)

provided that f2(x2) = P (X2 = x2) =

P (A2) > 0. By definition 3.10(2) F (x1 |x2) =
P

y1≤x1
f(y1 |x2)

and P (X1 ∈ B1 |X2 = x2) = P2(X
′
1 ∈ B1) =

P
y1∈B1

f(y1 |x2) for
arbitrary B1 ∈ B.
2. X continuous: By 3.17 both marginal random variables X1 and
X2 are continuous as well. The procedure of discrete case cannot
be applied because neither f(x1, x2) nor f2(x2) are probabilities of
some events and P (X1 = x1, X2 = x2) = P (X2 = x2) = 0 by
3.12(3a). They are true probability densities by 3.12(6a) at every
continuity point of f(x1, x2) and f2(x2):

F (y1 |x2) = P (X1 ≤ y1 |X2 = x2) = P (X1≤y1,X2=x2)
P (X2=x2)

=

limh2↓0
P (X1≤y1,x2≤X2≤x2+h2)

P (x2≤X2≤x2+h2)
= limh2↓0

F (y1,x2+h2)−F (y1,x2)
F2(x2+h2)−F2(x2)

=

limh2↓0
(F (y1,x2+h2)−F (y1,x2))/h2

(F2(x2+h2)−F2(x2))/h2
= ∂F (y1,x2)/∂x2

∂F2(x2)/∂x2
=

R y1
−∞ f(x1,x2) dx1

f2(x2)
=R y1

−∞
f(x1,x2)
f2(x2)

dx1 provided that f2(x2) > 0. Then X ′
1 is continuous

as well with p.d.f. f(x1 |x2) = f(x1,x2)
f2(x2)

.

It is straightforward to extend the procedure of remark 3.18 to any
n-dimensional random vector X and any pair of its marginal random
vectors Xt and Xs at complementary subscript vectors t and s as
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they were introduced in corollary 3.17. This leads to the general
concept of conditional multivariate p.d.f. and c.d.f. as follows.

Definition 3.19. Let X = [X1, . . . , Xn]T be a discrete or con-
tinuous random vector defined on the probability space (Ω,A, P ),
having c.d.f. F and p.d.f. f . Let Xt := [Xt1 , Xt2 , . . . , Xtm ]T and
Xs := [Xs1 , Xs2 , . . . , Xsn−m ]T be its marginal random vectors with
marginal p.d.f.’s ft(xt) and fs(xs) at complementary subscript vec-
tors t and s in the sense of corollary 3.17, 1 ≤ m < n. Given
xs ∈ Rn−m arbitrary but fixed such that fs(xs) > 0, then

f(xt |xs) :=
f(x)

fs(xs)

is called conditional probability density function of Xt, given
Xs = xs. The corresponding distribution function (see definition
3.10)

F (xt |xs) =

(P
x′t≤xt

f(x′t |xs) for discrete XR xt1
−∞ . . .

R xtm
−∞ f(x′t |xs) dx′t for continuous X

is called conditional distribution function of Xt, given Xs =
xs.

Theorem 3.20. The conditional p.d.f. and c.d.f. of 3.19 are true
p.d.f. and c.d.f. of the restriction of the marginal random vec-
tor Xt to the conditional probability space, given event Xs = xs

(c.f. definition 1.9) allowing us to compute conditional probability

P (Xt ∈ B |Xs = xs) = P (Xt∈B,Xs=xs)
P (Xs=xs)

for any Borel set B ∈ Bm

using formula (see theorem 3.12(5))

P (Xt ∈ B |Xs = xs) =

(P
xt∈B f(xt |xs) for discrete XR

B
f(xt |xs) dxt for continuous X.

(3.2)

Corollary 3.21. If X is discrete we get by theorem 3.12(3b):

P (Xt = xt |Xs = xs) = f(xt |xs). (3.3)
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Example 3.22. See [Rou97, p.95,96] for the construction of mar-
ginal and conditional p.d.f. of the discrete n-dimensional random
vector having multinomial distribution. For example f(x1, . . . , x6) :=
P (X1 = x1, ..., X6 = x6) is p.d.f. of such 6-dimensional random
vector describing probability that out of k casts there will be 1
spot x1-times, 2 spots x2-times, . . . , 6 spots x6-times (k = x1 +
· · · + x6). Putting t := [1, 3, 5] we have complementary subscripts
s := [2, 4, 6] and using marginal p.d.f. ft(x1, x3, x5) we may confine
ourselves to probabilities of events related to sides with odd number
of spots, eventually to conditional probabilities of such events, when
we know for example that after a series of k casts 2 spots appeared
once, 4 spots four times and 6 spots five times: xs = [1, 4, 5] and
ft(x1, x3, x5 | 1, 4, 5) is the corresponding conditional p.d.f.

3.4. Independence of random variables and vectors.

Definition 3.23.
The random variables X1, . . . , Xn defined on the same probability
space (Ω,A, P ) are said to be independent if for every choice of
Borel sets B1, . . . , Bn ∈ B the events X1 ∈ B1, . . . , Xn ∈ Bn are
independent in the sense of definition 2.20.

Theorem 3.24.
Given random vector X = [X1, . . . , Xn]T with c.d.f. FX and p.d.f.
fX then the following statements are equivalent:

(1) The random variables X1, . . . , Xn are independent.
(2) For every choice of Borel sets B1, . . . , Bn ∈ B it holds:

P (X1 ∈ B1, . . . , Xn ∈ Bn) = Πn
i=1P (Xi ∈ Bi).

(3) FX(x1, . . . , xn) = F1(x1) . . . Fn(xn) for all x1, . . . , xn ∈ R.
(4) fX(x1, . . . , xn) = f1(x1) . . . fn(xn) for all x1, . . . , xn ∈ R.

Proof.
(1)⇒(2): is the direct consequence of the probability product rule

of independence by definition 2.20.
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(2)⇒(1): Given Bi ∈ B, i = 1, . . . , n, arbitrary but fixed, and

1 ≤ j1 < · · · < jk ≤ n any subset of subscripts, we introduce
new Borel sets B′

i as B′
i := Bi for i ∈ {j1, . . . , jk} and Bi := R oth-

erwise. In the latter case P (Xi ∈ B′
i) = 1 and applying (2) on B′

i we
have P (Xj1 ∈ Bj1 , . . . , Xjk ∈ Bjk ) = P (X1 ∈ B′

1, . . . , Xn ∈ B′
n) =

Πn
i=1P (Xi ∈ B′

i) = Πk
m=1P (Xjm ∈ Bjm) confirming the probability

product rule for any subset of events Xj1 ∈ Bj1 , . . . , Xjk ∈ Bjk ,
and thus independence in the sequel.
(2)⇒(3): Putting Bi := (−∞, xi] for i = 1, . . . , n we have by

definition of c.d.f. F (x1, . . . , xn) = P (X1 ∈ (−∞, x1], . . . , Xn ∈
(−∞, xn])

(2)
= Πn

i=1P (Xi ∈ (−∞, xi]) = Πn
i=1Fi(xi).

X discrete:
(3)⇒(4): For a < b, a ↑ b we have f(b1, . . . , bn) = P (X = b) =

lima↑b P (a < X ≤ b) =
liman↑bn ∆n

a,b . . . lima1↑b1 ∆1
a,bF1(b1) . . . Fn(bn) =

liman↑bn ∆n
a,b . . . lima2↑b2 ∆2

a,b lim
a1↑b1

(F1(b1)− F1(a1))| {z }
P (X1=b1) by theorem 3.8

F2(b2) . . . Fn(bn)

= · · · = f1(b1) . . . fn(bn).

(4)⇒(2): P (X1 ∈ B1, . . . , Xn ∈ Bn) =
P

B1×···×Bn
f(x1, . . . , xn)

(∗)
=P

B1
· · ·PBn

f1(x1) . . . fn(xn) = (
P

B1
f1(x1)) . . . (

P
Bn

fn(xn)) =

P (X1 ∈ B1) . . . P (Xn ∈ Bn) in view of theorem 3.12(5b) where
identity (∗) is by absolute convergence due to nonnegative addents.
X continuous:

(3)⇒(4): f(x1, . . . , xn) = ∂n

∂x1...∂xn
F1(x1) . . . Fn(xn) =

∂
∂x1

F1(x1) . . . ∂
∂xn

Fn(xn) = f1(x1) . . . fn(xn) at continuity points of

f in view of theorem 3.12(6a).

(4)⇒(2): P (X1 ∈ B1, . . . , Xn ∈ Bn) =
R

B1×···×Bn
f(x1, . . . , xn) dx

(∗)
=R

B1
. . .
R

Bn
f1(x1) . . . fn(xn) dx1 . . . dxn =

(
R

B1
f1(x1) dx1) . . . (

R
Bn

fn(xn) dxn) = P (X1 ∈ B1) . . . P (Xn ∈ Bn)
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in view of theorem 3.12(5a) where identity (∗) is by Fubini’s theorem
due to nonnegative integrand. ¤

Corollary 3.25. Any subset of independent random variables is
independent as well.

Proof. The statement is a consequence of theorem 2.21(2). ¤

Corollary 3.26.
If X1, . . . , Xn are independent random variables with c.d.f.’s Fi and
p.d.f.’s fi, i = 1, . . . , n, then X(1)(ω) := min(X1(ω), . . . , Xn(ω))
and X(n)(ω) := max(X1(ω), . . . , Xn(ω)), ω ∈ Ω, are random vari-
ables with c.d.f.’s F(1)(x) = 1−Πn

i=1(1−Fi(x)), F(n)(x) = Πn
i=1Fi(x)

and p.d.f.’s f(1)(x) =
Pn

j=1 fj(x)Πn
i=1,i6=j(1− Fi(x)),

f(n)(x) =
Pn

j=1 fj(x)Πn
i=1,i6=jFi(x) (at continuity points of fi when

X is continuous), respectively.

Theorem 3.27. Given independent variables X1, . . . , Xn and Borel
functions ϕi : (R, B) → (R, B), i = 1, . . . , n, then the transformed
random variables ϕ1(X1), . . . , ϕn(Xn) are independent as well.

Proof. Let B1, . . . , Bn ∈ B be arbitrary Borel sets.
Clearly ϕ1(X1) ∈ B1, . . . , ϕn(Xn) ∈ Bn are the same events as
X1 ∈ ϕ−1

1 (B1), . . . , Xn ∈ ϕ−1
n (Bn) where ϕ−1

i (Bi) are Borel sets due
to measurability of ϕi for i = 1, . . . , n. They must be independent
because X1, . . . , Xn are independent random variables. ¤

Remark 3.28. Properties (3) and (4) of theorem 3.24 may be for-
mulated in stronger form due to remarks 3.7(1) and 3.13(3):
(3’) If F (x1, . . . , xn) = F1(x1) . . . Fn(xn) for all xi ∈ R is c.d.f. of
some X = [X1, . . . , Xn] then Xi are independent random variables.
Conversely: if Fi are c.d.f.’s of some random variables Xi then F
is c.d.f. of the random vector X = [X1, . . . , Xn] where Xi are inde-
pendent with marginal c.d.f.’s Fi for all i = 1, . . . , n.
(4’) If f(x1, . . . , xn) = f1(x1) . . . fn(xn) for all xi ∈ R is p.d.f. of
some X = [X1, . . . , Xn] then Xi are independent random variables.
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Conversely: if fi are p.d.f.’s of some random variables Xi then f is
p.d.f. of the random vector X = [X1, . . . , Xn] where Xi are inde-
pendent with marginal p.d.f.’s fi for all i = 1, . . . , n.

Remark 3.29 (Independence of random vectors).
The above concept of independence of random variables is easy to
extend to random vectors as follows:
• Random variables Xi are to be replaced by random vectors Xi of
dimension mi and Borel sets Bi ∈ Bmi for i = 1, . . . , n.
• In Theorem 3.24 the random vectors Xi are merged into a ran-
dom vector X of dimension m1 + · · ·+ mn, thus being its marginal
subvectors with marginal (joint) c.d.f.’s Fi and marginal p.d.f.’s fi.
• In Theorem 3.27 the Borel functions are arbitrary ϕi : (Rmi , Bmi) →
(Rki , Bki), the transformed random vectors ϕi(Xi) being then of di-
mension ki for i = 1, . . . , n.
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Detailed discussion of basic theoretical concepts given above can be
found along with numerous illustrative examples and exercises pri-
marily in [Rou97]. Additional information is available for example
in [HC78], or in a lot of other introductory textbooks on mathemat-
ical statistics.
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republic.

tel.: +420-5-41321251/35, fax: +420-5-41210337
E-mail address: vesely@math.muni.cz, URL: http://www.math.muni.cz/~vesely


