20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 1 4. Economies of Scale ,,Wo immer etwas falsch ist, ist es zu groß" Leopold Kohr (1909 -1994) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 2 Definition: By how much increases a firms product, when simultaneously all inputs are increased by the same factor k ? E.g. f(kx1, kx2) > k f(x1, x2) for k>1. 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 3 The cost function shows the minimum costs for which a production level of Y can be reached. Usually the long term average cost curve exhibits a minimum, which indicates the optimal amount of production. ( ) ( ) Y Yppc YAC ,, 21 = 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 4 The Cobb-Douglas production function: (p65) usually in the form Y=c(Ka Lb ). Paul Howard Douglas (1892 - 1976) Johan Gustaf Knut Wicksell (1851 - 1926) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 5 C-D production function for Electricity Supply Enterprises uxxxaY fkl a f a k a l0= Marc Nerlove (1933-) Nerlove, Marc. "Returns to Scale in Electricity Supply." In C.Christ, ed., Measurement in Economics:Studies in Mathemetical Economics and Econometrics in Memory of Yehuda Grunfeld. Stanford, CA: Stanford University Press, 1963 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 6 Implies the following cost function: where r = al + ak + af measures the amount of returns to scale. u r p r a p r a p r a Y r ac f f k k l l log 1 loglogloglog 1 loglog 0 +++++= 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 7 first least squares estimation Dependent Variable: LOG(TC) Method: Least Squares Sample: 1 145 Included observations: 145 Variable Coefficient Std. Error t-Statistic Prob. C -3.526503 1.774367 -1.987471 0.0488 LOG(Y) 0.720394 0.017466 41.24448 0.0000 LOG(PL) 0.436341 0.291048 1.499209 0.1361 LOG(PK) -0.219888 0.339429 -0.647819 0.5182 LOG(PF) 0.426517 0.100369 4.249483 0.0000 R-squared 0.925955 Mean dependent var 1.724663 Adjusted R-squared 0.923840 S.D. dependent var 1.421723 S.E. of regression 0.392356 Akaike info criterion 1.000578 Sum squared resid 21.55201 Schwarz criterion 1.103224 Log likelihood -67.54189 F-statistic 437.6863 Durbin-Watson stat 1.013062 Prob(F-statistic) 0.000000 r^ = 1/0.720394 = 1.388 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 8 The Likelihood function (pp172) Assumption: Gaussian errors, u ~ N(0, 2 I) Density for variables (X1,Y1), ...,(Xn,Yn) Likelihood-function Log-likelihood-function 2 2 /2 2 1 ( ; , , ) (2 ) exp ( )'( ) 2 n p y X y X y X - = - - - 2 2 /2 2 1 ( , ; , ) (2 ) exp ( )'( ) 2 n L y X y X y X - = - - - 2 2 2 2 2 1 log ( , ) log(2 ) log ( )'( ) 2 2 2 ( ) log(2 ) log 2 2 2 n n L y X y X n n S = = - - - - = - - - Sir Ronald Aylmer Fisher 1890-1962 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 9 Maximum Likelihood Estimator Derivatives: Likelihood-equations: set derivatives zero Maximum-Likelihood (ML)-estimator: Note: ML-estimates for are identical to OLS-estimates (if noises are Gaussian) 2 2 2 4 ( ) 1 2 ( ) 2 2 S n S = - = - + 1 2 ( ' ) ' 1 ( )'( ) X X X y y X y X n - = = - - Daniel Bernoulli (1700 - 1782) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 10 Diagnostics based on the likelihood (p61) Usually functions of SSE * Logarithmic Likelihood * Akaike`s Informationcriterion * Schwarz` Bayesian Informationcriterion ( )2^ ^( ) 1 log(2 ) log 2 e n = - + + ^2 ( ) 2k AIC n n = - + ^2 ( ) logk n BIC n n = - + Gideon E. Schwarz (1933 -2007) Hirotugu Akaike (1927 - ) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 11 Test against the value 1, confidence intervals (p25) New t-statistics from (^ i-1)/ ^(X'X)-1 ii. Generally from a confidence interval: [ ^ i ^ (X'X)-1 ii t1-a/2]= [0.686, 0.755]. 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 12 The Delta-method: Standard error for r^ = f(^ 1)= 1/^ 1 : Taylorexpansion around the estimated expected value of the desired parameter, i.e. f() f(^ )+ (-^ ) f / and thus also for a variance-covariance matrix Kov(f,f') Kov(,')', where ij= fj /j . From the diagonal of Kôv(f,f') we yield Vâr(r^) = (f /^ 1)2 Vâr(^ 1 ) = Vâr(^ 1 )/ ^ 1 4 and a confidence interval of [1.322, 1.454] for r. 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 13 The trick of Papke and Wooldridge: One estimates the parameters untransformed and evaluates the gradient at this value. Then the regressors are transformed such that xi = [xi - (^ i / ^ k)xk] for ik and xk = xk /^ k and performs a regression on the regressand. The desired standard error can then be simply read of the result table in the row for xk. Since in the present example we have ^ = (0,1/0.72,0,0,0), one just needs to multiply logY accordingly: Leslie E. Papke Jeffrey M. Wooldridge 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 14 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 15 4.2 Constraints, the Wald-test (p31) Linear restrictions on the parameters, i.e. they can be presented in the form H=h, where H denotes a g×m matrix with the restriction coefficients for g constraints. Test statistics: TW=d'(H(X'X)-1 H')-1 /^2 ~ 2 g Abraham Wald (1902-1950) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 16 W LR LM 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 17 Nerloves Modell A: ( ) ( ) .log 1 /log/loglog 1 log)/log( 0 u r pp r a pp r a Y r apc fk k fl l f ++++= 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 18 ^ S = HS -1 (h- HŚ^ Ś), which in the case of only one constraint can be fulfilled by entering it into the equation, and here yields 1+0.007-0.593 = 0.414. Var(S) = HS -1 HŚ Var(Ś) HŚ'HS -1 ' =0.099. 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 19 4.3 Nonlinearities, Feasible Generalized Least Squares 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 20 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 21 ( ) ( )21 20log( / ) log log log log / log /l k f l f k f a a c p a Y Y p p p p r r = + + + + + 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 22 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 23 A feasible GLS estimator (p88) Hayashi, 2000 suggests the specification Var() 0+1Y-1 . Simple, two-stage procedure: * V^ from the residuals as above, * then ^ FGLS =(X'V^ -1 X)-1 X'V^ -1 y. 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 24 Separating the data in 5 groups of 29 observations each. Employ dummy-variables q1 ­ q5 Programming with Eviews. 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 25 Dependent Variable: LOG(TC/PL) Method: Least Squares Date: 04/17/08 Time: 11:42 Sample: 1 145 Included observations: 145 Variable Coefficient Std. Error t-Statistic Prob. Q1 -3.343348 1.652646 -2.023027 0.0452 Q2 -6.488974 1.825601 -3.554432 0.0005 Q3 -7.332942 2.671684 -2.744689 0.0069 Q4 -6.546049 3.025269 -2.163791 0.0324 Q5 -6.714258 2.181091 -3.078394 0.0026 Q1*LOG(Y) 0.400290 0.044370 9.021601 0.0000 Q1*LOG(PF/PL) 0.466182 0.169372 2.752424 0.0068 Q1*LOG(PK/PL) -0.081356 0.371103 -0.219227 0.8268 Q2*LOG(Y) 0.658151 0.150263 4.380006 0.0000 Q2*LOG(PF/PL) 0.528265 0.189693 2.784841 0.0062 Q2*LOG(PK/PL) 0.377936 0.357290 1.057785 0.2922 Q3*LOG(Y) 0.938279 0.313146 2.996304 0.0033 Q3*LOG(PF/PL) 0.347734 0.246322 1.411703 0.1605 Q3*LOG(PK/PL) 0.250008 0.295837 0.845087 0.3997 Q4*LOG(Y) 0.912044 0.279177 3.266899 0.0014 Q4*LOG(PF/PL) 0.399690 0.158800 2.516935 0.0131 Q4*LOG(PK/PL) 0.093352 0.426200 0.219033 0.8270 Q5*LOG(Y) 1.044390 0.135455 7.710217 0.0000 Q5*LOG(PF/PL) 0.686848 0.277439 2.475674 0.0146 Q5*LOG(PK/PL) -0.289436 0.364519 -0.794021 0.4287 R-squared 0.957322 Mean dependent var 1.052996 Adjusted R-squared 0.950835 S.D. dependent var 1.412561 S.E. of regression 0.313208 Akaike info criterion 0.643546 Sum squared resid 12.26243 Schwarz criterion 1.054130 Log likelihood -26.65706 Durbin-Watson stat 1.774708 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 26 4.4 Multicollinearity (pp43) Perfekt collinearity: X`X is singular. (Dummy variable trap) Almost collinearity: some regressors are strongly linearly dependent: leads to imprecise estimation. (but OLS remains the BLUE!) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 27 Effects on the variances of the coefficients: thus depends upon * variance of noise * variance of regressors * number of observations * collinearity of regressors ( ) 2 2 1 ^( ) (1 ) j T j ij j i Var R x x = = - - 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 28 Micronumerosity = not enough data! Statistically everything fine. No problem for predictions! Arthur S. Goldberger 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 29 Indicators for multicollinearity * high R2 and little signifikances * high correlations among regressors * not robust against data changes * Condition number of the design matrix: CI = [max eig(X`X) / min eig(X`X)] 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 30 Supporting regressions (p43) Regressions of single regressors on all the rest, leads to Rj 2 . Klein's rule of thumb: Rj 2 should be all less than R2 . This leads to variance inflation factor: VIF = (1- Rj 2 )-1 Lawrence Robert Klein (1920 - ) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 31 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 32 Remedies for multicollinearity * Do nothing! * More data! * Formalising of relationships between regressors (equation systems) * Spezification of relationships between parameters (restrictions and particular lag structures) * Incorporate estimates from other studies or prior information (Bayesian estimation) * Form principal components * (remove variabls ­ leads to bias) * Shrinkage-estimators 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 33 Ridge Regression Estimate a regularised system: (Hoerl & Kennard, 1970) Is equivalent to the constraint: ´ = c2 ( ) 1 ^ T T R X X kI X Y = + Andrei N. Tikhonov (1906 ­ 1993) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 34 For c2 =1.5 Dependent Variable: LOG(TC/PF) Method: Least Squares Date: 03/20/08 Time: 19:02 Sample: 1 145 Included observations: 145 Convergence achieved after 94 iterations LOG(TC/PF) =-@SQRT(1.5-C(1)^2-C(2)^2-C(3)^2-C(4)^2)+C(4)* LOG(Y) +C(1)*LOG(PK/PF)+C(2)*LOG(PL/PF)+C(3)*LOG(Y)^2/2 Coefficient Std. Error t-Statistic Prob. C(1) -0.484111 0.137611 -3.517969 0.0006 C(2) 1.032177 0.153576 6.720935 0.0000 C(3) 0.143087 0.009481 15.09227 0.0000 C(4) -0.126783 0.048722 -2.602153 0.0103 R-squared 0.946138 Mean dependent var -1.484195 Adjusted R-squared 0.944992 S.D. dependent var 1.482087 S.E. of regression 0.347604 Akaike info criterion 0.751693 Sum squared resid 17.03682 Schwarz criterion 0.833810 Log likelihood -50.49773 Durbin-Watson stat 1.501916 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 35 The Lasso is equivalent to the constraint: |i| c special case of least angle regression (LARS) removes unnecessary regressors Robert Tibshirani 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 36 Lasso c=3.6 Dependent Variable: LOG(TC/PF) Method: Least Squares Date: 03/20/08 Time: 15:18 Sample: 1 145 Included observations: 145 Convergence achieved after 4 iterations LOG(TC/PF) =-(3.6-@ABS(C(1))-@ABS(C(2))-@ABS(C(3))-@ABS(C(4))) +C(1)* LOG(Y)+C(2)*LOG(PK/PF)+C(3)*LOG(PL/PF)+C(4)*LOG(Y)^2/2 Coefficient Std. Error t-Statistic Prob. C(1) 0.100061 0.055717 1.795878 0.0747 C(2) -0.154582 0.088768 -1.741419 0.0838 C(3) 0.739026 0.085006 8.693801 0.0000 C(4) 0.108797 0.009991 10.88994 0.0000 R-squared 0.957058 Mean dependent var -1.484195 Adjusted R-squared 0.956144 S.D. dependent var 1.482087 S.E. of regression 0.310375 Akaike info criterion 0.525124 Sum squared resid 13.58286 Schwarz criterion 0.607241 Log likelihood -34.07153 Durbin-Watson stat 1.682427 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 37 EViews Standard-Output Dependent Variable: LOG_M/V0 Method: Least Squares Date: 01/24/08 Time: 13:54 Sample: 1 36 Included observations: 36 Variable Coefficient Std. Error t-Statistic Prob. 1/V0 0.021083 0.193736 0.108825 0.9141 LOG_Y/V0 0.882881 0.048982 18.02473 0.0000 RN/V0 -11.21374 3.285429 -3.413172 0.0019 GY/V0 -0.212149 0.291022 -0.728979 0.4717 S/V0 0.205901 0.027388 7.517951 0.0000 W/V0 0.013782 0.005821 2.367800 0.0245 R-squared 0.996072 Mean dependent var 7.333740 Adjusted R-squared 0.995417 S.D. dependent var 1.530226 S.E. of regression 0.103593 Akaike info criterion -1.545673 Sum squared resid 0.321948 Schwarz criterion -1.281753 Log likelihood 33.82211 Durbin-Watson stat 1.503403 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 38 Adjusted coefficient of determination (p23) * Adding a regressor to a model yields: ­ R2 is increased ­ Increase of R2 not necessarily means that the new regressor is relevant! * Adjusted coefficient of determination: * Suitable for the comparison of models * For large n we have (n-1)/(n-k) 1 2 1 1 n RSS R n k TSS = - - 2 2 R R< 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 39 The Durbin-Watson-Test (1950) (pp110) Null hypothesis: no autocorrelation of first order Test statistic: * For positive autocorrelation d lies in the interval (0,2) * for negative in the interval (2,4); * if d is close to 2, there is no significant autocorrelation in the noise; * for values of d close to 0 or 4 the errors are highly correlated. 2 12 12 1 ^ ^( ) ^2(1 ) ^ n t tt n tt d -= = = - Geoffrey Stuart Watson (1921 ­1998) James Durbin (1923 ­ ) 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 40 Durbin-Watson-Test, critical values * the citical values for d depend upon matrix X. * Thus D & W have lower (dL) and upper bounds (dU) for the critical values ­ d< dL: H0 is rejected ­ d> dU: H0 is not rejected ­ dL < d < dU: no decision Critical bounds for = 0.05: n k=2 k=3 k=10 dL dU dL dU dL dU 15 1.08 1.36 0.95 1.54 0.17 3.22 20 1.20 1.41 1.10 1.54 0.42 2.70 100 1.65 1.69 1.63 1.71 1.48 1.87 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 41 Ramsey`s (1969) RESET-Test (p66) RESET: Regression Equation Specification Error For checking of the functional form of the model. Tests H0: = 0 für Y = X + Z + v with If H0 is true, the functional form (linearity) of the response is correct. Tests: ­ t-Test, if g = 1 ­ F-Test ­ asymptotical Chi-square-test (test statistic gF) 2 3^ ^( , ,...)t t tz Y Y = James Bernard Ramsey 20.11.09 phd course "Econometrics" , (C) W.G.Müller, JKU Linz 42 The Ten Commandments of Applied Econometrics * Thou shalt use common sense and economic theory. * Thou shalt ask the right questions. * Thou shalt know the context. * Thou shalt inspect the data. * Thou shalt not worship complexity. * Thou shalt look long and hard at thy results. * Thou shalt beware the costs of data mining. * Thou shalt be willing to compromise. * Thou shalt not confuse significance with substance. * Thou shalt confess in the presence of sensitivity. Peter Kennedy