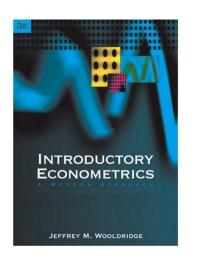
Econometrics

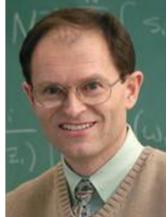
Werner G. Müller

Department of Applied Statistics (Institut für Angewandte Statistik) . Johannes-Kepler-Universität Linz



What is Econometrics?

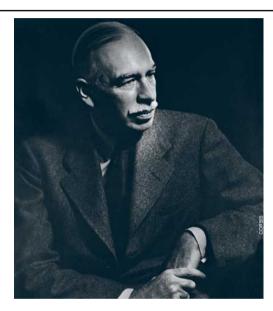
"[...], econometrics is the interaction of economic theory, observed data and statistical methods. It is the interaction of these three that makes econometrics interesting, challenging, and perhaps, difficult." Verbeek (2000, 2008)


Modern

MARNO VERBEEK

Econometrics

Third edition


"Econometrics is based upon the development of statistical methods for estimating economic relationships, testing economic theories, and evaluating and implementing government and business policy." Wooldridge (2006)

13.10.2009

Criticism

"That there is anyone I would trust with ^Iit at the present stage, or that this brand of statistical alchemy is ripe to become a branch of science, I am not yet persuaded. But Newton, Boyle, and Locke all played with alchemy. So let him [Tinbergen] continue." Keynes (1939)

"Die Ökonometriker sind im Wesentlichen Statistiker, die sich einbilden, die komplexe Welt der Wirtschaft in Zahlen abbilden zu können. Dagegen war selbst der Kommunismus subtil." Gansterer (2003)

Slides are based on

Manuscript for the planned textbook "Ökonometrie Praxis!" of W.G. Müller (JKU) and T.Url (Wifo), in German.

Excerpts and additional material on the IFAS-Homepage: www.ifas.jku.at.

Complimentary GRETL course by Daniel Němec (Masarykovy Univerzity Brno).

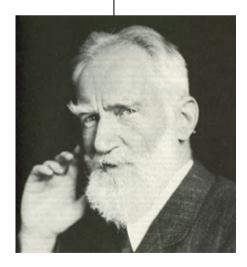
Used Software

Examples in the manuscript are made in Eviews6.

Homeworks should be done in GRETL.

GRETL is for free, a cheap student version of Eviews4.1 is fully sufficient for replicating most of the examples in this course. <u>Tipp</u>

13.10.2009

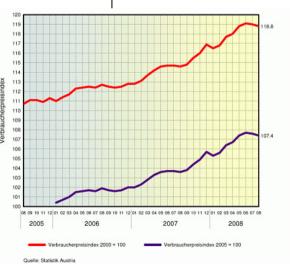


- **1** Inflation (Cagan model and data *simple linear regression descriptively*)
- 1.1 Hyperinflation
- 1.2 Data-entry (*working with EVIEWS and GRETL*)
- 1.3 Graphical display of data (*descriptive statistics*)
- 1.4 Datatransformation
- 1.5 An estimation technique (*least squares principle*)
- 1.6 Spurious correlation (*spurious regression*)
- 1.7 Homework exercise (*Lui Data in the Cagan model*)

1. Inflation

"If the governments devalue the currency in order to betray all creditors, you politely call this procedure *inflation*."

George Bernard Shaw (1856-1950)



The Consumer Price Index

In a consumer price index (CPI) P_{Ct} the prices of the most important 1, ..., N consumed goods and services will be comprised as follows for a period t:

$$P_{Ct} = w_l \left(\frac{P_{lt}}{P_{lB}}\right) + w_2 \left(\frac{P_{2t}}{P_{2B}}\right) + \dots + w_N \left(\frac{P_{Nt}}{P_{NB}}\right) = \sum_{i=1}^N w_i \left(\frac{P_{it}}{P_{iB}}\right)$$

and compared to the price in a basis year *B* of the index. The importance of the *i*-th component of the basket of goods is reflected by the weight w_i . The more of a component is consumed, the higher is his weight in the index and the stronger will its price changes affect the value of P_{Ct} . In the basis year the value of the index is $P_{Ct}=1$, because t=B holds and the prices are thus identical. The published price indices are usually multiplied by a factor 100, such that $P_{Ct}=100$ holds for the basis year.

13.10.2009

The Inflationrate

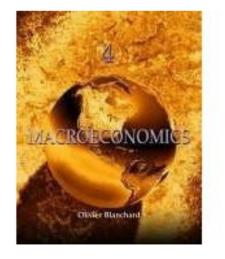
The Inflationsrate $\pi_t \times 100\%$ measures the percent change of a price index between two consecutive observation periods, i.e.

$$\pi_t = (P_t - P_{t-1}) / P_{t-1}.$$

An alternative definition is: $\pi_t = \log P_t - \log P_{t-1}$.

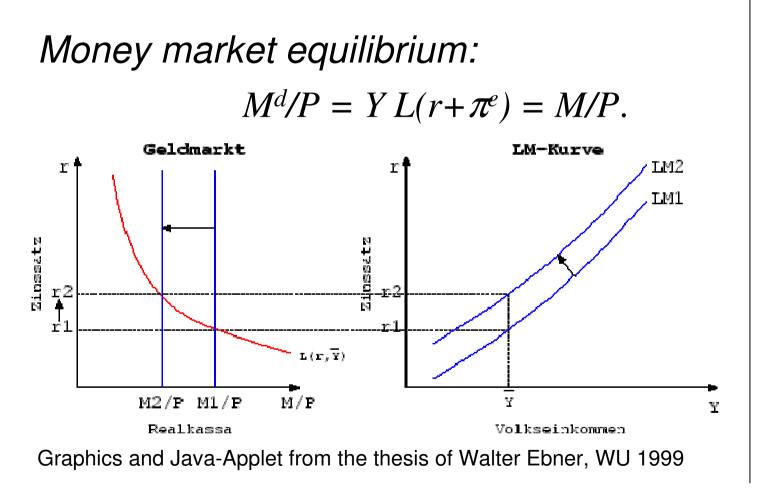
This assumes a continuous exponential growth process $P_t = P_{t-T} \cdot \exp(\pi_t \cdot T)$, which holds only approximately. For T=1 therefore holds

$$P_t = P_{t-1} \cdot exp(\pi_t)$$
 and hence $\pi_t = log(P_t / P_{t-1})$.


The Economic Impact of Inflation

- Unemployement: Phillipscurve
- Growth: money demand

Look e.g. into the fourth edition of the famous textbook by Blanchard (2006)



13.10.2009

Theory of Money Demand

1.1 Hyperinflation

$$\frac{\Delta M}{P} = \frac{\Delta M}{M} \frac{M}{P} \\ = \frac{\Delta M}{M} \left[\overline{Y}L(\overline{r} + \pi^{e}) \right]$$

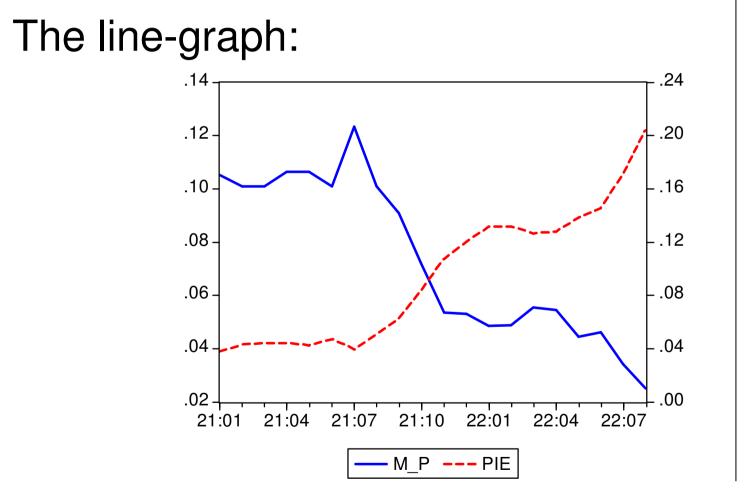
Cagan, P., "The Monetary Dynamics of Hyperinflation", in Friedman, M., "Studies in the Quantity Theory of Money", University of Chicago Press, Chicago, 1956, S. 25-117.

13.10.2009

1.2 Data Entry

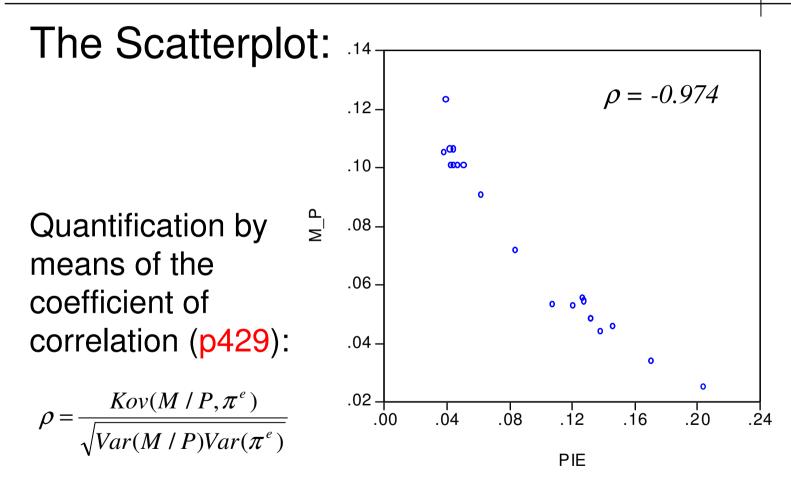
	Viev										_	
ile	<u>E</u> dit	<u>O</u> bject	⊻iew	Proc	<u>Q</u> uick	Options	<u>W</u> indow	Help				
] W	elcom	e to EVie	WS						Path = c:\muell	er&url DB = r	ione WE =	none .:

1.2 Data Entry



📓 gre	tl									
<u>D</u> atei	<u>W</u> erkzeuge	Date <u>n</u>	<u>A</u> nsicht	Hinzufügen	Stichprobe	⊻ariable	Modell	Hilfe		
	atendatei gela									
ID # ◀	Variablenna	me 🖣 Be	schreibur	ig					•	
	? 🔤 👯 f:	x 🔁 🕻	🗊 🗠 é							

				L
	M/P	π	π^{e}	\frown
Dataset:	0.1053	0.0601	0.0382	
	0.1010	0.1407	0.0428	IFAS
	0.1010	0.0682	0.0440	
Monthly data	0.1064	0.0431	0.0440	
Monthly data,	0.1064	0.0058	0.0421	
from january 1921	0.1010	0.1391	0.0470	
	0.1235	-0.1075	0.0394	
until august 1922	0.1010	0.2747	0.0509	
from Austria.	0.0909	0.2832	0.0622	
	0.0719	0.4960	0.0834	
	and the second se	0.5782	0.1075	
500000	500,000	0.3753	0.1204	
Store Contracting and the start and the store and the stor	nor to	0.3569	0.1319	
Jünibundertiaujend	E A STE	0.1283	0.1319	
In all fillion gatangentitet: our it depend its Defense and Rent		0.0269	0.1266	
60000		0.1492	0.1278	
	in the second	0.3435	0.1384	
A DECEMBER OF A	00000	0.2871	0.1458	
		0.6544	0.1704	
	0.0252	0.8517	0.2038	


13.10.2009

(IFAS)

1.3 Graphical Display of Data

13.10.2009

phd-course "Econometrics", © W.G. Müller, JKU Linz

17

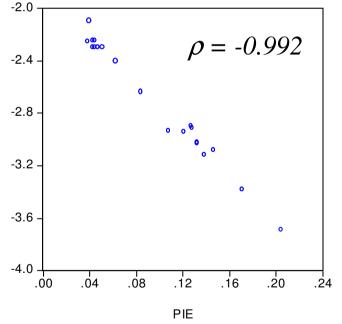
1.4 Datatransformation

 Data-driven, e.g. Box-Cox transformation:

$$\tau(Y;\lambda) = \begin{cases} (Y^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0, \\ \ln(Y) & \text{if } \lambda = 0. \end{cases}$$

•Theory-driven, e.g. from a money demand function with proportional elasticity of inflation:

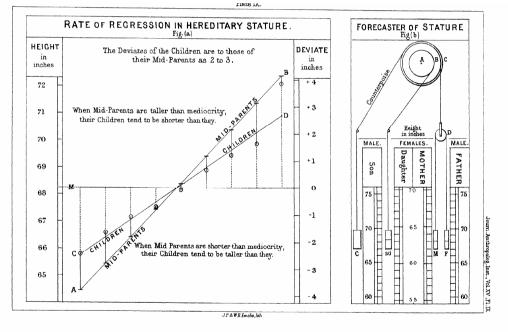
$$M/P = \exp\{-\alpha \pi^e - \gamma\}.$$

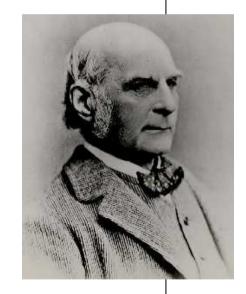

1.4 Datatransformation

 The non-linear relationship between money demand and expected inflation can be transformed to a linear relationship by taking logarithms on both sides:

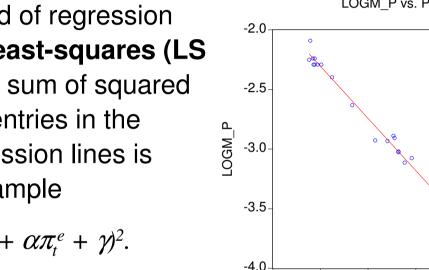
$$\log M/P = -\alpha \pi^e - \gamma.$$

• For further analysis the variable m_p must thus be logarithmically transformed.


phd-course "Econometrics", © W.G. Müller, JKU Linz


Parameter Estimation

Regression towards the mean


Sir Francis Galton (1886)

1.5 An Estimation Method

LOGM P vs. PIE

0.00

0.05

The most common method of regression analysis is the so-called least-squares (LS approach (8pp). Here, the sum of squared vertical deviations of the entries in the scatter-plot from the regression lines is minimized, thus in our example

$$\min_{\alpha,\gamma} \sum_{t} (\log M_t / P_t + \alpha \pi_t^e + \gamma)^2.$$

13.10.2009

0.15

0.20

0.10

The solutions of this minimization task α and γ are the (ordinary) least squares estimators of the parameters. They define the location (intercept) and slope of the regression line.

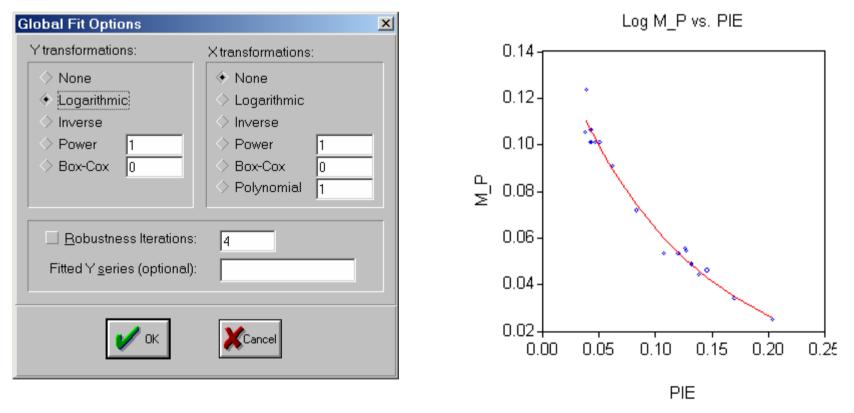
0.25

In GRETL

📓 gretl		
Datei <u>W</u> erkzeuge Date <u>n A</u> nsicht Hin <u>z</u> ufügen <u>S</u> tichprobe <u>V</u> ariable <u>M</u> odell <u>H</u> ilfe	🦉 📓 gretl: Modell spezifizieren 📃 🗖	X
01_austria.gdt *	KQ	
ID # Variablenname Beschreibung	const Abhängige Variable	
0 const automatisch generierte Konstante	M_P Auswählen -> I_M_P	
1 M_P	PI	
2 PI	PIE als Voreinstellung	
3 PIE 4 I_M_P = log von M_P	I_M_P Unabhängige Variablen	
	Hinzufügen -> PIE	
	Robuste Standardfehler bearbeiten	
Monatlich: Voller Bereich 1921:10 - 1923:05		_
🖩 📝 🛅 🖽 fx 🔂 💢 🗠 βُ 📄	<u>H</u> ilfe <u>L</u> eeren <u>A</u> bbrechen <u>O</u> K	

13.10.2009

Concrete Estimates


Equation Specification	×	
Equation Specification: Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X. LOGM_P PIE C Estimation Settings:	OK OK	
Method: LS - Least Squares (NLS and ARMA)	[] O <u>p</u> tions	

Entries under **Coefficient**, which denote the estimates $-\alpha^2 = -8.74$ and $-\gamma^2 = -1.87$

Backtransformation

via Global-Fit-Options:

13.10.2009

Requirements (p15&16)

- The statistical model is linear in the parameters.
- The errors ε_t are random, they are independent of each other, have expectation 0 and a constant variance σ_{ε}^2 .
- The regressors *X* are strictly exogeneous, i.e. independent from past, current and future errors and linearly independent.
- The number of observations exceeds the number of regressors.

Matrixnotation (p12)

The linear model can be written as

$$y = X\beta + \varepsilon$$
with $y = \begin{pmatrix} y_1 \\ \vdots \\ y_T \end{pmatrix}, X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_T \end{pmatrix}, \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_T \end{pmatrix}$

Here is/are

 $\beta = \{-\gamma, -\alpha\}' = \{\beta_0, \beta_1\}'$ the parameters,

 $\mathcal{E}=\{\mathcal{E}_{l},...,\mathcal{E}_{T}\}$ the error terms,

 $y = \{y_1, ..., y_T\}$ ' the regressand with $y_t = \log M_t / P_t$, X the regressormatrix with $x = \{x_1, ..., x_T\}$ ' and $x_t = \pi_t^e$.

The least squares estimator for β can now be compactly written as

$$\beta^{} = (X'X)^{-1}X'y$$
, (2.19)

that is a special linear combination of the observations of the regressand.

Derivation (p12&13 and Appendix A)

Principle of least squares: $\beta^{\gamma} = \arg \min_{\beta} S(\beta)$

Partial differntiation of $S(\beta) = \varepsilon \cdot \varepsilon = (y - X\beta) \cdot (y - X\beta)$ $= y \cdot y - 2y \cdot X\beta + \beta \cdot X \cdot X\beta$ leads to $\frac{\partial S}{\partial \beta} = -2X \cdot y + 2X \cdot X\beta$

Setting equal zero yields the normal equations: $X'X\beta = X'y.$

13.10.2009

Invertibility

We require the matrix X'X to be of full rank and thus also X (see requirements).

Caution! We do not have that, when

• T < k (numbers of observations is smaller than numbers of parameters)

• there are linear relations between the vectors of regressors.

Residuals (p9)

Almost as a side-product during estimation we produce the so-called residuals. They correspond to the vertical distances of the observations form the regression line, i.e.

$$\mathcal{E} = y - X \beta = y - \hat{y}.$$

The residuals thus reflect the difference between the individual observed value of the explained variable y and the value \hat{y} , which is predicted (estimated) through the model.

1.6 Spurious Correlation (p323)

When two time series consist of growing or falling values, it often happens, that they exhibit high correlations, although they do not have any causal relationship.

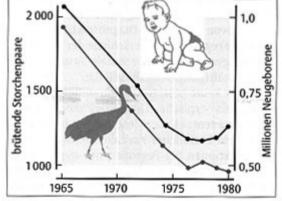
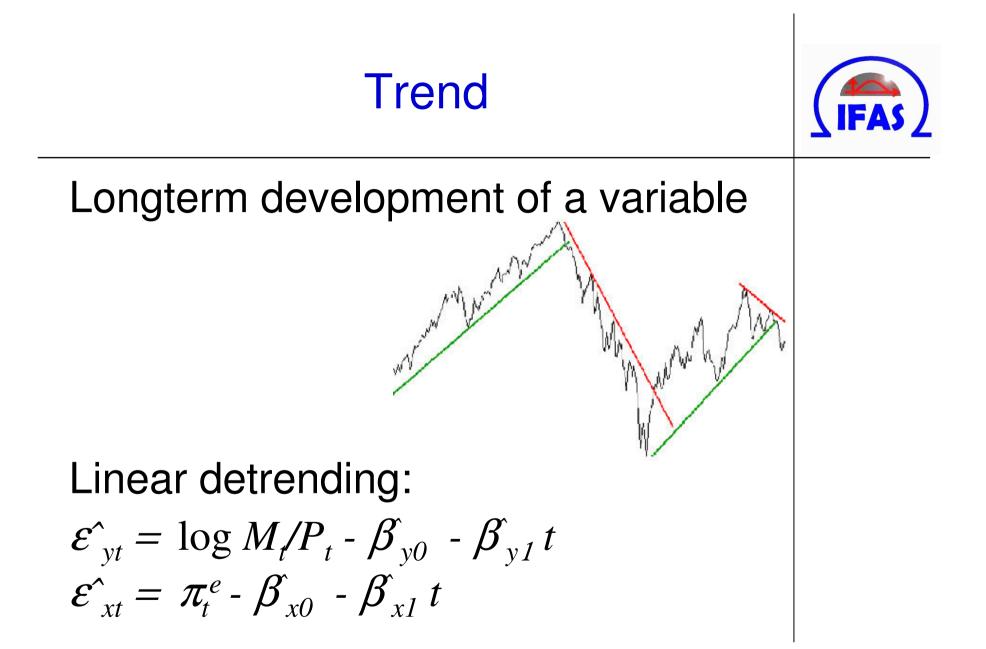



Abb. 2.3 Korrelation zwischen der Abnahme brütender Storchenpaare und dem Geburtenrückgang in der Bundesrepublik Deutschland zwischen 1965–1980 (nach Sies [30])

Solution: "detrending"

Corrected Result

Dependent Variable: RESIDLOGM_P

Method: Least Squares

Sample: 1921:01 1922:08

Included observations: 20

Variable	Coefficient	Std. Error t-Statistic	Prob.
С	1.99E-16	0.009838 2.02E-14	1.0000
RESIDPIE	-10.84415	0.637443 -17.01195	0.0000
R-squared	0.941446	Mean dependent var	2.08E-16
Adjusted R-squared	0.938193	S.D. dependent var	0.176964
S.E. of regression	0.043995	Akaike info criterion	-3.314839
Sum squared resid	0.034840	Schwarz criterion	-3.215266
Log likelihood	35.14839	F-statistic	289.4065
Durbin-Watson stat	1.973688	Prob(F-statistic)	0.000000
13.10.2009	phd-course "Eco	onometrics", © W.G. Müller, v	JKU Linz

The (multiple)2-Regressor Model (p19)

Again the linear model is written as

$$y = X\beta + \varepsilon$$

with $y = \begin{pmatrix} y_1 \\ \vdots \\ y_T \end{pmatrix}, X = \begin{pmatrix} 1 x_{11} & x_{21} \\ \vdots & \vdots \\ 1 x_{1T} & x_{2T} \end{pmatrix}, \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}, \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_T \end{pmatrix}$

Here is/are

 $\beta = \{-\gamma, -\alpha, \delta\}' = \{\beta_0, \beta_1, \beta_2\}'$ the parameters,

 $\mathcal{E}=\{\mathcal{E}_1,\ldots,\mathcal{E}_T\}$ ' the error terms,

 $y = \{y_1, ..., y_T\}$ ' the regressand with $y_t = \log M_t / P_t$, X the regressormatrix with $x_1 = \{\pi_1^e, ..., \pi_T^e\}$ ' and $x_2 = \{1, ..., t, ..., T\}$ '.

Frisch-Waugh(-Lovell) Theorem

The coefficients from the linear detrended regressions correspond to the ones from multiple regressions with the trend as an additional regressor.

A more general version later....

13.10.2009

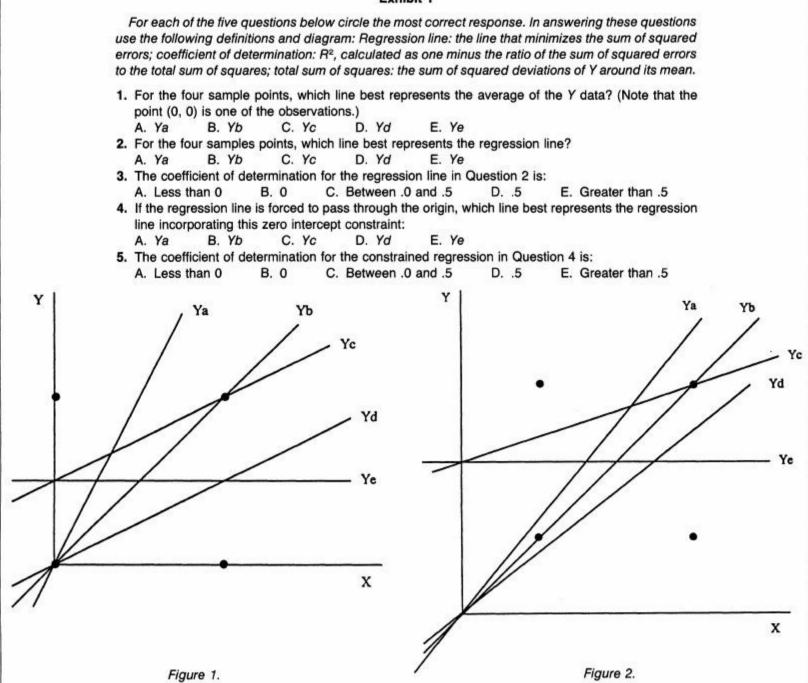
1st Homework: Inflation during the southern Sung-Dynasty

Lui, F.T., "Cagan's Hypothesis and the First Nationwide Inflation of Paper Money in World History", *Journal of Political Economy*, 91(6), 1983, S. 1067-1074 (also in "Major Inflations in History", herausgegeben von F.H. Capie, Cheltenham, U.K., Edward Elgar Publishing Ltd., 1991).

,	
	酒
	2 and
	E

Periode	M_t	P_t
1161-1170	100	100.0
1171-1180	204	86.7
1181-1190	224	107.3
1191-1200	827	183.9
1201-1210	1429	279.8
1211-1220	2347	280.2
1221-1230	2755	335.5
1240	4949	4032.2

2.3 The coefficient of determination (p21)


is a measure of Goodness of fit, determined from the variance of the residuals as follows

$$R^{2} = 1 - \frac{\sum_{t} \hat{\varepsilon}_{t}^{2}}{\sum_{t} (y_{t} - \overline{y})^{2}}$$
(2.42)

In the regression model with intercept, it holds that

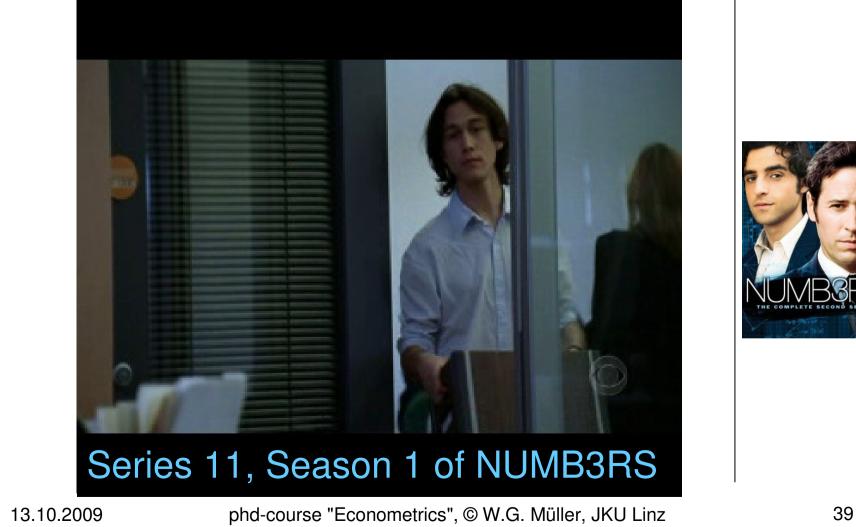

$$0 \le R^2 \le 1$$

Exhibit 1

Econometrics on TV

