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PREFACE

This edited volume contains 16 research articles and presents recent
and pressing issues in stochastic processes, control theory, differential
games, optimization, and their applications in finance, manufacturing,
queueing networks, and climate control. One of the salient features is
that the book is highly multi-disciplinary. It assembles experts from the
fields of operations research, control theory and optimization, stochastic
analysis, and financial engineering to review and substantially update
the recent progress in these fields. Another distinct characteristic of the
book is that all papers are motivated by applications in which optimiza-
tion, control, and stochastics are inseparable. The book will be a timely
addition to the literature and will be of interest to people working in the
aforementioned fields. All papers in this volume have been reviewed.

This volume is dedicated to Professor Suresh Sethi on the occasion of
his 60th birthday. In view of his fundamental contributions, his distin-
guished career, his substantial achievements, his influence to the control
theory and applications, operations research, and management science,
and his dedication to the scientific community, we have invited a number
of leading experts in the fields of optimization, control, and operation
management, to contribute to this volume in honor of him.

Without the help of many individuals, this book could not have come
into being. We thank the series editor Professor Frederick S. Hillier for
his time and consideration. Our thanks also go to Gary Folven, Carolyn
Ford, and the Springer’s professionals for their assistance in finalizing the
book. Finally, we express our gratitude to all authors for their invaluable
contributions.

Hong Kong Houmin Yan
Detroit, Michigan George Yin
Athens, Georgia Qing Zhang
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Abstract We investigate the interaction between Transmission Control Protocol
(TCP) and an Active Queue Management (AQM) router, that are de-
signed to control congestion in the Internet. TCP controls the sending
rate with which the data is injected into the network and AQM gen-
erates control signals based on the congestion level. For a given TCP
version, we define the optimal strategy for the AQM router as a solution
of a nonlinear periodic optimization problem, and we find this solution
using a linear programming approach. We show that depending on the
choice of the utility function for the sending rate, the optimal control is
either periodic or steady state.

Keywords: Transmission Control Protocol (TCP), Active Queue Management (AQM),
Deterministic Long-Run Average Optimal Control, Periodic Optimiza-
tion, Linear Programming Approach.
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GLOSSARY

TCP/IP Transmission Control Protocol/Internet Protocol
AIMD Additive Increase Multiplicative Decrease
MIMD Multiplicative Increase Multiplicative Decrease
AQM Active Queue Management
ECN Explicit Congestion Notification
AQM-ECN AQM with ECN
AQM-non-ECN AQM without ECN
RED Random Early Detection
LPP Linear Programming Problem

1. Introduction and statement of the problem
Most traffic in the Internet is governed by the TCP/IP protocol [2],

[8]. Data packets of an Internet connection travel from a source node
to a destination node via a series of routers. Some routers, particu-
larly edge routers, experience periods of congestion when packets spend
a non-negligible time waiting in the router buffers to be transmitted
over the next hop. The TCP protocol tries to adjust the sending rate
of a source to match the available bandwidth along the path. During
the principle Congestion Avoidance phase the current TCP New Reno
version uses Additive Increase Multiplicative Decrease (AIMD) binary
feedback congestion control scheme. In the absence of congestion signals
from the network TCP increases sending rate linearly in time, and upon
the reception of a congestion signal TCP reduces the sending rate by
a multiplicative factor. Thus, the instantaneous AIMD TCP sending
rate exhibits a “saw-tooth” behavior. Congestion signals can be either
packet losses or Explicit Congestion Notifications (ECN) [14]. At the
present state of the Internet, nearly all congestion signals are generated
by packet losses. Packets can be dropped either when the router buffer is
full or when an Active Queue Management (AQM) scheme is employed
[5]. In particular, AQM RED [5] drops or marks packets with a proba-
bility which is a piece-wise linear function of the average queue length.
Given an ambiguity in the choice of the AQM parameters (see [3] and
[12]), so far AQM is rarely used in practice. In the present work, we
study the interaction between TCP and AQM. In particular, we pose
and try to answer the question: What should be the optimal dropping
or marking strategy in the AQM router? For the performance criterion,
we choose the average utility function of the throughput minus either
the average cost of queueing or the average cost of losses. This perfor-
mance criterion with a linear utility function was introduced in [1]. We
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have analyzed not only the currently used AIMD congestion control, but
also Multiplicative Increase Multiplicative Decrease (MIMD) congestion
control. In particular, MIMD (or Scalable TCP [9]) is proposed for con-
gestion control in high speed networks. However, since it turns out that
the results for MIMD and AIMD congestion control schemes are similar,
we provide the detailed analysis only for AIMD TCP.

Figure 1.1. Fluid model for data network.

We restrict the analysis to the single bottleneck network topology
(see Figure 1.1). In particular, we suppose that n TCP connections
cross a single bottleneck router with the AQM mechanism. We take the
fluid approach for modeling the interaction between TCP and AQM [10],
[11], [15]. In such an approach, the variables stand for approximations
of average values and their evolution is described by deterministic differ-
ential equations. Since we consider long-run time average criteria, our
TCP-AQM interaction model falls into the framework of the periodic
optimization described as follows (see,e.g., [4]). Consider the control
system

ẏ(t) = f(u(t), y(t)), t ∈ [0, T ], T > 0 , (1.1)

where the function f(u, y) : U × R
m → R

m is continuous in (u, y) and
satisfies Lipschitz conditions in y; the controls are Lebesque measurable
functions u(t) : [0, T ] → U and U is a compact subset of R

n.
Let Y be a compact subset of R

m. A pair (u(t), y(t)) will be called
admissible on the interval [0, T ] if the equation (1.1) is satisfied for almost
all t ∈ [0, T ] and y(t) ∈ Y ∀t ∈ [0, T ]. A pair (u(t), y(t)) will be called
periodic admissible on the interval [0, T ] if it is admissible on [0, T ] and
y(0) = y(T ).
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Let g(u, y) : U × R
m → R

1 be a continuous function. The following
problem is commonly referred to as the periodic optimization problem:

sup
(u(·),y(·))

1
T

∫ T

0
g(u(t), y(t))dt

def
= Gper , (1.2)

where sup is over the length of the time interval T > 0 and over the
periodic admissible pairs defined on [0, T ].

A very special family of periodic admissible pairs is that consisting
of constant valued controls and corresponding steady state solutions of
(1.1):

(u(t), y(t)) = (u, y) ∈ M def
= {(u, y) | (u, y) ∈ U × Y , f(u, y) = 0 }.

(1.3)
If sup is sought over the admissible pairs from this family, the problem
(1.2) is reduced to

sup
(u,y)∈M

g(u, y)
def
= Gss (1.4)

which is called a steady state optimization problem. Note that

Gper ≥ Gss (1.5)

and that, as can be easily verified, Gper = Gss if the system (1.1) is
linear, the sets U , Y are convex and the function g(u, y) is concave. Note
also that in a general case (e.g., the dynamics is non-linear and/or the
integrand is not concave), (1.5) can take the form of a strict inequality
(examples can be found in [4],[6],[7] and in references therein).

We formulate the problem of optimal control of TCP-AQM interac-
tion as a periodic optimization problem, in which the state space is two
dimensional

y = (y1, y2) , f(u, y) = (f1(u, y1), f2(u, y1)) ; (1.6)

and the control u is a scalar: u(t) ∈ U , with

U
def
= {u : 0 ≤ u ≤ 1} . (1.7)

We consider two congestion control schemes: Additive Increase Multi-
plicative Decrease (AIMD) scheme and Multiplicative Increase Multi-
plicative Decrease (MIMD) scheme. In both cases the first state com-
ponent y1(t) is interpreted as a sending rate at the moment t, while
the second state component y2(t) represents the size of the queue in the
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router buffer. In the AIMD scheme, the evolution of y1(t) is defined by
the equation

ẏ1(t) = f1(u(t), y1(t))
def
= α(1 − u(t)) − βy2

1(t)u(t), (1.8)

where α = α0n/τ2 and β = 1−β0/n. Here n is the number of competing
TCP connections, τ is the round trip time. Typical values for α0 and β0

are 1 and 0.5, respectively. In the MIMD scheme, the evolution of y1(t)
is defined by the equation

ẏ1(t) = f1(u(t), y1(t))
def
= γy1(t)(1 − u(t)) − βy2

1(t)u(t), (1.9)

where γ = γ0/τ and β as in the AIMD case. A typical value for γ0 is 0.01.
The control u(t) is interpreted as the dropping/marking probability. A
detail derivation of equation (1.8) can be found for instance in [10] and
[15]. Note also that if the control is not applied (u(t) = 0), the sending
rate grows linearly in time if AIMD is used, and the sending rate grows
exponentially in time if MIMD is used.

We study active queue management with and without explicit con-
gestion notifications. When AQM with ECN is used, the packets are not
dropped from the buffer when control is applied and the buffer is not
full. In the case of AQM with ECN (AQM-ECN scheme), the evolution
of the router buffer content y2(t) is described by

ẏ2(t) = f2(u(t), y1(t)) = f2(y1(t))
def
=

⎧⎨
⎩

y1(t) − c, 0 < y2(t) < B,
[y1(t) − c]+, y2(t) = 0,
[y1(t) − c]−, y2(t) = B,

(1.10)
where c is the router capacity, B is the buffer size, [a]+ = max(a, 0)
and [a]− = min(a, 0). In the case of AQM without ECN (AQM-non-
ECN scheme), AQM signals congestion by dropping packets with rate
u(t)y1(t). Consequently, the dynamics of the router buffer content y2(t)
is described by

ẏ2(t) = f2(u(t), y1(t))
def
=

⎧⎨
⎩

(1 − u(t))y1(t) − c, 0 < y2(t) < B,
[(1 − u(t))y1(t) − c]+, y2(t) = 0,
[(1 − u(t))y1(t) − c]−, y2(t) = B.

(1.11)
The function g(u, y) in the objective (1.2) will be defined as follows

g(u, y) = ψ(y1) − κy2 − MeK(y2−B)y1, (1.12)

where ψ(·) is the utility function for the sending rate value, κy2 is the
cost of delaying the data in the buffer, and MeK(y2−B)y1 is the penalty
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function for losing data when the buffer is full. Examples of the utility
functions we will be dealing with are:

ψ(y1) = y1 , ψ(y1) = log(1 + y1) , ψ(y1) = (y1)2 . (1.13)

The rest of the paper is organized as follows: In Section 2 we give an
overview of the linear programming approach to periodic optimization.
Then, in Sections 3 and 4 we apply the general technique of Section 2
to the problem of interaction between TCP and AQM. We show that
depending on the utility function for the sending rate, we obtain either
periodic or steady state optimal solution. Some technical proofs are
postponed to the Appendix. We conclude the paper with Section 5.

2. Linear programming approach
In [7] it has been shown that the periodic optimization problem (1.2)

can be approximated by a family of finite dimensional Linear Program-
ming Problems (LPPs) (called in the sequel as approximating LPP).
This approximating LPP is constructed as follows.

Let yj (j = 1, ..., m) stand for the jth component of y and let φi(y)
be the monomomial:

φi(y)
def
= yi1

1 ...yim
m ,

where i is the multi-index: i
def
= (i1, ..., im). Let us denote by IN the set

of multi-indices

IN
def
= {i : i = (i1, ..., im) , i1, ..., im = 0, 1, ..., N , i1 + ... + im ≥ 1 }.

Note that the number of elements in IN is (N +1)m−1. Assume that, for
any ∆ > 0, the points (u∆

l , y∆
k ) ∈ U×Y , l = 1, ..., L∆ , k = 1, ..., K∆ ,

are being chosen in such a way that, for any (u, y) ∈ U×Y , there exists
(u∆

l , y∆
k ) such that ||(u, y) − (u∆

l , y∆
k )|| ≤ c∆ , where c is a constant.

Define the polyhedral set W ∆
N ⊂ R

L∆+K∆

W∆
N

def
=

⎧⎨
⎩γ = {γl,k} ≥ 0 :

∑
l,k

γl,k = 1 ,

∑
l,k

(φ′
i(y

∆
k ))T f(u∆

l , y∆
k )γl,k = 0 , i ∈ IN

⎫⎬
⎭ , (1.14)

where φ′
i(·) is the gradient of φi(·). Define the approximating LPP as

follows
max

γ∈W∆
N

∑
l,k

γl,kg(u∆
l , y∆

k )
def
= G∆

N , (1.15)



TCP-AQM Interaction: Periodic Optimization via Linear Programming 7

where
∑

l,k

def
=

∑L∆

l=1

∑K∆

k=1 .
As shown in [7] (under certain natural and easily verifiable conditions),

there exists the limit of the optimal value GN,∆ of the LPP (1.15) and

this limit is equal to the optimal value Gper of the periodic optimization

problem (1.2):

lim
N→∞

lim
∆→0

G∆
N = Gper . (1.16)

Also, for any fixed N ,

lim
∆→0

G∆
N

def
= GN ≥ Gper . (1.17)

Thus, G∆
N can be used as an approximation of Gper if N is large and

∆ is small enough.
Let (u∗(·), y∗(·)) be the solution of the periodic optimization problem

(1.2) defined on the optimal period T = T ∗ (assuming that this solution

exists and is unique) and let γN,∆ def
= {γN,∆

l,k } be an optimal basic
solution of the approximating LPP (1.15). From the consideration in [7]
it follows that an element γN,∆

l,k of γN,∆ can be interpreted as an estimate
of the “proportion” of time spent by the optimal pair (u∗(·), y∗(·)) in a
∆-neighborhood of the point (ul, yk), and in particular, the fact that γ∆

l,k
is positive or zero can be interpreted as an indication of that whether or
not the optimal pair attends the ∆-neighborhood of (ul, yk).

Define the set Θ by the equation

Θ
def
= {(u, y) : (u, y) = (u∗(τ), y∗(τ)) for some τ ∈ [0, T ∗] } . (1.18)

This Θ is the graph of the of the optimal feedback control function,
which is defined on the optimal state trajectory Y def

= {y : (u, y) ∈ Θ}
by the equation ψ(y)

def
= u ∀ (u, y) ∈ Θ . For the definition of ψ(·)

to make sense, it is assumed that the set Θ is such that from the fact
that (u′, y) ∈ Θ and (u′′, y) ∈ Θ it follows that u′ = u′′ (this assumption
being satisfied if the closed curve defined by y∗(τ) , τ ∈ [0, T ∗] does
not intersect itself).

Define also the sets:

Θ∆
N

def
= {(u∆

l , y∆
k ) : γN,∆

l,k > 0}, (1.19)

Y∆
N

def
= {y : (u, y) ∈ Θ∆

N} , (1.20)

ψ∆
N (y)

def
= u ∀ (u, y) ∈ Θ∆

N , (1.21)

where again it is assumed that from the fact that (u′, y) ∈ Θ∆
N and

(u′′, y) ∈ Θ∆
N it follows that u′ = u′′. Note that the set Θ∆

N (and the set
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Y∆
N ) can contain no more than (N + 1)m elements since γN,∆, being a

basic solution of the LPP (1.15), has no more than (N + 1)m positive
elements (the number of the equality type constraints in (1.15)).

As mentioned above, the fact that γN,∆
l,k is positive or zero can be

interpreted as an indication of that whether or not the optimal pair
attends the ∆-neighborhood of (u∆

l , y∆
k ), and thus, one may expect that

Θ∆
N can provide some approximation for Θ if N is large and ∆ is small

enough. Such an approximation has been formalized in [7], where it has
been established that:

(i) Corresponding to an arbitrary small r > 0, there exists N0 such

that, for N ≥ N0 and ∆ ≤ ∆N (∆N is positive and small enough),

Θ ⊂ Θ∆
N + rB . (1.22)

(ii) Corresponding to an arbitrary small r > 0 and arbitrary small

δ > 0, there exists N0 such that, for N ≥ N0 and ∆ ≤ ∆N (∆N being

positive and small enough),

Θ∆,δ
N ⊂ Θ + rB , (1.23)

where Θ∆,δ
N

def
= {(u∆

l , y∆
k ) : γ∆

l,k ≥ δ } .
Note that in both (1.22) and (1.23), B is the closed unit ball in R

n+m.

The fact that Θ∆
N “approximates” Θ for N large and ∆ small enough

leads to the fact that Y∆
N approximates Y and to the fact that ψ∆

N (y)
approximates (in a certain sense) ψ(y). This gives rise to the following
algorithm for construction of near-optimal periodic admissible pair [7]:

1) Find an optimal basic solution γ∆
N and the optimal value G∆

N of
the approximating LPP (1.15) for N large and ∆ small enough; the
expression “N large and ∆ small enough” is understood in the sense
that a further increment of N and/or a decrement of ∆ lead only to
insignificant changes of the optimal value G∆

N and, thus, the latter can
be considered to be approximately equal to Gper (see (1.16)).

2) Define Θ∆
N , Y∆

N , ψ∆
N (y) as in (1.19). By (1.22) and (1.23),

the points of Y∆
N will be concentrated around a closed curve being the

optimal periodic state trajectory while ψ∆
N (y) will give a point wise ap-

proximation to the optimal feedback control.
3) Extrapolate the definition of the function ψ∆

N (y) to some neigh-
borhood of Y∆

N and integrate the system (1.1) starting from an initial
point y(0) ∈ Y∆

N and using ψ∆
N (y) as a feedback control. The end point

of the integration period, T ∆, is identified by the fact that the solution
“returns” to a small vicinity of the starting point y(0).



TCP-AQM Interaction: Periodic Optimization via Linear Programming 9

4) Adjust the initial condition and/or control to obtain a periodic
admissible pair (u∆(τ), y∆(τ)) defined on the interval [0, T ∆]. Calculate
the integral 1

T∆

∫ T∆

0 g(u∆(τ), y∆(τ))dτ and compare it with G∆
N . If

the value of the integral proves to be close to G∆
N , then, by (1.16), the

constructed admissible pair is a “good” approximation to the solution
of the periodic optimization problem (1.2).

In conclusion of this section, let us consider the following important
special case. Assume that, for all N large and ∆ small enough, the
optimal basic solution γN,∆ of the approximating LPP (1.15) has the
property that

γN,∆
l∗,k∗ = 1 , γN,∆

l,k = 0 ∀ (l, k) �= (l∗, k∗) , (1.24)

which is equivalent to that the set Θ∆
N consists of only one point

Θ∆
N = {(u∆

l∗ , y
∆
k∗)} . (1.25)

Note that that the indexes l∗, k∗ in (1.24) and (1.24) may depend on N
and ∆.

Assume that there exists a limit

lim
∆→0

(u∆
l∗ , y

∆
k∗) = (ū, ȳ) , (1.26)

(the same for all sufficiently large N). Then, as follows from results of [7],
the pair (ū, ȳ) is the steady state solution of the periodic optimization
problem (1.2) and, in particular,

Gper = Gss = g(ū, ȳ) . (1.27)

3. Optimal periodic solution
In this and the next sections it is always assumed that

Y = {(y1, y2) | yi ∈ [0, 4], i = 1, 2} (1.28)

and that U is defined by (1.7); it is also assumed everywhere that c = 1
and B = 4 (see the equations describing the dynamics of the buffer’s
content (1.10) and (1.11)).

Let us consider the interaction between AIMD TCP (1.8) and the
AQM-ECN router (1.10), the former being taken with α = 1/98 and
β = 1/2 (such a choice of these parameters corresponds to the case of a
single TCP connection and a typical value of the round trip time).
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Let us use the objective function (1.12), with the following values of
the parameters: κ = 0, M = 20 and K = 5; and with the utility function
being defined by the equation

ψ(y1) = y2
1. (1.29)

Note that a conventional choice of the sending rate utility function is
a concave function. However, the analysis of a convex utility function
makes the present work complete and leads to some interesting observa-
tions. The concave utility functions are analyzed in the next section.

Define the grid of U × Y by the equations (with U and Y mentioned
as above)

u∆
i

def
= i∆, y∆

1,j
def
= j∆, y∆

2,k
def
= k∆. (1.30)

Here i = 0, 1, . . . , 1
∆ and j, k = 0, 1, . . . , 4

∆ (∆ is chosen in such a way
that 1

∆ is an integer). The approximating LPP (1.15) can be written in
this specific case as

G∆
N

def
= max

γ∈W∆
N

∑
i,j,k

(
(y∆

1,j)
2 − 20e5(y2,k−4)y∆

1,j

)
γi,j,k, (1.31)

where W∆
N is a polyhedral set defined by the equation

W∆
N

def
=

⎧⎨
⎩γ = {γi,j,k} ≥ 0 :

∑
i,j,k

γi,j,k = 1 ,

∑
i,j,k

(φ′
i1,i2(y

∆
1,j , y

∆
2,k))

T f(u∆
i , y∆

1,j , y
∆
2,k)γi,j,k = 0, (i1, i2) ∈ IN

⎫⎬
⎭ ,(1.32)

in which φi1,i2(y1, y2)
def
= yi1

1 yi2
2 .

The problem (1.31) was solved using the CPLEX LP solver [16] for
N = 5 and N = 7 with ∆ varying from 0.0125 to 0.2. We have obtained
the following optimal values of the LPP (1.31):

G0.1
5 ≈ 1.0152, G0.05

5 ≈ 1.0174, G0.025
5 ≈ 1.0179, G0.0125

5 ≈ 1.0180,
G0.2

7 ≈ 1.0156, G0.1
7 ≈ 1.0174, G0.025

7 ≈ 1.0175, G0.0125
7 ≈ 1.0175.

From this data one may conclude that G7 = lim∆→0 G∆
7 ≈ 1.0175.

Since G7 ≥ Gper, it follows that, if for some admissible periodic pair
(u(τ), y(τ)),

1
T

∫ T

0

(
y2
1(τ) − y1(τ)100e20(y2(τ)−4)

)
dτ ≈ 1.0175 , (1.33)
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then this pair is an approximate solution of the periodic optimization
problem (1.2).

Let
{

γN,∆
i,j,k

}
stand for the solution of (1.31) and define the sets

Θ∆
N

def
=

{
(ui, y1,j , y2,k) : γN,∆

i,j,k �= 0
}

,

Y∆
N

def
=

{
(y1,j , y2,k) :

∑
i

γN,∆
i,j,k �= 0

}
. (1.34)

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

y
1

y
2

Figure 1.2. Optimal state trajectory approximation

Let us mark with dots the points on the plane (y1, y2) which belong
to Y∆

N for N = 7 and ∆ = 0.0125. The result is depicted in Figure 1.2.
The points are represented with � or • and have an associated u = 1
or u = 0, respectively. It is possible to construct a feedback control by
using two thresholds for the buffer content. As the queue length y2 is
decreasing (in the region where y1 < 1), we have a certain threshold
for when the control should be dropped and allow the data rate y1 to
grow. The same can be said for the opposite case when the queue is
increasing and y1 ≥ 1. The threshold values in our numerical example
can be chosen as 2.7466 and 2.7939, respectively. Thus, the feedback
control is defined as
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u =

⎧⎨
⎩

1 , y1 < 1 and y2 > 2.7466
1 , y1 ≥ 1 and y2 > 2.7939
0 , otherwise

(1.35)

Using this feedback control, we can integrate the system with the
initial point y1 = 1, y2 = 0. The optimal state trajectory is plotted as a
solid line in Figure 1.2. In Figure 1.3 we show the evolution of the state
variables and the optimal control.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

t

0 10 20 30 40 50

0

1

t

u

y
1

y
2

Figure 1.3. Approximated periodic solution and optimal control

The value of the objective function calculated on this pair is approx-
imately 1.0083. Comparing it with (1.33), one can conclude that the
admissible pair which has been constructed is an approximation to the
solution of (1.2).

Curiously enough, the evolution of the optimal sending rate y1 resem-
bles a “saw-tooth” behavior of the “instantaneous” TCP sending rate.
This is despite the fact that the variables in our fluid model stand for
average values and a convex utility function does not seem to correspond
to the commonly used utility concept for elastic traffic.

We have also tested the current objective function for the interac-
tion between AIMD and AQM-non-ECN and for the MIMD congestion
control. For those cases, we have also detected similar periodic optimal
solutions.



TCP-AQM Interaction: Periodic Optimization via Linear Programming 13

4. Optimal steady state solution
As in the previous section, let us consider the interaction between

AIMD TCP (1.8) and the AQM-ECN router (1.10). However, in contrast
to the above consideration, let us choose the following objective function

g(u, y) = y1 − y2. (1.36)

That is, take ψ(y1) = y1, κ = 1, and M = 0 in (1.12). Note that,
as can be easily verified, in this case, the solution of the steady state
optimization problem (1.4) is

ū = 0.02 , ȳ1 = 1 , ȳ2 = 0 (1.37)

and, in particular, Gss = ȳ1 − ȳ2 = 1 .
As in section 3, define the grid of U × Y by the equations

u∆
i

def
= i∆, y∆

1,j
def
= j∆, y∆

2,k
def
= k∆, (1.38)

where i = 0, 1, . . . , 1
∆ and j, k = 0, 1, . . . , 4

∆ (∆ being chosen in such a
way that 1

∆ is an integer). The approximating LPP (1.15) in this specific
case is of the form

max
γ∈W∆

N

∑
i,j,k

(
y∆
1,j − y∆

2,k

)
γi,j,k = G∆

N , (1.39)

where W∆
N has exactly the same form as in (1.31). That is,

W∆
N

def
=

⎧⎨
⎩γ = {γi,j,k} ≥ 0 :

∑
i,j,k

γi,j,k = 1 ,

∑
i,j,k

(φ′
i1,i2(y

∆
1,j , y

∆
2,k))

T f(u∆
i , y∆

1,j , y
∆
2,k)γi,j,k = 0, (i1, i2) ∈ IN

⎫⎬
⎭ ,(1.40)

with φi1,i2(y1, y2)
def
= yi1

1 yi2
2 .

Proposition 1. For any N = 1, 2, ..., and any ∆ > 0 such that

0.02
∆

def
= i∗ is integer, there exists a basic optimal solution γN,∆ def

=
{γN,∆

i,j,k } of the LPP (1.39) defined by the equations

γN,∆
i∗,j∗,k∗ = 1 , γN,∆

i,j,k = 0 ∀ (i, j, k) �= (i∗, j∗, k∗) , (1.41)

where i∗ is as above and j∗ = 1
∆ , k∗ = 0 .
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Proof of the proposition is given in the Appendix.
Since, by definition, u∆

i∗ = 0.02 , y∆
1,j∗ = 1 , y∆

2,k∗ = 0 , that is,
(u∆

i∗ , y
∆
1,j∗ , y

∆
2,k∗) coincides with the optimal steady state regime (ū, ȳ1, ȳ2)

defined in (1.37), one obtains the following corollary of Proposition 1 (see
(1.26) and (1.27)).

Corollary 2. The periodic optimization problem (1.2) has a steady

state solution and this steady state solution is defined by (1.37). In

particular,

Gper = Gss = ȳ1 − ȳ2 = 1 . (1.42)

We have also checked numerically the other criteria with concave util-
ity functions for the sending rate. It appears that if the utility function
for the sending rate is concave, the optimal solution is steady state. The
same conclusion holds for the case of interaction between AIMD TCP
and AQM-non-ECN and when MIMD is used instead of AIMD.

5. Conclusions
We have analyzed the interaction between TCP and AQM using the

fluid model approach. The fluid model approach leads to a periodic op-
timization problem. We have shown that depending on the choice of
the utility function for the sending rate, the optimal solution is either
periodic or steady state. In particular, we have obtained steady state
solution for all concave utility functions and periodic solutions for some
convex utility functions. Even though a convex utility function does not
seem to correspond to the commonly used utility concept for elastic traf-
fic, the optimal periodic solution resembles strikingly the “saw-tooth”
behavior of the instantaneous TCP sending rate evolution. With the
help of linear programming approach for periodic optimization we have
succeeded to prove that the steady state solution is indeed an optimal
solution for the given non-linear periodic optimization problem.
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Appendix. Proof of Proposition 1.
Proof of Proposition 1. First of all let us note that from the fact that

(u∆
i∗ , y

∆
1,j∗ , y

∆
2,k∗) coincides with (ū, ȳ1, ȳ2) and the latter is a steady state

solution, it follows that f(u∆
i∗ , y

∆
1,j∗ , y

∆
2,k∗) = 0 . This implies that the
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vector γN,∆ with the components defined in (1.41) is feasible, the value
of the objective function obtained on this solution is equal to

y∆
1,j∗ − y∆

2,k∗ = ȳ1 − ȳ2 = 1 . (1.43)

To prove that γN,∆ is is optimal, it is enough to show that the optimal
value of the problem dual to (1.39) is equal to 1 (that is, the same as in
(1.43)). The set of feasible solutions ω ∈ R

(N+1)2 of the problem dual
to (1.39) is described by the inequalities

ω1 +
∑

(i1,i2)∈IN

ωi1,i2(φ
′
i1,i2(y

∆
1,j , y

∆
2,k))

T f(u∆
i , y∆

1,j , y
∆
2,k) ≥ y∆

1,j − y∆
2,k

∀(i, j, k) , (1.44)

where, for convenience, the first component of ω is denoted as ω1 and
the other (N + 1)2 − 1 components are denoted as ωi1,i2 , (i1, i2) ∈ IN .
Note that , the objective function of the dual problem is

Fdual(ω) = ω1 (1.45)

Define the vector ω̄ by the equations

ω̄1 = 1 , ω̄0,1 = 1 + ∆ , ω̄i1,i2 = 0 ∀ (i1, i2) �= (0, 1). (1.46)

It is obvious that
Fdual(ω̄) = ω̄1 = 1 . (1.47)

Thus, to prove the desired result, one needs to show that the vector ω̄
satisfies the inequalities (1.44) or equivalently (having in mind (1.46)
and the fact that (φ′

0,1(y
∆
1,j , y

∆
2,k))

T = (0, 1) ) to prove that

1 + (1 + ∆)f2(y∆
1,j) ≥ y∆

1,j − y∆
2,k ∀(i, j, k) , (1.48)

where f2(y1) is defined in (1.10). Consider the following three cases:
(1) ∆ ≤ y∆

2,k < 4 (1 ≤ k < 4
∆)

(2) y∆
2,k = 0 (k = 0)

(3) y∆
2,k = 4 (k = 4

∆)

By (1.10), in case (1) for any j = 0, 1, ... 4
∆ ,

1 + (1 + ∆)f2(y∆
1,j) = 1 + (1 + ∆)(y∆

1,j − 1) ≥ y∆
1,j − ∆ ≥ y∆

1,j − y∆
2,k .

This proves the validity of (1.48) in the given case.
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In case (3) (see (1.10)), f2(y∆
1,j) ≤ 0 and, hence, for any j = 0, 1, ... 4

∆ ,

1 + (1 + ∆)f2(y∆
1,j) ≥ 1 ≥ y∆

1,j − 4 = y∆
1,j − y∆

2,k .

To deal with case (2), consider two situations:
(2.a) 0 ≤ y∆

1,j ≤ 1 (0 ≤ j ≤ 1
∆)

(2.b) 1 < y∆
1,j ≤ 4 ( 1

∆ < j ≤ 4
∆).

In case (2.a),

1+(1+∆)f2(y∆
1,j) = 1+(1+∆) max(y∆

1,j −1, 0) = 1 ≥ y∆
1,j = y∆

1,j −y∆
2,k ;

and in case (2.b),

1 + (1 + ∆)f2(y∆
1,j) = 1 + (1 + ∆) max(y∆

1,j − 1, 0) = 1 + (1 + ∆)(y∆
1,j − 1)

> y∆
1,j = y∆

1,j − y∆
2,k .

This completes the proof of Proposition 1.
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Abstract The theory of linear quadratic differential games is in principle known.
An excellent reference for management and economics applications is
Dockner et al. (2000). We review here the results, showing that in
useful simple cases, explicit solutions are available. This treatment is
not included in the previous reference and seems to be original. In
non-stationary cases, explicit solutions are not available, we prove the
existence of solutions of coupled Riccati equations, which provide a com-
plete solution of the Nash equilibrium problem.

1. Introduction
Differential games is attracting a lot of interest in the management

and economics literature. This is because many players appear in most
situations, and traditional optimization techniques for a single decision
maker are not sufficient. However the treatment of differential games
is much more complex than that of control theory, especially as far as
obtaining explicit solutions is concerned. In this article, we complete a
presentation of Dockner et al. (2000), a main reference for management
and economics applications of differential games, to derive explicit so-
lutions of linear quadratic differential games in a fairly general context.
However, when data depend on time, non-stationary situation, we do
not have explicit solutions anymore. The problem reduces to solving
coupled Riccati equations. We prove existence of the solution of this
pair of equations, which provide control strategies for the players.
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2. Open Loop Differential Games

Finite Horizon
We consider the following model, [Dockner et al. (2000), Section 7.1].

We have two players, whose controls are denoted by v1, v2. The state
equation is described by

ẋ = ax + b1v1 + b2v2, x(0) = x0.

The payoffs of player i = 1, 2 are given by

J i(x,v) =
1
2

∫ T

0
[αix2 + βi(vi)2]dt.

We apply the theory of necessary conditions. We first define the Hamil-
tonians by the formulas

H i(x,v, qi) =
1
2
(αix2 + βi(vi)2) + qi(ax + b1v1 + b2v2),

where v = (v1, v2). Writing the adjoint equations, we obtain

−ṗi = αiy + api, pi(T ) = 0.

Writing next the optimality conditions

H i
vi(y,u, pi) = 0,

we obtain
βiui + pibi = 0.

We then notice an important simplification, namely

pi

αi
= p,

with
−ṗ = y + ap, p(T ) = 0.

We next define

M =
2∑

i=1

αi(bi)2

βi
.

Collecting results, we obtain the maximum principle conditions

ẏ = ay − Mp

−ṗ = y + pa

y(0) = x0, p(T ) = 0,
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and the optimal controls of both players are given by

ui = −αibip

βi
.

We can compute y(t), p(t) following a decoupling argument. We postu-
late

p(t) = P (t)y(t).

It is easy to show that P (t) is the solution of the Riccati equation

−Ṗ − 2aP + MP 2 − 1 = 0, P (T ) = 0,

and that furthermore
1

P (t)
= −a + s

exp 2s(T − t) + 1
exp 2s(T − t) − 1

,

where
s =

√
a2 + M.

We then obtain the explicit solution

y(t) = x0
s(exp s(T−t)+exp−s(T−t))−a(exp s(T−t)−exp−s(T−t))

s(exp sT + exp−sT )−a(exp sT−exp−sT )
.

Infinite Horizon
We consider the infinite horizon version of the basic model above.

We introduce a discount factor r. The maximum principle leads to the
following relations ( usual changes with respect to the finite horizon case)

ẏ = ay − Mp,

−ṗ + rp = y + pa,

y(0) = x0.

There is no final condition on p(T ), but we require the integration con-
ditions

y ∈ L2
r(0,∞;R), p ∈ L2

r(0,∞;R).

We can check that the solution of the infinite horizon problem is obtained
as follows

p = Py,

with

P =
2a − r +

√
(r − 2a)2 + 4M
2M

,

and y, p satisfy the integrability conditions.
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Non-Zero Final Cost
We consider again the finite horizon case, with non-zero final cost. So

the payoffs are given by

J i(x,v) =
1
2

∫ T

0
[αix2 + βi(vi)2]dt +

1
2
γi(x(T ))2.

The adjoint variables p1, p2 are then the solutions of

−ṗi = αiy + api, pi(T ) = γiy(T ).

We do not have anymore the property

pi

αi
= p.

However we shall be able again to derive an explicit solution.

We can see indeed that

pi = αip + γiπ,

where p, π satisfy
−ṗ = y + ap, p(T ) = 0,

−π̇ = aπ, π(T ) = y(T ).

We introduce a number analogous to M

N =
2∑

i=1

γi(bi)2

βi
,

and define
� = Mp + Nπ.

We deduce the equation for y

ẏ = ay − �, y(0) = x0,

and we check that

−�̇ = My + a�, �(T ) = Ny(T ).

We can decouple the two-point boundary value problem in y, �, by
writing

�(t) = Q(t)y(t),
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and Q is the solution of the Riccati equation

−Q̇ − 2aQ + Q2 = M, Q(T ) = N.

We deduce easily
p = Ry, π = ρy,

with
−Ṙ = 1 + 2aR − QR, R(T ) = 0

−ρ̇ = 2aρ − Qρ, ρ(T ) = 1.

We next check that

Q(t) = a + s
(N − a − s) + (N − a + s) exp 2s(T − t)
(N − a + s) exp 2s(T − t) − (N − a − s)

,

and that
p1(t) = P 1(t)y(t), p2(t) = P 2(t)y(t),

where P 1, P 2 are solutions of the system

−Ṗ 1 − 2aP 1 +
(b1)2

β1
(P 1)2 +

(b2)2

β2
P 1P 2 = α1

−Ṗ 2 − 2aP 2 +
(b2)2

β2
(P 2)2 +

(b1)2

β1
P 1P 2 = α2

P 1(T ) = γ1, P 2(T ) = γ2,

which is a system of Riccati equations. we then assert that

P 1(t) = α1R(t) + γ1ρ(t),

P 2(t) = α2R(t) + γ2ρ(t).

To complete the explicit solution, we check the following formulas

ρ(t) =
2s exp a(T − t)

(N − a + s) exp s(T − t) − (N − a − s) exp−s(T − t)
,

R(t) =
1
M

[−2sN exp a(T−t)+(a+s)(N−a+s) exp s(T−t)

+(N−a−s)(s−a) exp−s(T−t)]

/[(N−a+s) exp s(T−t)−(N−a−s) exp−s(T−t)]

Furthermore,

y(t) =
2sx0

(N − a + s) exp s(T − t) − (N − a − s) exp−s(T − t)
.
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3. Non-Stationary Mode

Maximum Principle
We consider the same problem with non-constant parameters, namely

ẋ(t) = a(t)x(t) + b1(t)v1(t) + b2(t)v2(t), x(0) = x0,

and

J i(v1(.), v2(.)) =
1
2

∫ T

0
(αi(t)x2(t) + βi(t)(vi)2(t))dt +

1
2
γix2(T ).

We can write the maximum principle in a way similar to the stationary
case. To save notation, we shall not explicitly write the argument t.
This leads to the system

ẏ(t) = ay − (b1)2

β1
p1 − (b2)2

β2
p2, y(0) = x0

−ṗi = αiy + api, pi(T ) = γiy(T ).

Unfortunately the simplifications of the stationary case do not carry
over. However, one can use the fact that the system obtained from the
maximum principle arguments is linear. So if we set

A(t) =

⎛⎜⎜⎝ a(t) −(b1)2

β1
(t) −(b2)2

β2
(t)

−α1(t) −a(t) 0
−α2(t) 0 −a(t)

⎞⎟⎟⎠
and

z(t) =

⎛⎝ y(t)
p1(t)
p2(t).

⎞⎠ ,

then the system of conditions from the maximum principle reads

ż(t) = A(t)z(t).

Fundamental Matrix
The solution of this non-stationary linear differential system is ob-

tained as follows
z(t) = Φ(t, τ)z(τ),∀t > τ,

where Φ(t, τ) is called the fundamental matrix. In the stationary case,
where A does not depend on t we can find the eigenvalues and the
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eigenvectors of A. We can check that these eigenvalues are s,−s,−a.
We find next the corresponding eigenvectors, w1, w2, w3. We can show
that

W = (w1, w2, w3) =

⎛⎜⎜⎜⎜⎝
1 1 0

− α1

a + s
− α1

a − s

(b2)2

β2

− α2

a + s
− α2

a − s
−(b1)2

β1
.

⎞⎟⎟⎟⎟⎠
Let Λ be the diagonal matrix with eigenvalues on the diagonal, we can
show that the fundamental matrix is given by

Φ(t, τ) = W exp Λ(t − τ)W−1.

The fundamental matrix satisfies the matrix differential equation

∂

∂t
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I.

Moreover, this matrix is invertible, with inverse Ψ(t, τ) = (Φ(t, τ))−1

given by
∂

∂t
Ψ(t, τ) = −Ψ(t, τ)A(t), Ψ(τ, τ) = I.

Since the Maximum principle leads to a two-point boundary value prob-
lem, one must find the values

�1 = p1(0), �2 = p2(0).

They are obtained from the conditions

p1(T ) = γ1y(T ), p2(T ) = γ2y(T ),

which amounts to solving the linear system of algebraic equations

(Φ22(T, 0) − γ1Φ12(T, 0))�1 + (Φ23(T, 0) − γ1Φ13(T, 0))�2

= (γ1Φ11(T, 0) − Φ21(T, 0))x0,

(Φ32(T, 0) − γ2Φ12(T, 0))�1 + (Φ33(T, 0) − γ2Φ13(T, 0))�2

= (γ2Φ11(T, 0) − Φ31(T, 0))x0,

where Φij(T, 0) represents the element of line i and column j of the
matrix Φ(T, 0).

We can show the formulas

�1 =
Ψ21(T, 0) + γ1Ψ22(T, 0) + γ2Ψ23(T, 0)
Ψ11(T, 0) + γ1Ψ12(T, 0) + γ2Ψ13(T, 0)

x0,

�2 =
Ψ31(T, 0) + γ1Ψ32(T, 0) + γ2Ψ33(T, 0)
Ψ11(T, 0) + γ1Ψ12(T, 0) + γ2Ψ13(T, 0)

x0.
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We can show more generally that

p1(t) = P 1(t)y(t), p2(t) = P 2(t)y(t),

with the formulas

P 1(t) =
Ψ21(T, t) + γ1Ψ22(T, t) + γ2Ψ23(T, t)
Ψ11(T, t) + γ1Ψ12(T, t) + γ2Ψ13(T, t)

,

P 2(t) =
Ψ31(T, t) + γ1Ψ32(T, t) + γ2Ψ33(T, t)
Ψ11(T, t) + γ1Ψ12(T, t) + γ2Ψ13(T, t)

.

We can check directly that P 1(t), P 2(t) are solutions of the system of
Riccati differential equations

−Ṗ 1 − 2aP 1 +
(b1)2

β1
(P 1)2 +

(b2)2

β2
P 1P 2 = α1,

−Ṗ 2 − 2aP 2 +
(b2)2

β2
(P 2)2 +

(b1)2

β1
P 1P 2 = α2,

P 1(T ) = γ1, P 2(T ) = γ2,

already mentioned in the stationary case. This time the coefficients
depend on time.

4. Closed-Loop Nash Equilibrium

System of PDE
We proceed with the Dynamic Programming formulation. The Hamil-

tonians are defined by

H i(x,v, qi) =
1
2
(αix2 + βi(vi)2) + qi(ax + b1v1 + b2v2).

We look for Nash point equilibriums of the Hamiltonians H i(x,v, qi).
We obtain easily

ui(q) = −qi bi

βi
.

We next write

H1(x,q) =
1
2
α1x2 + q1ax − 1

2
(q1)2

(b1)2

β1
− q1q2 (b2)2

β2
,

H2(x,q) =
1
2
α1x2 + q2ax − 1

2
q2 (b2)2

β2
− q1q2 (b1)2

β1
.
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Dynamic Programming leads to the following system of partial differ-
ential equations

∂Ψ1

∂t
+

1
2
α1x2+

∂Ψ1

∂x
ax− 1

2
(
∂Ψ1

∂x
)2

(b1)2

β1
− ∂Ψ1

∂x

∂Ψ2

∂x

(b2)2

β2
=0,

∂Ψ2

∂t
+

1
2
α1x2+

∂Ψ2

∂x
ax− 1

2
(
∂Ψ2

∂x
)2

(b2)2

β2
− ∂Ψ1

∂x

∂Ψ2

∂x

(b1)2

β1
=0,

Ψ1(x, T ) =
1
2
γ1x2, Ψ2(x, T ) =

1
2
γ2x2, a.e.

(2.1)

System of Riccati Equations
The solutions are given by

Ψi(x, t) =
1
2
Qi(t)x2,

where Qi(t) are solutions of the system of Riccati equations

−Q̇1 − 2aQ1 +
(b1)2

β1
(Q1)2 + 2

(b2)2

β2
Q1Q2 = α1,

−Q̇2 − 2aQ2 +
(b2)2

β2
(Q2)2 + 2

(b1)2

β1
Q1Q2 = α2Q1(T ) = γ1,

Q2(T ) = γ2.

(2.2)

These equations are different from those of open-loop control. The cou-
pling term is different, reflecting the coupling through the state.

Stationary Case
The above Riccati equations cannot be solved as easily as in the open

loop case. To simplify we consider the stationary case (it corresponds
to an infinite horizon problem with no discount). The Riccati equations
reduce to the algebraic equations

−2aQ1 +
(b1)2

β1
(Q1)2 + 2

(b2)2

β2
Q1Q2 = α1,

−2aQ2 +
(b2)2

β2
(Q2)2 + 2

(b1)2

β1
Q1Q2 = α2.

(2.3)

To simplify notation, we set

νi =
(bi)2

βi
.
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We can write these equations as

(ν1Q1 + ν2Q2 − a)2 = ν1α1 + (ν2Q2 − a)2,

(ν1Q1 + ν2Q2 − a)2 = ν2α2 + (ν1Q1 − a)2.
(2.4)

Set ρ = ν1Q1 + ν2Q2 − a. We check that

ν1Q1 − ν2Q2 =
ν1α1 − ν2α2

ρ − a
,

and that ρ must be solution of the equation

φ(ρ) = (ρ − a)2(−3ρ2 − 2aρ + a2 + 2M) + (ν1α1 − ν2α2)2 = 0.

Assume that
a <

s√
3
,

we can show that there exists only one solution such that ρ > −a. This
solution is larger than s/

√
3 and

√
M/2 . If

a >
s√
3
,

then √
M

2
<

s√
3
,

we can show that for a sufficiently large, the equation may have 3 solu-
tions larger than

√
M/2. It has only one larger than a.

As an example, consider the following model of ”knowledge as a public
good”, see [Dockner et al. (2000), Section 9.5]. Two players contribute
by investing in accumulating knowledge as a capital, whose evolution is
governed by

ẋ = −δx + v1 + v2, x(0) = x0.

Each player faces an investment cost given by

ρvi +
1
2
(vi)2,

and benefits from the common knowledge according to an individual
revenue given by

x(t)(ai − x(t)).
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Note that in this model the individual profit declines when the collective
knowledge is sufficiently large, and can become negative. There is a
saturation effect. The pay-off for each player (to be minimized) is given
by

J i(v1, v2) =
∫ ∞

0
e−rt[ρvi +

1
2
(vi)2 − x(t)(ai − x(t))]dt.

We begin with the closed-loop Nash equilibrium. We write the Dy-
namic Programming equations . We first consider the Hamiltonians

H i(x,v, qi) = −x(ai − x) + ρvi +
1
2
(vi)2 + qi(−δx + v1 + v2)

and look for a Nash equilibrium in (v1, v2).We obtain easily

ui(q) = −ρ − qi

and it follows that

H i(x,q) = −x(ai − x) − 1
2
ρ2 − 1

2
(qi)2 − qi(2ρ + δx) − q1q2.

So the DP equations read

rΨi = −x(ai − x) − 1
2
ρ2 − 1

2
(Ψi

x)2 − Ψi
x(2ρ + δx) − Ψ1

xΨ2
x.

We look for quadratic solutions

Ψi =
1
2
Px2 − βix − γi

and we obtain, by identification

3
2
P 2 + P (δ +

r

2
) − 1 = 0,

βi(P + δ + r) + P (β1 + β2) = ai + 2Pρ,

rγi =
1
2
ρ2 +

1
2
(βi)2 − 2ρβi + β1β2.

We take the positive solution

P = −r + 2δ
6

+

√(
r + 2δ

6

)2

+
2
3

and the closed-loop controls are given by

ui(x, t) = −Px + βi − ρ.
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Applying these controls we get the trajectory

ẏ = −(δ + 2P )y + β1 + β2 − 2ρ,

which has a stable solution since P > 0.The stable solution is

ȳ =
β1 + β2 − 2ρ

2P + δ
.

We next consider open-loop controls. We assume to simplify that
a1 = a2 = a.We write the Maximum Principle necessary conditions.
Thanks to our simplification, the two adjoint variables coincide. We get
the system

ẏ = −δy − 2(ρ + p), y(0) = x0,

−ṗ + (r + δ)p = −a + 2y,

ui = −(ρ + p).

The solution of this system is easily obtained as follows

p = Qy − q,

where Q is a solution of

2Q2 + (r + 2δ)Q − 2 = 0.

Note that Q > P . Next q is the solution of

−q̇ + q(r + δ + 2Q) = a + 2Qρ.

The corresponding trajectory is defined by

ẏ + y(δ + 2Q) = −2ρ + 2q, y(0) = x0.

It has also a stable solution, given by

ŷ =
2q − 2ρ

δ + 2Q
,

where q is given by

q =
a + 2Qρ

r + δ + 2Q
.

We can show that

ŷ =
2(a − ρ(r + δ))

δ(r + δ) + 4
,



Explicit Solutions of LinearQuadratic Differential Games 31

ȳ =
2(a − ρ(r + δ) − ρP )

δ(r + δ) + 4 + Pδ
,

and conclude that
ȳ < ŷ.

The economic interpretation of this inequality is the following. Each
player has interest to benefit from the other player’s investment and
contribute the less possible. In the closed-loop case, one can make more
use of the common education than in the open-loop case, resulting in a
lower steady state.

From the economic considerations one can conjecture that the steady
state should improve in the case of a cooperative game. We shall verify
this property. In the cooperative game formulation we take as common
objective function the sum of each player objective function

J(v1, v2) =
∫ ∞

0
e−rt[ρ(v1 + v2) +

1
2
((v1)2 + (v2)2) − 2x(t)(a − x(t))]dt,

with the trajectory

ẋ = −δx + v1 + v2, x(0) = x0.

We can write the Maximum Principle for the cooperative game, and
obtain

ẏ = −δy − 2(ρ + p), y(0) = x0,

−ṗ + (r + δ)p = −2a + 4y,

ui = −(ρ + p).

Let us check simply the steady state, given by the relations

δy = 2(ρ + p),

(r + δ)p = −2a + 4y.

This leads to a steady state defined by

y∗ = 2
2a − (r + δ)
8 + δ(r + δ)

and it is easy to check that
y∗ > ŷ.
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Existence Result
We go back to equations (2.2). To simplify, we assume that the coef-

ficients do not depend on time. Recalling the notation νi, the equations
are

−Q̇1 − 2aQ1 + ν1(Q1)2 + 2ν2Q1Q2 = α1,

−Q̇2 − 2aQ2 + ν2(Q2)2 + 2ν1Q1Q2 = α2

Q1(T ) = γ1, Q2(T ) = γ2.

(2.5)

It is of interest to mimic the stationary case and introduce

ρ = ν1Q1 + ν2Q2 − a,

σ = ν1Q1 − ν2Q2.

We obtain the equations

−2ρ̇ + 3ρ2 + 2aρ = 2M + a2 + σ2, ρ(T ) = N − a,

−σ̇ = ν1α1 − ν2α2 − σ(ρ − a), σ(T ) = ν1γ1 − ν2γ2,

which reduce to the algebraic equation for ρ in the stationary case. We
want to prove the following result

Theorem 4.1 There exist a positive solution of equations (2.2)

We have seen in the stationary case that there may be several solutions.
So we do not claim uniqueness.

Proof. It is better to work with z = ρ + a. Thus we got the system

−ż +
3
2
z2 − 2az = M + σ2, z(T ) = N

−σ̇ = ν1α1 − ν2α2 − σ(z − 2a), σ(T ) = ν1γ1 − ν2γ2.

Note that we recover Q1, Q2 from z, σ, by the formulas

Q1 =
z + σ

2
, Q2 =

z − σ

2
.

We prove a priori estimates. We first interpret z as the Riccati equa-
tion of a control problem. Indeed, consider the control problem

ẋ = ax +
3
2
v, x(t) = x

Kx,t(v(.)) =
1
2

[∫ T

t

(
(M +

σ2(s)
2

)x2(s) +
3
2
v2(s)

)
ds + Nx2(T )

]
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then it is easy to check that

1
2
z2(t)x2 = min

v(.)
Kx,t(v(.)).

It follows immediately that z(t) > 0. In addition we can write

1
2
z2(t)x2 ≤ Kx,t(0).

Calling
σ∞ = sup

{0≤t≤T}
|σ(t)|,

we get the following inequality

0 ≤ z(t) ≤ exp 2aT (
M

2a
+

σ2

4a
+ N).

Now σ(t) is the solution of a linear equation. So we have the explicit
formula

σ(t) = (γ1ν1 − γ2ν2) exp−
∫ T

t
(z − 2a)(s)ds + (α1ν1 − α2ν2)

×
∫ T

t

(
exp−

∫ s

t
((z − 2a)(τ)dτ

)
ds.

Since z > 0, it follows easily that

σ(t) = (γ1ν1 − γ2ν2) exp−
∫ T

t
(z − 2a)(s)ds + (α1ν1 − α2ν2)

×
∫ T

t

(
exp−

∫ s

t
((z − 2a)(τ)dτ

)
ds.

We obtain

σ∞ ≤ exp 2aT

(
|γ1ν1 − γ2ν2| + |α1ν1 − α2ν2|

2a

)
.

So we have obtained a priori bounds on σ(t), z(t). They have been
obtained provided z(t) can be interpreted as the infimum of a control
problem. Now if we consider a local solution σ(t), z(t), near T , i.e.
defined in t ∈ (T − ε, T ] for ε sufficiently small, we obtain a positive
solution for z, since z(T ) > 0. Moreover the Control interpretation can
be easily obtained, and thus the bounds are valid on this small interval.
Since the bounds do not depend on ε, we can expand the solution beyond
T − ε, and in fact in [0, T ]. We deduce Q1, Q2. They are positive near
T , and by extension, they are positive. This concludes the proof of
Theorem 4.1.
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Abstract An extended generator for a semigroup of linear contractions corre-
sponding to a Markov process on a Banach space is introduced and its
fundamental properties are examined. It is argued that the extended
generator is a better tool to analyze the behavior of the semigroup in var-
ious time scales (discrete and continuous) than the “classical” generator
of a semigroup. Probabilistic interpretation of extended generators in
the context of Markov processes and corresponding martingale process
is also provided. A controlled martingale problem is examined. Suitable
version of Bellman’s optimality equations are introduced, and the cor-
responding verification theorem, which extends the classical optimality
results for continuous time and discrete time controls, is established.

Keywords: Markov processes, infinitesimal operator, martingale problem, stochas-
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1. Introduction
The paper is devoted to a study of Markov processes of a specific two-

component structure. The first component corresponds to a continuous-
time type, and in a typical case it can be interpreted as a diffusion-type
component. The second component, corresponding to random jumps at
discrete times is, loosely speaking, of discrete-time type, in the sense that
it can be analyzed using discrete-time techniques. Although the features
of a semigroup of linear contractions on Banach space corresponding to
processes of that type can be revealed by the strong, weak (in the sense
of [6]) and the full generators (in the sense of [7]), the domains of these
three “classical” generators turn out to be quite awkward to work with.
The extended generator of a process with jumps occurring spontaneously
in a Poisson-like fashion, is considered in [5].

In this paper, we propose to analyze the behavior of a semigroup in
various time scales by means of a finite family of generating operators;
this family is referred to as the extended generator for the semigroup
(the definition was first given in [2]). We show that this generator is
an extension of both strong and weak generators, and it provides an
explicit description of the transitions of the process in various time scales.
Mimicking the standard probabilistic approach to semigroups of linear
contractions, we also present a result on the martingale problem related
to the extended generator. Let us stress that in the present paper we are
mainly concerned with a special case of an extended generator, called the
CD-extended generator, that is, the case when we have a continuous-time
component and a single discrete-time component.

The second part of the paper is concerned with application of the
extended generator to modelling and analysis of control systems with
complete information, incorporating both continuous and discrete time
scales. We introduce (after [3]) the definition of controlled martingale
problem. As expected, our definitions of martingale problems are natural
extensions of standard definitions, that can be found, for instance, in [1]
and [10]. The case of the relaxed form of a controlled martingale problem
is investigated in [3] and [9].

The paper is organized as follows: In Section 2, we present an example
of the semigroup corresponding to a uniform motion along the real line
with jumps of the size β or −β at the deterministic moments and we
analyze strong and weak generators for this semigroup. We show by
direct calculations that the extended generator is a more convenient tool
to analyze a semigroup of this kind than “classical” generators. In this
section, we also give the formal definition of the extended generator (in
particular, the definition of the CD-extended generator). We also prove
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that the continuous part of the CD-extended generator is an extension of
both strong and weak generators. In Section 3, we discuss a martingale
process related to the Markov process in various time scales via the
corresponding CD-extended generator Finally, in Section 4, we define
the controlled martingale problem of a mixed type. Bellman’s equations
for the value function are derived, and it is shown that they furnish
an efficient way to derive the optimal solution to a martingale control
problem of a mixed type. Verification theorem given in this paper is
straightforward extension of classical result, which can be found, for
instance, in [8].

It should be noted that examples presented in the paper are of an
introductory nature. However, we envision several possible applications
of the concept of the CD generator to deal with problems where at least
two different time scales appear that are singular with respect to each
other. Several practically relevant applications of extended generators in
the area of finance are studied in [9]. In particular, a finite time horizon
problem of optimal consumption-investment for a single agent subject
to continuous and discrete time scales is solved there using the concept
of the CD generator. In addition, in [9] there is given an approach to
the valuation of a defaultable coupon bond based on the concept of the
extended generator.
Notation. The following notation is used throughout the text:

lim
s↓t

= lim
s→t, s<t

Tt−f = lim
ε↓0

T(t−ε)f (if the limit exists)

[x] − the integer part of a real number x

[t]ρ =
{

0, 0 ≤ t < ρ,
kρ, kρ ≤ t < (k + 1)ρ, for k = 1, 2, . . .∫ t

s+
=

∫
(s,t]

.

Moreover ∂+f
∂x denotes the right-hand side partial derivative of the func-

tion f with respect to x. Finally, A and Ã denote strong and weak gen-
erators for a contraction semigroup Tt, with respective domains D(A)
and D(Ã) (in a sense of [6]).

2. Extended Generator of a Markov Process
Before stating a formal definition of an extended generator, let us

consider a simple, but motivating, example of a process, which can be
effectively analyzed using various time scales.
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2.1 Motivation
Let (Ω, F, P) be a probability space. To provide some justification of the
concept of an extended generator, we shall consider a simple example
of a piecewise deterministic Markov process X. = (Xt, t ≥ 0) taking
values in (R,B), where B is the σ-algebra of Borel subsets in the real
line. Specifically, the process X is governed by the following equation

dXt = α dt +
∑
n≤t

ξn, t ∈ [0,∞), (2.1)

with X0 = 0, where {ξn}∞n=1 is a sequence of i.i.d. random variables on
(Ω,F , P), such that P(ξn = β) = p = 1 − P(ξn = −β) and α, β > 0
are constants. We take F to be the natural filtration generated by the
process X. so that F = (FX

t )t≥0 where FX
t = σ(Xs, 0 ≤ s ≤ t). It is

clear that the process X. describes a uniform motion with the speed α
along the real line, combined with random jumps of the size β or −β at
deterministic moments 1, 2, . . ..
Remarks. The restrictive assumption that the jump component of the
considered process is driven by a sequence of random variables taking
only two values can be relaxed. Indeed, the jump size can be given as
an arbitrary random variable (see [9]). Notice also that for the sake of
simplicity we consider here only a continuous deterministic motionmod-
ulated by random jumps; a diffusion type component will be added in
Section 4.
Transition semigroup. To analyze the process X. given by (2.1), we
enlarge the original state space R to the product space Ē = R × [0,∞),
and we introduce a suitably modified process Y. = (Yt, t ≥ 0) taking
values in Ē, such that Yt = (Xt, t) . Observe that the process Y. defined
above is time-homogeneous. The semigroup Tt of linear contractions
corresponding to the process Y. has the form (we denote q = 1 − p):

Ttf(x, s) =
[t+s]−[s]∑

k=0

(
[t + s] − [s]

k

)
pkq[t+s]−[s]−k · (2.2)

· f
(
x + αt + βk − β ([t + s] − [s] − k) , s + t

)
for any function f ∈ B(Ē), where B(Ē) is the space of real-valued,
bounded, measurable functions on Ē.

Lemma 2.1 Suppose that Ttf is given by (2.2). Then, for t ∈ (0, 1) we
have that:
If n − 1 ≤ s < n − t, then Ttf(x, s) = f(x + αt, s + t),
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If n−t ≤ s < n, then Ttf(x, s) = pf(x+αt+β, s+t)+qf(x+αt−β, s+t)
for n = 1, 2, . . . .

Proof. The result follows from the explicit form of the semigroup (2.2),
combined with the fact that for t ∈ (0, 1) we have

[s + t] − [s] =
{

0, if n − 1 ≤ s < n − t,
1, if n − t ≤ s < n,

for every n = 1, 2, . . .

Strong and weak generators. It is easily seen that for any f ∈ D(A)
the strong generator of Y is given by

Af(x, t) =
∂f

∂t
(x, t) + α

∂f

∂x
(x, t).

By virtue of Lemma 2.1, the space B0(Ē) of strong continuity of the
semigroup consists of all bounded, measurable functions f characterized
by the following condition:

lim
t↓0

sup
x∈R

⎡⎢⎢⎢⎢⎣ sup
n − t ≤ s < n
n = 1, 2, . . .

(2.3)

|pf(x + αt + β, s + t) + qf(x + αt − β, s + t) − f(x, s)| +

+ sup
n − 1 ≤ s < n − t

n = 1, 2, . . .

|f(x + αt, s + t) − f(x, s)|

⎤⎥⎥⎥⎥⎦ = 0.

The domain D(A) contains all functions f ∈ B0(Ē) such that the fol-
lowing limit exists:

lim
t↓0

sup
x∈R

⎡⎢⎢⎢⎢⎣ sup
n − t ≤ s < n
n = 1, 2, . . .

(2.4)

1
t
|pf(x + αt + β, s + t) + qf(x + αt − β, s + t) − f(x, s)| +
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+ sup
n − 1 ≤ s < n − t

n = 1, 2, . . .

1
t
|f(x + αt, s + t) − f(x, s)|

⎤⎥⎥⎥⎥⎦ .

Remarks. Notice that several smooth functions, like f(x, s) = sinx
do not belong to B0

(
Ē
)
, and thus they do not belong to the domain

D(A). Since jumps of the semigroup can not be captured by the differ-
ential operator L = f ′

d, they have to be somehow encoded in the domain
D(A), in order to be able to recover the semigroup from (A,D(A)). Un-
fortunately, this encoding, formally done via conditions (2.4), eliminates
many nice functions from D(A) and makes the domain quite awkward
to work with.

Let us now examine the weak generator Ã of Y . For any f ∈ D(Ã)
we have

Ãf(x, t) =
∂+f

∂t
(x, t) + α

∂+f

∂x
(x, t).

The space B̃0(Ē) of weak continuity of the semigroup consists of all
bounded, measurable functions which are right-continuous in t and con-
tinuous in x. The domain D(Ã) contains all functions f ∈ B̃0(Ē) for
which following quantities stay bounded as t ↓ 0:

sup
x∈R

⎡⎢⎢⎢⎢⎣ sup
n − t ≤ s < n
n = 1, 2, . . .

(2.5)

1
t
|pf(x + αt + β, s + t) + qf(x + αt − β, s + t) − f(x, s)| +

+ sup
n − 1 ≤ s < n − t

n = 1, 2, . . .

1
t
|f(x + αt, s + t) − f(x, s)|

⎤⎥⎥⎥⎥⎦ .

Remarks. Note that in this case the function f(x, s) = sinx belongs
to the class B0

(
Ē
)
, but it does not belong to the domain D(Ã). Again,

similarly as for the strong generator, the domain D(Ã) is rather incon-
venient to work with. For this reason, the idea of using instead the
extended generator for the semigroups of this type seems to be natural
and advantageous.
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Extended generator. We shall now introduce an extended generator
of a semigroup, and we shall show that it can be conveniently used to
analyze behavior of the semigroup considered in the present example. To
this end, we denote by C1

δ (Ē) the class of all functions f ∈ B(Ē) which
satisfy the following three conditions: (i) f has a continuous right-hand-
side derivative with respect to t, (ii) f is of class C1 in x, (iii) the jumps
of the function h(t) = f(x + αt, s + t) may occur only in points δ(s) + k
for k = 0, 1, 2, . . ., where

δ(s) = 1 − s + [s] for all s ≥ 0. (2.6)

Observe first that both domains, D(A) and D(Ã), are clearly subsets of
the space C1

δ (Ē). Moreover, we have the following result:

Proposition 2.1 For any function f ∈ C1
δ (Ē) the semigroup (2.2) ad-

mits the following integral representation

Ttf(x, s) = f(x, s) +
∫ t

0
TrA0f(x, s) dr +

∫ t

0+
Tr−A1f(x, s) dγ(r, s),

(2.7)
where the operators A0 and A1 are given by

A0(x, t) =
∂+f

∂t
(x, t) +

∂f

∂x
(x, t), (2.8)

A1f(x, t) = pf(x + β, t) + qf(x − β, t) − f(x, t), (2.9)

γ(r, s) =
{

0, 0 ≤ r < δ(s)
n, δ(s) + (n − 1) ≤ r < δ(s) + n for n = 1, 2, . . . ,

and δ(s) is given by (2.6).

Proof. For any function f ∈ C1
δ (Ē) the right-hand side of (2.7) can be

rewritten as follows:

R = f(x, s) +
∫ δ(s)

0
TrA0f(x, s) dr +

∫ δ(s)+1

δ(s)
TrA0f(x, s) dr + . . .

+
∫ δ(s)+n

δ(s)+(n−1)
TrA0f(x, s) dr +

∫ t

δ(s)+n
TrA0f(x, s) dr

+ Tδ(s)−A1f(x, s) + T(δ(s)+1)−A1f(x, s) + . . .

+ T(δ(s)+n−1)−A1f(x, s) + T(δ(s)+n)−A1f(x, s).
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It easy to show that for semigroup considered in our example we have

A1T(δ(s)+n)−f(x, s) = Tδ(s)+nf(x, s) − T(δ(s)+n)−f(x, s).

Therefore,

R = Ttf(x, s) − (Tδ(s) − Tδ(s)−)f(x, s) − . . .

− (T(δ(s)+n−1 − T(δ(s)+n−1)−)f(x, s) − (T(δ(s)+n − T(δ(s)+n)−)f(x, s)
+ A1Tδ(s)−f(x, s) + . . . + A1T(δ(s)+n−1)−f(x, s)
+ A1T(δ(s)+n)−f(x, s) = Ttf(x, s).

This proves the proposition.

Remarks. The process given by (2.1) is an example of a Markov process
of a two-component structure. The first component (continuous-time
type component) corresponds to a uniform motion along the real line.
The second component (discrete-time type component) consists of sum
of the jumps.

The triple
(
A0, A1, C

1
δ (Ē)

)
introduced in Proposition 2.1 may serve

as an elementary example of the so-called extended generator for a semi-
group of linear operators (in the present case, for the semigroup T. given
in (2.2)). In particular, the space C1

δ (Ē) may be treated as a domain of
the extended generator. This class of functions is much more convenient
to work with than the domains D(A) and D(Ã). Observe that the con-
sidered semigroup is uniquely determined on B(Ē) by the function δ and
the corresponding triple (A0, A1, C

1
δ (Ē)). Specifically, the operator A0

uniquely determines the continuous part of the semigroup. The operator
A1, corresponding to the discrete part of the semigroup, is uniquely de-
termined by the function δ. In the next paragraph, we provide a formal
definition of an abstract extended generator for a semigroup of linear
operators.

2.2 Extended Generator
Let E be a locally compact topological space with countable base,

endowed with the Borel σ-algebra B. Let (Ω,F , P) be an underlying
probability space, and let X. = (Xt, t ≥ 0) be a Markov process of a
two-component structure on this space, with values in (E,B) and the
transition probability P (s, x, s + t, Γ). Let us define the process Y. =
(Yt, t ≥ 0) with values in an extended state space Ē = E× [0,∞), where
Yt = (Xt, t). As a σ-algebra B̄ we take a σ-algebra of all sets Γ̄ ∈ Ē such
that Γ̄t = {x : (x, t) ∈ Γ̄} is B-measurable. Then the process Y. is a time-
homogeneous Markov process with the transition probability P ′ given
by P ′(t, y, Γ̄) = P (s, x, s+ t, Γ̄s+t), where y = (x, s) ∈ Ē and Γ̄ ∈ B̄. Let
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B(Ē) be the space of all real-valued, bounded and measurable functions
on Ē. Then for every t, s ≥ 0 and f ∈ B(Ē) the semigroup of linear
contractions corresponding to Y. is given by

Ttf(Ys) = E[f(Yt+s) | FY
s ] =

∫
Ē

f(y)P ′(t, Ys, dy), P-a.s.

Remarks. Notice that FY
t = FX

t . To simplify notation we shall write
from now on Ft instead of FX

t .

The space B(Ē) endowed with the sup norm

‖f‖ = sup
y∈Ē

|f(y)| = sup
x∈E

sup
t∈[0,∞)

|f(x, t)|

is a Banach space. Let B0(Ē) and B̃0(Ē) denote the spaces of strong and
weak continuity of the semigroup Tt on B(Ē), respectively. We restrict
our attention to processes Y. whose trajectories are right-continuous and
have left-hand limits. We will also assume that the process Y. is normal,
that is, limt↓0 P ′(t, y, Ē) = 1 for all y ∈ Ē. This implies that the tran-
sition function P ′(t, y, Γ̄) is stochastically continuous (see [6], II 2.8 and
Lemma III 3.2), that is, limt↓0 P ′(t, y, Γ̄) = 1 for all y ∈ Γ̄.

To define the extended generator for this semigroup, we need to in-
troduce some notation: We fix k ∈ N, and we let γi : [0,∞)× [0,∞) −→
[0,∞) for i = 1, 2, . . . , k be functions given by

γi(t, s) =

⎧⎨⎩ 0, 0 ≤ t < δi(s)
n, δi(s) + (n − 1)ρi ≤ t < δi(s) + nρi

for n = 1, 2, . . . ,
(2.10)

where δi(s) = ρi − s + [s]ρi for s ≥ 0, ρi > 0, i = 1, . . . , k are fixed
constants.

Next, let Y. = ((Xt, t), t ≥ 0) be a Markov process of a two-component
structure, with state space Ē. Let Tt be a semigroup of linear contrac-
tions corresponding to process Y., and let Ã be a weak infinitesimal
operator corresponding to this process. Then we have the following def-
inition.

Definition 2.2 The sequence of operators A0, A1, . . . , Ak is called the
extended generator for Tt with domain D if the following conditions are
satisfied:
(i) D is any set of functions f ∈ B(Ē) such that D(Ã) ⊆ D, and for
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every f ∈ D

Ttf(x, s) = f(x, s) +
∫ t

0
TrA0f(x, s)dr +

k∑
i=1

∫ t

0+
Tr−Aif(x, s)dγi(r, s);

(2.11)
(ii) A0 is a weak infinitesimal operator corresponding to the continuous-
time type component of Y.;
(iii) A0f ∈ B̃0(Ē) for every function f ∈ D;
(iv) Ai, i = 1, . . . , k are bounded operators on B(Ē) such that AiTtf =
TtAif .

Remark. It is essential to observe that the domain D of the extended
generator is not unique.

CD-extended generator. In this paper, we are only concerned with
the specific type of extended generator, corresponding to two time scales:
a continuous scale and a discrete scale (the general case is examined in
Frankiewicz [9]). Namely, we postulate that k = 1 and we denote ρ ≡ ρ1.
Let

γ1(t, s) = γ(t, s) =

⎧⎨⎩ 0, 0 ≤ t < δ(s)
n, δ(s) + (n − 1)ρ ≤ t < δ(s) + nρ

for n = 1, 2, . . .
(2.12)

and for every s ≥ 0
δ(s) = ρ − s + [s]ρ. (2.13)

Observe, that the discrete-time type component of the process Y. is a
sum of the jumps at the moments ρ, 2ρ, . . ..

Then the fundamental equation (2.11) becomes

Ttf(x, s) = f(x, s) +
∫ t

0
TrA0f(x, s) dr +

∫ t

0+
Tr−A1f(x, s) dγ(r, s).

(2.14)
We shall call the triple (A0, A1, D) the CD-extended generator of T.

(for continuous/discrete time). The operators A0 and A1 will be called,
respectively, the continuous and discrete parts of the CD-extended gen-
erator.

In the remaining part of this section, we shall show that the continuous
component of the CD-extended generator is an extension of both strong
and weak generators. We first prove the following auxiliary result related
to the operator A1.

Lemma 2.3 For any f ∈ B(Ē) the operator A1 satisfies the equality

A1T(δ(s)+ρn)−f(x, s) = Tδ(s)+ρnf(x, s) − T(δ(s)+ρn)−f(x, s), (2.15)
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for every n = 0, 1, 2, . . . , with the function δ(·) given by (2.13).

Proof. By virtue of equation (2.14), we have for every f ∈ B(Ē)

Tδ(s)+ρnf(x, s) − T(δ(s)+ρn)−f(x, s) =
∫ δ(s)+ρn

0
TrA0f(x, s)dr

+
∫ δ(s)+ρn

0+

Tr−A1f(x, s)dγ(r, s) −
∫ δ(s)+ρn

0
TrA0f(x, s)dr

−
∫ (δ(s)+ρn)−

0+

Tr−A1f(x, s)dγ(r, s) = A1T(δ(s)+ρn)−f(x, s).

We are in the position to prove the following result.

Lemma 2.4 (A0, D) is an extension of both (A, D(A)) and (Ã,D(Ã)).

Proof. We first prove that (A0, D) is an extension of (Ã,D(Ã)). To this
end, observe that, by assumption, D(Ã) ⊆ D. Therefore, it suffices to
show that for f ∈ D(Ã) we have A0f = Ãf .
By the definition of the weak infinitesimal operator and Definition 2.2,
we have (with the variables suppressed) that

Ãf = w lim
h↓0

1
h

(∫ h

0
TtA0fdt +

∫ h

0+
Tt−A1fdγ

)
.

Let us examine the second integral. Let 0 < δ < δ+ρ < . . . < δ+nρ ≤ h
for n = 0, . . . . Then∫ h

0+
Tt−A1fdγ = Tδ−A1f + T(δ+ρ)−A1 + . . . + T(δ+nρ)−A1f.

From Lemma 2.3 and the fact that the operators A1 and Tt commute,
it follows that T(δ+nρ)−A1f = A1T(δ+nρ)−f = Tδ+nρf − T(δ+nρ)−f.

Recall that if f ∈ D(Ã) then Ttf is weakly continuous (see [6]), which
implies that T(δ+nρ)−f = Tδ+nρf for every n ≥ 0. Consequently, Ãf =
w limh↓0 1

h

∫ h
0 TtA0fdt = A0f . This completes the proof of the first part

of the lemma. In an analogous way, we can show that (A0, D) is also an
extension of (A,D(A)).

3. Martingale Problem
In this section, we discuss a martingale problem associated to the

process Y. via the corresponding CD-extended generator. The discussion
below is motivated by classical results on martingale problems (see [7]
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for example). Let Y. be the process introduced in Section 3.1. Then we
have the following proposition:

Proposition 3.2 For any f ∈ D and r ≥ 0, we define the process
M. = (M r,f

t , t ≥ r) by setting

M r,f
t = f(Yt) − f(Yr) −

∫ t

r
A0f(Ys) ds −

∫ t

r+
A1f(Ys−) dγ(s, 0). (3.16)

Then the process M. is an F-martingale.

Proof. In the proof, we shall write Mt instead of M r,f
t . Since M. is an

adapted and integrable process, we need only to show that

E[Mt+s | Ft] = Mt (3.17)

for all t ≥ r and s ≥ 0. Towards this end, we first observe that

E
[∫ s+t

r
A0f(Yu)du | Ft

]
=

∫ s+t

r
E[A0f(Yu) | Ft]du (3.18)

=
∫ t

r
A0f(Yu) du +

∫ s+t

t
Tu−tA0f(Yt) du =

=
∫ t

r
A0f(Yu) du +

∫ s

0
TuA0f(Yt) du.

We also have that

E
[∫ s+t

r+
A1f(Yu−) dγ(u, 0) | Ft

]
=

=
∫ t

r+
A1f(Yu−) dγ(u, 0) +

∫ s+t

t+
T(u−t)−A1f(Yt) dγ(u, 0).

Observe that
∫ s+t
t+ T(u−t)−A1f(Yt) dγ(u, 0) =

∫ s
0+ Tu−A1f(Yt) dγ(u, t),

and

E
[∫ s+t

r+
A1f(Yu−) dγ(u, 0) | Ft

]
= (3.19)

=
∫ t

r+

A1f(Yu−) dγ(u, 0) +
∫ s

0+
Tu−A1f(Yt) dγ(u, t).

Combining (3.18) with (3.19), we obtain

E[Mt+s | Ft] = E[f(Yt+s) − f(Yr) −
∫ t

r
A0f(Ys)ds



Extended Generators of Markov Processes and Applications 47

−
∫ t

r+
A1f(Ys−) dγ(s, 0) | Ft] = Tsf(Yt) −

∫ s

0
TuA0f(Yt)du

−
∫ s

0+
Tu−A1f(Yt) dγ(u, t) − f(Yr) −

∫ t

r
A0f(Yu)du

−
∫ t

r+
A1f(Yu−) dγ(u, 0) = f(Yt) − f(Yr) −

∫ t

r
A0f(Yu)du

−
∫ t

r+
A1f(Yu−) dγ(u, 0) = Mt

and this in turn implies (3.17).

Remark. Relationship between the extended generator for a Markov
semigroup T. corresponding to the Markov process Y. and the extended
generator and random generator for Y. in the sense of Kunita (see [4],
p.208) is currently under investigation.

4. Controlled Martingale Problem of a Mixed
Type

In this section we will be concerned with modelling and analysis of
controlled systems with continuous and discrete time scales. For the sake
of analytical tractability, the corresponding continuous-time optimiza-
tion problem will be reformulated as a controlled martingale problem
of a mixed type, i.e., a controlled martingale problem associated with a
suitable CD-extended generator.

4.1 Cost Functions
Let T be a fixed finite terminal time. Let ρ > 0 be fixed constant

such that ρ < T .

Definition 4.5 Let X. = (Xt, t ∈ [0, T ]) be a two-component Markow
process with values in E, given on a probability space (Ω,F , F, P), with
the jumps of the discrete-time type component at the moments ρ, 2ρ, . . ..
Process X. is called the controlled process if the dynamic of X. depends
on two other stochastic processes:
(i) Process (ut, t ∈ [0, T ]) with values in U ⊆ R, called the continuous
control;
(ii) Process (vt, t ∈ [0, T ]), with values in V ⊆ R, such that vt = vjρ for
t ∈ [jρ, (j + 1)ρ ∧ T ), j = 0, 1, 2, . . ., called the discrete control.

At any instant t ∈ [0, T ], in order to control the process Xt, we can
choose value of ut. In addition, at any time t = 0, ρ, 2ρ, . . . , N(T ), where
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ρ > 0, N(t) = t − ρ if [t]ρ = t and N(t) = [t]ρ otherwise, we are allowed
to choose the values of vt.

Assumption. We assume throughout that the filtration F is generated
by the observations of the controlled process X., that is, we deal with
the case of complete information.

Our goal is to analyze a family of the following optimization problems
parameterized by (x, t) ∈ E × [0, T ]:

Optimization problem O(x, t): Find a controlled process Xu∗,v∗
. and

a pair of admissible (in the sense of Definitions 4.8 and 4.9) controls u∗
. , v

∗
.

on the time interval [t, T ], which maximize the following functional:

J(x, t, u., v.) = E
u.,v.
x,t

[ ∫ T

t
L0(Xs, s, us, vs)ds + (4.20)

+
N(T )∑
i=n(t)

L1(Xi−, i−, vi) + L1(X0, 0, v0)11{t=0} + Φ(XT , T )
]
,

where u., v. are F-adapted stochastic process and n(t) = [t]ρ + ρ if t = 0
or t �= [t]ρ, and n(t) = t otherwise.
The notation E

u.,v.
x,t is meant to emphasize that we deal with the con-

trolled process X which depends on controls u., v. and satisfies the initial
condition Xt = x. The exact meaning of this statement will be clarified
in the next subsection.

The functions L0 : E × [0, T ]×U × V and L1 : E × [0, T ]× V are the
running cost functions corresponding to continuous and discrete time,
respectively, and Φ(x, T ) is the terminal cost function. They are sup-
posed to satisfy suitable technical conditions which guarantee that the
above functional is well defined.
Remarks.
1. To simplify notation, we shall write from now on X∗, rather than
Xu∗,v∗

.
2. The controls u. and v. are not treated in the same way. The values
of us are chosen at every time s ∈ [t, T ]. The values of vs are chosen
only at the times s = kρ, 2kρ, . . . , N(T ) where kρ ≥ t, and kept constant
between these times.
To solve the Optimization problem O(x, t) we shall apply backward in-
duction method. Suppose that n is such that (n + 1)ρ < T. Let us
consider two cases.

If t ∈ (nρ, (n + 1)ρ), then we first find optimal continuous control
us for s ∈ [N(T ), T ], treating vN(T ) as a parameter. Then, we find the
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optimal value of vN(T ). Then we find optimal continuous control us for s
in the interval [N(T )− ρ,N(T )), treating vN(T )−ρ as a parameter. And
so on. We end by finding optimal continuous control us for s ∈ [t, (n +
1)ρ), treating vnρ as parameter. Therefore the optimization problem
O(x, t) for t ∈ (nρ, (n+1)ρ) is parameterized by the value of the discrete
control chosen at time nρ. For this reason, given t ∈ (nρ, (n + 1)ρ), the
optimization problem O(x, t) is in fact solved not only with given initial
condition (x, t) but also with given value v = vt = vnρ.

If t = nρ for any n ∈ N, we first solve the Optimization problem
Õ(x, nρ; vnρ).
Optimization problem Õ(x, nρ; vnρ): Treating vnρ as a parameter
find a controlled process Xu∗,v∗

. and a pair of controls u∗
. , v

∗
. on the time

interval (nρ, T ], which maximize the functional (4.20) for t = nρ.
Solution to the Optimization problem Õ(x, nρ; vnρ) is found as follows:

We start by finding optimal continuous control us for s ∈ [N(T ), T ],
treating vN(T ) as a parameter, and we end by finding optimal continuous
control us for s ∈ [nρ, (n + 1)ρ), treating vnρ as parameter.
Then we return to the Optimization problem O(x, nρ) and we find the
optimal value of vnρ.

4.2 Bellman’s Equations and Verification
Theorem

In this subsection, we shall deal with the case of controlled Markov
process in a formal way. We postulate that to each fixed controls pa-
rameters u ∈ U and v ∈ V we may associate a Markov process Xu,v

with the CD-extended generator denoted as (Au,v
0 , Av

1, D
u,v). We know

already that the domain Du,v is not uniquely specified. Therefore, it
will be convenient to assume that we may find a sufficiently large class,
denoted by D̃ such that D̃ ⊆ Du,v for each u ∈ U and v ∈ V. Moreover,
in a typical application, it will be clear what is meant by a process with
no controls. Thus, we will be in the position to impose the following
condition: D(Ã) ⊆ Du,v, where Ã is the weak generator of the process
with no controls.

Let L0 and L1 be given functions which are right-continuous in s and
right-hand-side differentiable with respect to v and u.

As usual, we are allowed to know the history of Xs for s ≤ t when the
controls ut and vt are chosen. We assume from now on that we are given
a family of CD-extended generators {(Au,v

0 , Av
1, D

u,v), u ∈ U, v ∈ V },
as well as the class of functions D̃ such that D̃ ⊆ Du,v for each u ∈ U
and v ∈ V. We shall search for a solution of the Optimization Problem
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O(x, t) among processes, which are solutions of the controlled martingale
problem of a mixed type, in the sense of the following definitions.

Let n ∈ N be a fixed number such that nρ < T .

Definition 4.6 We say that an E×U×V -valued process (Xs, us, vs), s ∈
[t, T ], where t ∈ (nρ, (n + 1)ρ), defined on a probability space (Ω, F, P)
is a solution to the controlled martingale problem with the initial con-
ditions (x, t) ∈ E × [0, T ] and vt ∈ V if the following conditions are
satisfied:
(i) Xs, s ∈ [t, T ], is corlol (i.e., it is right continuous, with finite left
limits) and F-adapted,
(ii) us, s ∈ [t, T ], and vs, s ∈ [t, T ], are F-adapted processes, where
vs = vjρ for s ∈ [jρ, (j + 1)ρ ∧ T ), j = n + 1, n + 2, . . .,
(iii) for any function f(x, s, v̄) such that f(·, ·, v̄) ∈ D̃ for every v̄ ∈ V

the process M t,f
· = (M t,f

s , s ∈ [t, T ]), defined as

M t,f
s = f(Xs, s, vs) − f(x, t, vt) (4.21)

−
∫ s

t
Aur,vr

0 f(Xr, r, vr) dr −
∫ s

t+
Avr

1 f(Xr−, r−, vr) dγ(r, 0)

is an F-martingale.

We shall say in short that (X·, u·, v·) solves the controlled martingale
problem with the initial conditions (x, t) ∈ E × [0, T ] and v ∈ V .

Definition 4.7 We say that an E×U×V -valued process (Xs, us, vs), s ∈
[t, T ], where t = nρ, defined on a probability space (Ω, F, P) is a so-
lution to the controlled martingale problem with the initial condition
(x, t) ∈ E× [0, T ] if the condition (i)from Definition 4.6 is satisfied and:
(ii’) us, s ∈ [t, T ], and vs, s ∈ [t, T ], are F-adapted processes, where
vs = vjρ for s ∈ [jρ, (j + 1)ρ ∧ T ), j = n, n + 1, . . .,
(iii’) for any function f(x, s, v̄) such that f(·, ·, v̄) ∈ D̃ for every v̄ ∈ V

the process M t,f
· = (M t,f

s , s ∈ [t, T ]), defined as

M t,f
s = f(Xs, s, vs) − f(x, t, vt) (4.22)

−
∫ s

t
Aur,vr

0 f(Xr, r, vr) dr −
N(T )∑
k=t

Avk
1 f(Xk−, k−, vk)

− Av0
1 f(X0, 0, v0)11{t=0}

is an F-martingale.

Definition 4.8 Given a pair (x, t) ∈ E × (0, T ], where t �= nρ, and v ∈
V , we say that a pair of controls u., v. is admissible for the Optimization
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problem O(x, t), if there exists a solution to the controlled martingale
problem with the initial conditions (x, t) and v ∈ V .

Definition 4.9 Given a pair (x, nρ) where x ∈ E, we say that a pair
of controls u., v. is admissible for the Optimization problem O(x, nρ),
if there exists a solution to the controlled martingale problem with the
initial condition (x, nρ).

Notations. We write A(x,t;v) to denote the set of all admissible controls
u., v. for the Optimization problem O(x, t) with the initial conditions
(x, t) and v. Also, we write A(x,t) to denote the set of all admissible con-
trols u., v. for the Optimization problem O(x, t) with the initial condition
(x, t).

Definition 4.10 We say that a function V̂ : E× [0, T ] → R is the value
function of the Optimization problem O(x, t) if

V̂ (x, t) = sup
(u.,v.)∈A(x,t;v)

J(x, t, u., v.), for t �= nρ,

V̂ (x, t) = sup
(u.,v.)∈A(x,t)

J(x, t, u., v.), for t = nρ.

Since the controlled process is Markov, it is natural to expect that the
optimal control processes will be of a feedback form. We say that the
control processes u. and v. are of the feedback form if

us = ū(Xs, s), vs = v̄(Xs, s) (4.23)

where ū : E × [0, T ] → U and v̄ : E × [0, T ] → V are measurable func-
tions. In particular, if the feedback controls u., v. are in A(x,t;v) or in
A(x,t) then equality (4.23) is assumed to hold for s ∈ [t, T ].

Bellman’s equations and verification theorem.
We have J(x, t, u∗

. , v
∗
. ) = V̂ (x, t), provided that the optimal controls u∗

.

and v∗. exist. It is obvious that J(x, T, u∗
. , v

∗
. ) = V̂ (x, T ) = Φ(x, T )

for every x ∈ E. To determine the value function V̂ , we introduce the
following pair of coupled Bellman’s equations, that have to be solved for
the function W (·, ·) for every t ∈ [(k − 1)ρ, (kρ) ∧ T ), k = 1, 2, . . .

sup
u∈U

(
L0(x, t, u, v) + Au,v

0 W (x, t, v)
)

= 0, (4.24)

sup
v∈V

(
L1(x, (kρ)−, v) + Av

1W (x, (kρ)−, v)
)

= 0, (4.25)
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sup
v∈V

(
L1(x, ((k − 1)ρ)−, v) + Av

1W (x, ((k − 1)ρ)−, v)
)

= 0, (4.26)

W v(x, T ) = Φ(x, T ). (4.27)

If t ∈ [0, ρ ∧ T ), instead of the equation (4.26) we have

sup
v0∈V

(
L1(x, 0, v0) + Av

1W (x, 0, v0)
)

= 0. (4.28)

Then we have the following theorems.

Theorem 4.11 (Verification theorem 1) Let t ∈ (nρ, (n + 1)ρ) and
let a function W ∈ D̃ be a solution to the Bellman’s equations (4.24),
(4.25), (4.27). Then:
(a) W (x, t, vt) ≥ J(x, t, u., v.) for every admissible controls u., v. ∈ A(x,t;v)

and for every v ∈ V ,
(b) If there exists an admissible solution (X∗, u∗

. , v
∗
. ) to the controlled

martingale problem with the initial conditions (x, t) and vt such that

u∗
s ∈ arg max

u∈U

(
L0(X∗

s , s, u, v) + Au,v
0 W (X∗

s , s, v)
)

(4.29)

and

v∗kρ ∈ arg max
v∈V

(
L1(X∗

(kρ)−, (kρ)−, v) + Av
1W (X∗

(kρ)−, (kρ)−, v)
)

(4.30)

for all s ∈ [(k− 1)ρ∨ t, (kρ)∧T ), k = 1, 2, . . . , then W (x, t, v) = V̂ (x, t)
and the pair u∗

. , v
∗
. is an optimal control.

Proof. (a) Assume that W ∈ D̃ and u., v. ∈ A(x,t;v). Then by virtue of
Definitions 4.6 and 4.8 we have

W (x, t, vt) = E
u.,v.
x,t

{
W (XT , T ) − (4.31)

−
∫ T

t
Aus,vs

0 W (Xs, s, vs) ds −
∫ T

t+
Avs

1 W (Xs−, s−, vs) dγ(s, 0)
}

.

Now, by the Bellman’s equations

W (x, t, vt) ≥ E
u.,v.
x,t

{∫ T

t
L0(Xs, s, us, vs)ds +
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+
∫ T

t+
L1(Xs, s, vs) dγ(s, 0) + Φ(XT , T )

}
=

= E
u.,v.
x,t

{∫ T

t
L0(Xs, s, us, vs)ds +

N(T )∑
i=n(t)

L1(Xi−, i−, vi) + Φ(XT , T )
}

= J(x, t, u., v.),

which proves the first part of the theorem.
(b) Assume that (X∗· , u∗· , v∗· ) is a solution to the controlled martingale
problem such that (4.29) and (4.30) are satisfied. Then the inequality
in part (a) of the theorem becomes equality, and thus W (x, t, vt) =
J(x, t, u∗

. , v
∗
. ) = V̂ (x, t). Since we assume that u∗

. , v
∗
. ∈ A(x,t;v) then the

pair u∗
. , v

∗
. is an optimal control. This completes the proof.

Theorem 4.12 (Verification theorem 2) Let t = nρ and let a func-
tion W ∈ D̃ be a solution to the Bellman’s equations (4.24)-(4.28).
Then:
(a) W (x, t, vt) ≥ J(x, t, u., v.) for every admissible controls u., v. ∈ A(x,t),
(b) If there exists an admissible solution (X∗, u∗

. , v
∗
. ) to the controlled

martingale problem with the initial condition (x, t) such that

u∗
s ∈ arg max

u∈U

(
L0(X∗

s , s, u, v) + Au,v
0 W (X∗

s , s, v)
)
, (4.32)

v∗kρ ∈ arg max
v∈V

(
L1(X∗

(kρ)−, (kρ)−, v) + Av
1W (X∗

(kρ)−, (kρ)−, v)
)

(4.33)

v∗nρ ∈ arg max
v∈V

(
L1(X∗

(nρ)−, (nρ)−, v) + Av
1W (X∗

(nρ)−, (nρ)−, v)
)

(4.34)

v∗0 ∈ arg max
v∈V

(
L1(X∗

0 , 0, v) + Av
1W (X∗

0 , 0, v)
)

(4.35)

for all s ∈ [(k−1)ρ∨nρ, (kρ)∧T ), k = 1, 2, . . . , then W (x, t, vt) = V̂ (x, t)
and the pair u∗

. , v
∗
. is an optimal control.

Theorem 4.12 can be proved in the same way as Theorem 4.11, and
therefore its proof will be skipped.

Remark. The results of the present section may be used, for example,
to solve a consumption-investment problem for a single agent on a finite
horizon. The investor starting at time t with a initial endowment x > 0,
can consume and invest in such a way, that the expected discounted
utility from consumption is maximized. This problem is investigated in
[9]).
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Chapter 4

CONTROL OF MANUFACTURING
SYSTEMS WITH DELAYED INSPECTION
AND LIMITED CAPACITY

E. K. Boukas
Mechanical Engineering Department
École Polytechnique de Montréal
P.O. Box 6079, station “Centre-ville”
Montréal, Québec, Canada H3C 3A7
el-kebir.boukas@polymtl.ca

Abstract This work deals with the control of manufacturing systems with limited
capacity. The production rate of the system for each part is assumed
to be bounded by both lower (equal to zero) and upper bounds. The
model we propose in this work considers the inspection of the produced
parts and a small rate of these parts is rejected. The model consid-
ers also the fact that a rate of delivered parts can be returned to the
stock level. It is assumed that these rates are not known exactly and
some uncertainties are considered. The control problem treated in this
work consists of computing the state feedback control law that guaran-
tees the asymptotic stability of our model despite the uncertainties and
constraints on the production rates.

Keywords: Manufacturing system, system delay, product inspection.

1. Introduction
Manufacturing systems are the key success of the industrial countries.

Nowadays, most of the big companies in the world use the most advanced
technology in control, transportation, machining, etc. to produce their
goods. With the trends of globalization of business, we are living in a
world where the increasing competition between companies is dictating
the business rules. Therefore, to survive, most of the companies are
forced to focus seriously on how to produce high quality products at low
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cost and on how to respond quickly to rapid changes in the demand.
The key competitive factors are the new technological advances and the
ability to use them to quickly respond to rapid changes in the market.
Production planning is one of the key ingredients that has a direct effect
on the ability to quickly respond to rapid changes in the market. It is
concerned with the optimal allocation of the production capacity of the
system to meet the demand efficiently. In general this problem is not
easy and requires significant attention.

Production systems belong to the class of large scale systems that
are in general more complicated to model and to control. In the last
decades, this kind of systems have attracted many researchers from op-
erations research and control communities. Different problems like rout-
ing, scheduling, and production and maintenance planning have been
tackled and interesting results have been reported in the literature. For
more details on what it has been done on the subject, we refer the reader
to Sethi and Zhang (1994), Gershwin (1994), Boukas and Liu (2001),
Sethi et al. (2005), Simon (1952), Grubbstrom and Wikner (1996), Hen-
net (2003), Towill (1982), Towill et al. (1997), Wiendahl and Breithaupt
(2000), Axsater (1985), Ridalls, C. E. and Bennett (2002), Gavish and
Graves (1980), Disney et a. (2000) and the references therein.

Different mathematical model for manufacturing systems have been
proposed in the literature and models that use the state space represen-
tation (deterministic and stochastic) are among the list. In this direction
of research, either in the deterministic or the stochastic frameworls, ap-
proaches based on optimal control theory have been used to establish
interesting results for solving the previously mentioned problems. For
more details on the subject we refer the reader to Boukas and Liu (2001),
Sethi et al. (2005) and the references therein.

Recently, an approach based on robust control theory has been devel-
oped for the control of the manufacturing systems. Boukas (2005) has
formulated the production planning problem as an H∞ tracking problem
where the solution is obtained by solving a set of linear matrix inequal-
ities that can be successfully solved by the interior point methods. In
Rodrigues and Boukas (2005) the production systems are modeled as
constrained switched linear systems and the inventory control problem
is formulated as a constrained switched H∞ problem with a piecewise-
affine (PWA) control law. The switching variable for the production
systems modeled in this work is the stock level. When the stock level is
positive, some of the perishable produced parts are being stored and will
deteriorate with time at a given rate. When the stock level is negative
it leads to backorders, which means that orders for production of parts
are coming in and there are no stocked parts to immediately meet the
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demand. A state feedback controller that forces the stock level to be
kept close to zero (sometimes called a just-in-time policy), even when
there are fluctuations in the demand, will be designed in this work using
H∞ control theory. The synthesis of the state feedback controller that
quadratically stabilizes the production dynamics and at the same time
rejects the external demand fluctuation (treated as a disturbance) is cast
as a set of linear matrix inequalities (LMIs).

In this chapter, our objective is to consider the production planning
in the continuous-time framework and extend the model used in Boukas
(2005) and Rodrigues and Boukas (2005) to include the inspection pro-
cess of the produced parts and also the inclusion of a rate of the return
of a fraction of the delivered parts. The inspection time is assumed to
be constant for all produced part type and it is included in the model
as a delay in the dynamics. It is also assumed that in the rest of the
chapter that the rejected rate of the inspected parts and the returned
rate of the delivered parts are not known exactly and some uncertainties
are introduced to count for these variations.

The rest of the chapter is organized as follows. In Section 2, the
production planning problem for manufacturing systems is formulated
and the required assumptions are given. Section 3 presents the main
results of the chapter and which can be summarized in the synthesis of
the state feedback controller that will guarantee that the closed-loop will
be asymptotically stable and respecting all the constraints of the control
for all admissible uncertainties. In Section 4 a numerical example is
provided to show the effectiveness of the proposed results.

Notation. The notation used in this chapter is quite standard. R
n

and R
n×m denote, respectively, the set of the n dimensional space of

real vectors and the set of all n × m real matrices. The superscript
“�” denotes the transpose of a given matrix. P > 0 means that P is
symmetric and positive-definite. I is the identity matrix with compatible
dimension. �2[0,∞] is the space of square summable vector sequence over
[0,∞]. λmin(A) and λmax(A) represent respectively the minimum and
maximum eigenvalues of the matrix A. ‖A‖ represents the norm of of the
matrix A (‖A‖ =

√
λmax(A	A)). ‖ · ‖ will refer to the Euclidean vector

norm whereas ‖ · ‖[0,∞] denotes the �2[0,∞]-norm over [0,∞] defined as
‖f‖2

[0,∞] =
∑∞

0 ‖fk‖2. We define xs(t) = xs+t, t − τ ≤ s ≤ t, noted in
the sequel by x(t).

2. Problem statement
To have an idea on the model under consideration, let us consider a

simple production system that consists of one machine producing one
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part type. Let us assume that the produced parts are inspected and the
inspection time is the same for all the produced parts and it is not known
exactly and denoted by τ . After the inspection the part is either accepted
(added to the stock level) or rejected and that we have to subtract it
from the stock. We assume that a rate ρd1 of the inspected parts is
rejected and also a rate ρr1 of delivered parts may be returned to the
stock. If, we denote by x1(t), u1(t) and d1 respectively the stock level,
the production rate and the demand rate (that we assume constant)
at time t, the dynamics of the stock is then described by the following
differential equation:{

ẋ1(t) = [ρr1 + ∆ρr1] x1(t) + [−ρd1 + ∆ρd1]x1(t − τ) + u1(t) − d1,

x(0) = 0
(4.1)

where τ represents the inspection time, x0 is the initial stock level and
∆ρr1 and ∆ρd1 represent respectively the uncertainties of the returned
rate and rejected rate of parts. These rates are assumed to satisfy the
following constraints: {

|∆ρr1| ≤ α1,

|∆ρd1| ≤ β1,

where α1 and β1 are known positive scalars.

Remark 2.1 The bounds on the uncertainties on the rates ∆ρr1 and
∆ρd1 are realistic since the rates are always bounded even when the un-
certainties are present. This comes from the fact one can either reject
none or all the inspected parts or take back none or all the delivered
parts.

The production rate is limited by the capacity of the machine and
therefore we have the following constraints:

0 ≤ u1(t) ≤ ū1. (4.2)

The problem we will address in the rest of this chapter is to force
the production to track the system demand and therefore keep the stock
level close to zero. This problem will be formulated as a control prob-
lem. For this purpose, let us assume that we have complete access to
the production level at each time t and let us design a state feedback
controller so that the closed loop dynamics will be asymptotically stable.
Let us make the following change of variable:

v1(t) = u1(t) − d1.
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Based on this change of variables, the system becomes:{
ẋ1(t) = [ρr1 + ∆ρr1]x1(t) + [−ρd1 + ∆ρd1] x1(t − τ) + v1(t),
x(0) = 0.

(4.3)

The controller we will design is assumed to have the following form:

v1(t) = −K1x1(t),

which corresponds to the following real production rate:

u1(t) = v1(t) + d.

The controller constraints become:

−d1 ≤ v1(t) ≤ ū1 − d1.

Let us now generalize our model to a production system that produces
n items. Let x(t) ∈ R

n and u(t) ∈ R
n denote respectively the stock level

vector, and the production rate vector at time t. Following the same
steps as for the case of one part type, the dynamics of the production
system can be described by the following system of differential equations:{

ẋ(t) = [Ar + ∆Ar] x(t) + [Ad + ∆Ad] x(t − τ) + Bv(t),
x(0) = 0

(4.4)

where

x(t) =

⎡⎢⎣ x1(t)
...

xn(t)

⎤⎥⎦ , v(t) =

⎡⎢⎣ v1(t)
...

vn(t)

⎤⎥⎦ ,

Ar = diag [ρr1, · · · , ρrn] ,∆Ar = diag [∆ρr1, · · · ,∆ρrn] ,
Ad = diag [−ρd1, · · · ,−ρdn] , ∆Ad = diag [∆ρd1, · · · ,∆ρdn] ,
B = I.

The control input v(t) is constrained component by component, i.e.:
−di ≤ vi(k) ≤ ūi − di, i = 1, · · · , n, with ūi being a real known scalar.

The uncertainties ∆Ar and ∆Ad satisfy the following:{
‖∆Ar‖ ≤ α,

‖∆Ad‖ ≤ β.
(4.5)

Remark 2.2 The uncertainties that satisfy the conditions (4.5) are re-
ferred to as admissible uncertainties and may be considered as time vary-
ing.
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The goal of this work is to develop a control law that satisfies all the
constraints and and at the same time tracks precisely the demand, d at
each time t. To solve this problem, we formulate it as a control problem
and synthesize a state feedback controller that assures the asymptotic
stability of the closed-loop dynamics.

Before closing this section, notice that from optimal control the-
ory (Kirk (1970)) we know that for given matrices R (symmetric and
positive-definite) and Q (symmetric and positive-semidefinite) if the fol-
lowing Riccati equation:

A	P + PA − PBR−1B	P + Q = 0 (4.6)

has a solution P (symmetric and positive-definite matrix), then we can
construct a state feedback controller of the following form:

v(t) = −Kx(t) (4.7)

with K = R−1B	P .
Due to the presence of the time-delay, the uncertainties and the bounds

on the control, extra conditions should be added to guarantee that the
controller (4.7) will assure asymptotic stability of the closed-loop dy-
namics.

3. Controller design
To solve the production planning problem we formulated in the pre-

vious section we will firstly relax the constraints on the control input
and design a state feedback controller that guarantees the asymptotic
stability of the closed-loop dynamics. To design such controller, a de-
composition of the matrix Ad is used and a Riccati equation based on
this decomposition is employed to compute the controller gain. Secondly,
the results are extended to take of the control constraints.

Combining the system dynamics (4.4) and the controller expression
(4.7), we get:

ẋ(t) = [Acl + ∆Ar] x(t) + [Ad + ∆Ad]x(t − τ)

with Acl = Ar − BR−1B	P .
The matrix P used here is the solution of an equivalent Riccati equa-

tion to be provided later on.
¿From the other side notice that:

x(t − τ) = x(t) −
∫ t

t−τ
ẋ(s)ds

= x(t) −
∫ t

t−τ
[[Acl + ∆Ar]x(s) + [Ad + ∆Ad]x(s − τ)] ds.
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If we decompose Ad as follows:

Ad = Ãd + Âd

then the previous closed-loop system becomes:

ẋ(t) =
[
Acl + Ãd

]
x(t) + Âdx(t − τ) + ∆Arx(t) + ∆Adx(t − τ)

−Ãd [x(t) − x(t − τ)] .

Using the expression x(t) − x(t − τ), we get:

ẋ(t) =
[
Acl + Ãd

]
x(t) + Âdx(t − τ) + ∆Arx(t) + ∆Adx(t − τ)

−Ãd

∫ t

t−τ
[[Acl + ∆Ar]x(s) + [Ad + ∆Ad]x(s − τ)] ds. (4.8)

Now if we assume that the pair (Ar + Ãd, B) is stabilizable, then
it is possible to construct a state feedback control using the optimal
control theory and the gain can be computed from the following Riccati
equation:[

Ar + Ãd

]	
P + P

[
Ar + Ãd

]
− PBR−1B	P + Q = 0. (4.9)

If this equation has a solution P (symmetric and positive-definite ma-
trix), then we can construct a state feedback controller of the following
form:

v(t) = −Kx(t)

with K = R−1B	P .
Notice the asymptotic stability will be guaranteed when the initial

condition is in the domain D . In fact the system will be stable if
V (x(t)) ≤ V (x0) for all x0 ∈ D with V (.) a Lyapunov candidate func-
tion. The domain is defined as follows:

D = {x ∈ R
n|V (x) = x	Px ≤ 1}

which is an ellipsoid that contains all the state for the closed-loop.
Notice that this can be stated as a linear matrix inequality and solved

using the interior point method. For more details on this refer the reader
to Boukas (2005) and Rodrigues and Boukas (2005).

Our first result is stated by the following theorem.
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Theorem 3.1 If there exists a positive scalar q > 1 such that the fol-
lowing holds:

0 ≤ τ <
µ −

[
α + qν

[
‖Âd‖ + β

]]
qν

[
‖ÃdAcl‖ + ‖ÃdAd‖ + ‖Ãd‖ [α + β]

] (4.10)

where µ = 0.5λmin(PBR−1B�P+Q)
λmax(P ) and ν =

√
λmin(P )
λmax(P ) , then system (4.8)

is asymptotically stable for all initial condition in the domain D and all
admissible uncertainties.

Sketch of the proof. First of all let us consider a Lyapunov functional
of the following form:

V (x(t)) = x	(t)Px(t)

The derivative with respect to time t along any trajectory is given by:

V̇ (x(t)) = ẋ	(t)Px(t) + x	(t)Pẋ(t)

=
[[

Acl + Ãd

]
x(t) + Âdx(t − τ) + ∆Arx(t) + ∆Adx(t − τ)

−Ãd

∫ t

t−τ
[[Acl + ∆Ar] x(s) + [Ad + ∆Ad] x(s − τ)] ds

]	
Px

+x	P
[[

Acl + Ãd

]
x(t) + Âdx(t − τ) + ∆Arx(t) + ∆Adx(t − τ)

−Ãd

∫ t

t−τ
[[Acl + ∆Ar] x(s) + [Ad + ∆Ad] x(s − τ)] ds

]

which can be rewritten as follows:

V̇ (x(t)) = x	(t)
[[

Acl + Ãd

]	
P + P

[
Acl + Ãd

]]
x(t)

+x	(t)
[
∆A	

r P + P∆Ar

]
x(t)

+x	(t − τ)Â	
d Px(t) + x	(t)PÂdx(t − τ)

+x(t − τ)∆A	
d Px(t) + x	P∆Adx(t − τ)

−2x	(t)PÃd

∫ t

t−τ
[[Acl + ∆Ar]x(s) + [Ad + ∆Ad] x(s − τ)] ds



Control of Manufacturing Systems 63

which implies in turn after using (4.9):

V̇ (x(t)) ≤ −x	(t)
[
PBR−1B	P + Q

]
x(t)

+‖x	(t)
[
∆A	

r P + P∆Ar

]
x(t)‖ + ‖x	(t − τ)Â	

d Px(t)‖
+‖x	(t)PÂdx(t − τ)‖ + ‖x(t − τ)∆A	

d Px(t)‖
+‖x	P∆Adx(t − τ)‖
+2

∥∥∥∥x	(t)PÃd

∫ t

t−τ
[[Acl+∆Ar] x(s)+[Ad+∆Ad] x(s − τ)] ds

∥∥∥∥ .

Based on Razumikhin-type theorem, if there exists a positive scalar
q > 1 such that:

V (x(t − τ)) < q2V (x(t))

then we have:

‖x(t − τ)‖ < qν‖x(t)‖

with ν =
√

λmin(P )
λmax(P ) .

Using now this fact, we get:

V̇ (x(t)) ≤ −γ‖x(t)‖2

with

γ = λmin(PBR−1B	P + Q) − 2
[[

α + qν
[
‖Âd‖ + β

]]
+qντ

[
‖ÃdAcl‖ + ‖ÃdAd‖ + ‖Ãd‖ [α + β]

]]
λmax(P ).

Based on (3.1), we conclude that γ > 0 and therefore V̇ (x(t)) < 0
which concludes that the closed-loop system is asymptotically stable for
all admissible uncertainties. �

Notice that if the returned rate and the inspection rate are known
without uncertainties, our previous results become:

Corollary 4.1 If there exists a positive scalar q > 1 such that the
following holds:

0 ≤ τ <
µ − qν‖Âd‖

qν
[
‖ÃdAcl‖ + ‖ÃdAd‖

] (4.11)

then system (4.8) is asymptotically stable for all initial condition in D .
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The controller we designed in Theorem 3.1 does not take care of the
imposed constraints on control and therefore the control may violate the
bounds which makes it infeasible. To overcome this we should include
these constraints in our design. For this purpose, notice that if we make
the analogy with the results on saturating actuators (Boukas (2003)or
see Liu (2005)) we can solve our problem. The dynamics of the system
can be rewritten as follows:{

ẋ(t) = [Ar + ∆Ar]x(t) + [Ad + ∆Ad] x(t − τ) + Bvm(t)
x(0) = 0

(4.12)

with vm(t) = Sat(v(t)) = [Sat(v1(t)), · · · , Sat(vn(t))] where

Sat(vi(t)) =

⎧⎪⎨⎪⎩
−di if vi < −di,

vi if −di ≤ vi ≤ ūi − di,

ūi − di if vi > ūi − di.

Notice also that for any saturating actuator, the function Sat(v(t))
which saturates at −d and ū − d, the following inequality holds (see Su
et al. (1991)) ∥∥∥∥Sat(v(t)) − v(t)

2

∥∥∥∥ ≤ v(t)
2

. (4.13)

Combining now the system dynamics (4.12) and the controller ex-
pression (4.7) and after adding and subtracting the term B v(t)

2 , with
v(t) = −R−1B	Px(t), we have:

ẋ(t) = [Acl + ∆Ar]x(t) + [Ad + ∆Ad] x(t − τ) + B

[
vm(t) − v(t)

2

]
where Acl = Ar − BR−1B�P

2 .
Again, following the same steps as we did before by decomposing Ad,

we get the following dynamics:

ẋ(t) =
[
Acl + Ãd

]
x(t) + Âdx(t − τ) + ∆Arx(t) + ∆Adx(t − τ)

−Ãd

∫ t

t−τ
[[Acl + ∆Ar] x(s) + [Ad + ∆Ad] x(s − τ)]

+B

[
vm(s) − v(s)

2

]
ds + B

[
vm(t) − v(t)

2

]
. (4.14)

Now if we assume that the pair (Ar + Ãd, B) is stabilizable, then
it is possible to construct a state feedback control using the optimal
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control theory and the gain can be computed from the following Riccati
equation:[

Ar + Ãd

]	
P + P

[
Ar + Ãd

]
− PBR−1B	P + Q = 0. (4.15)

If this equation has a solution P (symmetric and positive-definite ma-
trix), then we can construct a state feedback controller of the following
form:

v(t) = −Kx(t)

with K = R−1B	P .
The following theorem gives the results that determines the controller

which asymptotically stabilizes the class of systems.

Theorem 4.2 If there exists a positive scalar q > 1 such that the fol-
lowing holds:

0 ≤ τ <
µ −

[
α + 0.5‖B‖‖K‖ + qν

[
‖Âd‖ + β

]]
qν

[
‖ÃdAcl‖ + ‖ÃdAd‖ + ‖Ãd‖ [α + 0.5‖B‖‖K‖ + β]

] (4.16)

then system (4.8) is asymptotically stable for for all initial condition in
D all admissible uncertainties.

Proof: Let us again choose the same Lyapunov function as before. In
this case, the derivative with respect to time t gives:

V̇ (x(t)) = ẋ	(t)Px(t) + x	(t)Pẋ(t)

=
[[

Acl + Ãd

]
x(t) + Âdx(t − τ) + ∆Arx(t)

+∆Adx(t − τ) + B

[
vm(t) − v(t)

2

]
−Ãd

∫ t

t−τ

[
[Acl + ∆Ar] x(s) +

[
Ad + ∆Ad

]
x(s − τ)

+B

[
vm(s) − v(s)

2

]]
ds

]	
Px + x	P

[[
Acl + Ãd

]
x(t)

+Âdx(t − τ) + ∆Arx(t) + ∆Adx(t − τ) + B

[
vm(t) − v(t)

2

]
−Ãd

∫ t

t−τ

[
[Acl + ∆Ar] x(s) +

[
Ad + ∆Ad

]
x(s − τ)

+B

[
vm(s) − v(s)

2

]]
ds

]
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which can be rewritten as follows:

V̇ (x(t)) = x	(t)
[[

Acl + Ãd

]	
P + P

[
Acl + Ãd

]]
x(t)

+x	(t)
[
∆A	

r P + P∆Ar

]
x(t) + x	(t − τ)Â	

d Px(t)

+x	(t)PÂdx(t − τ) + x(t − τ)∆A	
d Px(t) + x	P∆Adx(t − τ)

+
[
B

[
vm(t) − v(t)

2

]]	
Px(t) + x	(t)PB

[
vm(t) − v(t)

2

]
−2x	(t)PÃd

∫ t

t−τ

[
[Acl + ∆Ar] x(s) +

[
Ad + ∆Ad

]
x(s − τ)

+B

[
vm(s) − v(s)

2

]]
ds

which implies in turn after using (4.15):

V̇ (x(t)) ≤ −x	(t)
[
PBR−1B	P + Q

]
x(t)

+‖x	(t)
[
∆A	

r P + P∆Ar

]
x(t)‖ + ‖x	(t − τ)Â	

d Px(t)‖
+‖x	(t)PÂdx(t − τ)‖ + ‖x(t − τ)∆A	

d Px(t)‖

+‖x	P∆Adx(t − τ)‖ +

∥∥∥∥∥
[
B

[
vm(t) − v(t)

2

]]	
Px(t)

∥∥∥∥∥
+
∥∥∥∥x	(t)PB

[
vm(t) − v(t)

2

]∥∥∥∥
+2

∥∥∥∥x	(t)PÃd

∫ t

t−τ

[[
Acl + ∆Ar

]
x(s) + [Ad + ∆Ad] x(s − τ)

+B

[
vm(s) − v(s)

2

]]
ds

∥∥∥∥.

Based on Razumikhin-type theorem, if there exists a positive scalar
q > 1 such that:

V (x(t − τ)) < q2V (x(t))

then we have:

‖x(t − τ)‖ < qν‖x(t)‖

with ν =
√

λmin(P )
λmax(P ) .
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Using now this fact, the inequality (4.13) and the expression of the
control v(t) = −Kx(t), we get:

V̇ (x(t)) ≤ −γ‖x(t)‖2

with

γ = λmin(PBR−1B	P + Q) − 2
[[

α + 0.5‖B‖‖K‖ + qν
[
‖Âd‖ + β

]]
+qντ

[
‖ÃdAcl‖ + ‖ÃdAd‖ + ‖Ãd‖ [α + β + 0.5‖B‖‖K‖]

]]
λmax(P ).

Based on (4.2), we conclude that γ > 0 and therefore V̇ (x(t)) < 0
which concludes that the closed-loop dynamics is asymptotically stable
for all admissible uncertainties. �

Similarly as we did for the previous theorem, when the uncertainties
are equal to zero we get the following results.

Corollary 4.3 If there exists a positive scalar q > 1 such that the
following holds:

0 ≤ τ <
µ −

[
0.5‖B‖‖K‖ + qν‖Âd‖

]
qν

[
‖ÃdAcl‖ + ‖ÃdAd‖ + 0.5‖Ãd‖‖B‖‖K‖

] (4.17)

then system (4.8) is asymptotically stable for all initial condition in D .

All the results we gave in this chapter are only sufficient conditions
and therefore, if we can not find a solution, this does not imply that the
system is not asymptotically stable. It is also clair that our results may
by restrictive in some cases.

4. Numerical example
To show the effectiveness of our results let us consider a manufacturing

system producing three part types. The data of the system is as follows:

Ar =

⎡⎣ 0.01 0.0 0.0
0.0 0.011 0.0
0.0 0.0 0.012

⎤⎦ , Ad =

⎡⎣ −0.001 0.0 0.0
0.0 −0.001 0.0
0.0 0.0 −0.001

⎤⎦ ,

B =

⎡⎣ 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤⎦ ,

Assume that di = 1, ūi = 2, i = 1, · · · , 3, ‖∆Ar‖ ≤ 0.2 and ‖∆Ad‖ ≤
0.2, and the matrices Q and R are chosen as follows:

Q =

⎡⎣ 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤⎦ , R =

⎡⎣ 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤⎦ .
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If we decompose Ad into two matrices as it was described previously
with:

Ãd =

⎡⎣ −0.0011 0.0 0.0
0.0 −0.0011 0.0
0.0 0.0 −0.0011

⎤⎦ , Âd = Ad − Ãd

and solving the following algebraic Riccati equation:[
Ar + Ãd

]	
P + P

[
Ar + Ãd

]
− PBR−1B	P + Q = 0,

we get:

P =

⎡⎣ 1.0089 0.0 0.0
0.0 1.0099 0.0
0.0 0.0 1.0110

⎤⎦ , K =

⎡⎣ 1.0089 0.0 0.0
0.0 1.0099 0.0
0.0 0.0 1.0110

⎤⎦ .

Choosing q = 1.1 we can check that the condition of our theorem
is satisfied and therefore, the state feedback controller with this gain
stabilizes the closed-loop asymptotically.

Figure 4.1. The behaviors of the states x1(t), x2(t) and x3(t) in function of time t

We have simulated this manufacturing systems with the controller
we designed with the initial conditions (x1(0) = −0.8, x2(0) = 1, and
x3(0) = 0.6 and the results are illustrated by Fig. 4.1 and Fig. 4.2.
These figures show that the closed-loop system is asymptotically stable
under the computed state feedback controller and the constraints on the
control are all satisfied. As it can be seen from the figures that all the
stock levels goes to zero at the steady state and also the production rates
converge to the neighborhood of the demand rates at the steady state
as expected.
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Figure 4.2. The behaviors of the control law u(t) in function of time t

5. Conclusions
This chapter dealt with the production planning for manufacturing

systems with inspection of produced parts. The model we proposed
here considered the rejection of a certain rate after the inspection is
performed. It also considered the possibility that a ceratin rate of deliv-
ered parts may be returned back to the stock level. The control theory
is used to synthesize the state feedback controller that guarantees that
the closed-loop dynamics will be asymptotically stable and at the same
time respect the imposed constraints of the control input despite the
uncertainties of the system.
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Abstract We consider the admission control problem for a two-class-priority M/M/1
queueing system. Two classes of customers arrive to the system accord-
ing to Poisson processes. Class 1 customers have preemptive priority in
service over class 2 customers. Each customer can be either accepted or
rejected. An accepted customer stays in the system and incurs holding
cost at a class-dependent rate until the service is finished, at which time
a reward is generated. The objective is to minimize the expected to-
tal discounted net cost. We analyze the optimal control policies under
three criteria: individual optimization, class optimization, and social
optimization. Using sample path analysis, we prove that the optimal
policy is of threshold-type under each optimization criterion. We also
compare policies under different criteria numerically.

Keywords: M/M/1 queue with priorities, Admission control, Coupling method,
Markov Decision Processes.

Introduction
This paper considers an M/M/1 queueing system serving two classes

of customers. Class 1 customers have preemptive resume priority over
class 2 customers. Within each class, the service is provided on a first-
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come, first-served basis. Class k customers arrive according to a Poisson
process with parameter λk and require an i.i.d. exp(µk) service time,
k = 1, 2. A decision to accept or reject a customer needs to be made
upon each arrival. There is no cost associated with rejecting a customer.
When there are i class 1 customers and j class 2 customers in the system,
the holding cost is incurred at rate h(i, j) = h1i + h2j. An expected
reward of rk is generated each time a class k customer finishes service.
All rewards and costs are continuously discounted with rate α > 0. The
objective is to admit customers in an optimal way, i.e., minimize the
expected total discounted net cost.

Priority issue arises in various queueing systems. For example, inter-
net traffic protocols assign higher priority to data packages that require
real-time transmission (e.g. on-line live audio and video) and lower pri-
ority to delay-insensitive packages (e.g. e-mails and file transmission).
Service queues may give VIP customers higher priority over ordinary
customers. In hospitals, patients in critical conditions receive higher pri-
ority in treatment over non-critical patients. Admission control problem
in these kinds of multi-priority queues can be modeled by the framework
presented here. This paper is originally motivated by the problem of out-
sourcing warranty repairs to outside vendors. Consider a manufacturer
offering various types of warranties for its product. When different types
of warranties specify different repair turnaround times, it is desirable to
give higher priority to repairs with shorter turnaround time. Warranty
repairs are outsourced to a number of outside vendors. When an item
fails and is under warranty, it is sent to one of the vendors for repair.
The manufacturer pays a fixed fee for each repair and incurs holding
costs (good will cost) while items are at the vendor. The objective of
the manufacturer is to assign warranty repairs in such a way that the
expected long-run average cost is minimized. Analyzing the admission
control problem studied here can serve as a starting point for solving this
complicated routing problem. The results of this single-vendor admis-
sion control problem can be used to derive index-based dynamic routing
policies for multi-vendor problems (See Opp, Kulkarni and Glazebrook
(2005)).

Admission control for single class queueing systems is widely stud-
ied. See Stidham (1985) for a survey. Naor (1969) proposes the first
quantitative model. He studies an M/M/1 system with a single class of
customers, undiscounted reward and cost. The objective is to maximize
the long-run average net reward. Naor considers only critical-number
policies and shows that nS ≤ nI , where nS and nI are the critical num-
bers for social optimization and individual optimization, respectively.
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Many authors have generalized Naor’s model. Among others, Yechiali
(1971, 1972) shows that for GI/M/s systems the socially optimal policy
has critical-number form. Knudsen (1972) considers an M/M/s queue
with state-dependent net benefit. Lippman and Stidham (1977) study
a birth-death process with general departure rate, random reward, with
or without discounting and for a finite or infinite time horizon. Stid-
ham (1978) considers a GI/M/1 queue with random reward and general
holding cost, with or without discounting. Other models of admission
control problem for single-class queues include Adiri and Yechiali (1974),
Stidham and Weber (1989), and Rykov (2001).

Multi-class admission control problem has also been studied exten-
sively. Papers in the area can be classified into two categories based on
whether or not service is prioritized. For models without service pri-
orities, see Miller (1969), Blanc et al. (1992), Kulkarni and Tedijanto
(1998), and Nair and Bapma (2001). In these models, different classes
are distinguished by different arrival rates, service rates, rewards, holding
costs, etc. Among papers that consider service priorities, Mendelson and
Whang (1990) study a priority pricing problem for a multi-class M/M/1
queueing system, where each customer decides by himself whether to
join the system or not, and, if join, at what priority level. Hassin (1995)
studies a bidding mechanism for a GI/M/1 queue without balking. Ha
(1997) considers the production control problem in a make-to-stock pro-
duction system with two prioritized customer classes.

To the best of our knowledge, Chen and Kulkarni (2005) are the first
to consider the admission control problem for a multi-priority queue
with the objective of minimizing expected total discounted cost. This
paper differs from Chen and Kulkarni’s paper mainly in two aspects: (i)
We assume the rewards are generated at the time of service completion
instead of the time of joining the repair queue as assumed by Chen
and Kulkarni (2005). This shift of reward times changes the nature of
the problem in some critical ways, e.g. the optimal value function is
no longer non-decreasing in the number of customers of each type in
starting state, and the cases where every customer is accepted do not
exist anymore. (ii) We prove the structural results using sample path
analysis (specifically, the coupling method) (Lindvall (1992), Wu et al.
(2005) ), while Chen and Kulkarni (2005) use standard value iteration
method. The sample path approach provides more concise proofs.

Following Chen and Kulkarni (2005), we analyze the optimal control
policies under 3 criteria: individual optimization, class optimization,
and social optimization. Under individual optimization, each customer
decides whether to join the system or not in order to minimizes his own
expected total discounted cost. Under class optimization, there is a con-
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troller for each class. The controller of class k decides whether to accept
an arriving class k customer or not in order to minimize the expected
total discounted cost incurred by all class k customers, k = 1, 2. Under
social optimization, there is a single controller for the whole system. The
system controller decides whether to accept an arriving customer or not
in order to minimize the expected total discounted net cost incurred by
all customers. Using sample path argument, we obtain the same struc-
tural results as in Chen and Kulkarni (2005), i.e., the optimal control
policy under each optimization criterion is of threshold type. We also
compare different policies numerically. The numerical results suggest
the same relationships as shown in Chen and Kulkarni (2005), i.e., the
socially optimal policy accepts more low priority customers and less high
priority customers than the class-optimal policy; the individually opti-
mal policy accepts the most high priority customers while, depending on
the parameters, it can accept either more or less low priority customers
than the other two policies.

The remainder of the paper is organized as follows. Section 1, 2, 3
are dedicated to the structural properties of the optimal policies under
individual optimization, social optimization, and class optimization, re-
spectively. Section 4 compares different policies numerically. We end
with the summary in Section 5.

1. Individual Optimization
Following the same approach as in Chen and Kulkarni (2005), one can

easily derive the following results for individually optimal policies.

Theorem 5.1 Under the individual optimization criterion, an arriving
class 1 customer who sees the system in state (i, j) joins the queue if
and only if i < LI

1, where

LI
1 = 	log

h1

h1 + αr1
/ log

µ

µ + α

. (5.1)

An arriving class 2 customer who sees the system in state (i, j) joins the
queue if and only if j < LI

2(i), where

LI
2(i) =

{
	log h2

(h2+αr2)φi(α)/ log β
, if i ≤ LI
1

	(log h2
(h2+αr2)φ

LI
1
(α) + (i − LI

1)(log µ+α
µ ))/ log β
, if i > LI

1

(5.2)
where φi(α) is the LST of the busy period initiated by i class 1 customers
and β = µ

α+µ+λ1(1−φ1(α)) . 	x
 is the largest integer less than or equal to
x. Furthermore, LI

2(i) is decreasing in i.
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Note that shifting the reward time (from the moment a customer joins
the queue to the moment a customer finishes service) not only changes
the form of the threshold functions but also eliminates the cases where
everyone is accepted.

2. Social Optimization
We consider socially optimal policies in this section. The objective of

a socially optimal policy is to minimize the expected total discounted
net cost generated by all customers. Let v(i, j) be the expected total
discounted net cost generated by a socially optimal policy over an in-
finite horizon starting from state (i, j). Following Lippman (1975), we
uniformize the process by defining the uniform rate Λ = λ1 + λ2 + µ.
Rescaling time so that Λ + α = 1, we have the following optimality
equations

v(i, j) = h1i + h2j + λ1 min{v(i, j), v(i + 1, j)}
+λ2 min{v(i, j), v(i, j + 1)}

+µ

⎧⎨
⎩

v(i − 1, j) − r1, if i ≥ 1
v(0, j − 1) − r2, if i = 0, j ≥ 1
v(0, 0), if i = 0, j = 0.

(5.3)

Lemma 5.2 v(0, 1) − v(0, 0) + r2 ≥ 0.

Proof. Define two processes on the same probability space so that they
see the same arrivals and potential services. Process 1 starts in state
(0, 1) and follows optimal policy. Process 2 starts in state (0, 0) and
follows policy φ which is described below. Let τ be the first time Process
1 reaches state (0, 0). Let Process 2 take the same action as Process 1
upon each arrival until time τ , then follow the optimal policy afterwards.
If a new class 2 customer is accepted while Process 1 is serving the
last class 2 customer, we resample the remaining service time of the
class 2 customer currently under service in Process 1 so that he finishes
service at the same time as the new class 2 customer in Process 2. (This
resampling argument can be applied to similar situations in the rest of
this paper.) Therefore, Process 1 and 2 have identical customers except
for one extra class 2 customer in Process 1 until time τ . Two processes
become identical from then on. Using vφ(i, j) to denote the expected
total discounted net cost generated by policy φ starting from state (i, j),
we get

v(0, 1) − v(0, 0) ≥ v(0, 1) − vφ(0, 0)

= E

∫ τ

0
e−αth2dt + Ee−ατ (−r2 + v(0, 0) − v(0, 0))
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≥ −r2Ee−ατ ≥ −r2. �

Lemma 5.3 v is supermodular, i.e.,

v(i + 1, j + 1) − v(i + 1, j) − v(i, j + 1) + v(i, j) ≥ 0. (5.4)

Proof. Fix i and j. Define four processes on the same probability space
so that they see the same arrivals and potential services. Process 1 and 4
follow optimal policies and start in states (i+1, j +1) and (i, j), respec-
tively. Process 2 and 3 start in states (i+1, j) and (i, j+1), respectively,
and use policies φ2 and φ3 which are described below. Denote the state
of Process k at time t by (Xk

t , Y k
t ), k = 1, 2, 3, 4.

Let τ1 be the first time Process 2 and 3 have 0 customers entirely.
Note that if Process 2 and 3 take the same action upon each arrival they
will reach state (0,0) at the same time, since service rates are the same
for both classes. Let τ2 be the first time Process 1 and 4 take different
actions. Define τ = min{τ1, τ2}. Let Process 2 and 3 take the same
action as Process 1 and 4 until time τ , then follow the optimal policy
afterwards. Thus

v(i + 1, j + 1) − v(i + 1, j) − v(i, j + 1) + v(i, j)
≥ v(i + 1, j + 1) − vφ2(i + 1, j) − vφ3(i, j + 1) + v(i, j)

= E

∫ τ

0
e−αt[h(X4

t + 1, Y 4
t + 1) − h(X4

t + 1, Y 4
t )

−h(X4
t , Y 4

t + 1) + h(X4
t , Y 4

t )]dt

+Ee−ατ (−R1 + R2 + R3 − R4)
+Ee−ατ (v(X1

τ , Y 1
τ ) − v(X2

τ , Y 2
τ ) − v(X3

τ , Y 3
τ ) + v(X4

τ , Y 4
τ )),

where Ri is the potential reward generated in Process i at time τ . It
can be easily seen that the first term is 0 because of the linear holding
cost rate.

To simplify notation, define

D = v(i + 1, j + 1) − v(i + 1, j) − v(i, j + 1) + v(i, j) (5.5)

A = −R1 + R2 + R3 − R4, (5.6)

B = v(X1
τ , Y 1

τ ) − v(X2
τ , Y 2

τ ) − v(X3
τ , Y 3

τ ) + v(X4
τ , Y 4

τ ). (5.7)
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Case 1: τ = τ1. Then, at τ , the four processes are in states (0, 1), (0, 0),
(0, 0), and (0, 0), respectively. The two distinct paths by which this state
is reached are: (i) {(1, 2) (1, 1) (0, 2) (0, 1)} → {(0, 2) (0, 1) (0, 1) (0, 0)} →
{(0, 1) (0, 0) (0, 0) (0, 0)}; (ii) {(2, 1) (2, 0) (1, 1) (1, 0)} → {(1, 1) (1, 0)
(0, 1) (0, 0)} → {(0, 1) (0, 0) (0, 0) (0, 0)}. In the former case, R1 = R2 =
R3 = r2, and R4 = 0. In the latter case, R1 = R2 = r1, R3 = r2, and
R4 = 0. In both cases, we have

D ≥ Ee−ατ (r2 + v(0, 1) − v(0, 0)) ≥ 0,

where the last inequality follows from Lemma 5.2.
Case 2: τ = τ2. Then A = 0. We have the following possibilities.
Case 2.1: A class 1 arrival is accepted by Process 1 and rejected by
Process 4. Let Process 2 accept the arrival and Process 3 reject it.
Then after this event the states in four processes are (X4

τ + 2, Y 4
τ + 1),

(X4
τ + 2, Y 4

τ ), (X4
τ , Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively. Adding and
subtracting v(X4

τ + 1, Y 4
τ + 1) + v(X4

τ + 1, Y 4
τ ), we have

B = v(X4
τ + 2, Y 4

τ + 1) − v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ + 2, Y 4

τ )
+v(X4

τ + 1, Y 4
τ ) + v(X4

τ + 1, Y 4
τ + 1) − v(X4

τ , Y 4
τ + 1)

−v(X4
τ + 1, Y 4

τ ) + v(X4
τ , Y 4

τ ).

Note that the first four terms and the last four terms above are inequality
(5.4) evaluated at (X4

τ + 1, Y 4
τ ) and (X4

τ , Y 4
τ ), respectively. Thus the

above argument can be repeated until either Case 1 or Case 2.2 or Case
2.4 happens.
Case 2.2: A class 1 arrival is rejected by Process 1 and accepted by
Process 4. Let Process 2 reject the arrival and Process 3 accept it.
Then after this event the states in four processes are (X4

τ + 1, Y 4
τ + 1),

(X4
τ +1, Y 4

τ ), (X4
τ +1, Y 4

τ +1), and (X4
τ +1, Y 4

τ ), respectively. Note that
Process 1 and 3 couple, so do Process 2 and 4. Therefore B = 0 and
(5.4) holds.
Case 2.3: A class 2 arrival is accepted by Process 1 and rejected by
Process 4. Let Process 2 reject the arrival and Process 3 accept it.
Then after this event the states in four processes are (X4

τ + 1, Y 4
τ + 2),

(X4
τ + 1, Y 4

τ ), (X4
τ , Y 4

τ + 2), and (X4
τ , Y 4

τ ), respectively. Adding and
subtracting v(X4

τ + 1, Y 4
τ + 1) + v(X4

τ , Y 4
τ + 1), we have

B = v(X4
τ + 1, Y 4

τ + 2) − v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ , Y 4

τ + 2)
+v(X4

τ , Y 4
τ + 1) + v(X4

τ + 1, Y 4
τ + 1) − v(X4

τ + 1, Y 4
τ )

−v(X4
τ , Y 4

τ + 1) + v(X4
τ , Y 4

τ ).

Note that the first four terms and the last four terms are inequality (5.4)
evaluated at (X4

τ , Y 4
τ + 1) and (X4

τ , Y 4
τ ), respectively. Thus the above
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argument can be repeated until either Case 1 or Case 2.2 or Case 2.4
happens.
Case 2.4: A class 2 arrival is rejected by Process 1 and accepted by
Process 4. Let Process 2 accept the arrival and Process 3 reject it.
Then after this event the states in four processes are (X4

τ + 1, Y 4
τ + 1),

(X4
τ +1, Y 4

τ +1), (X4
τ , Y 4

τ +1), and (X4
τ , Y 4

τ +1), respectively. Note that
Process 1 and 2 couple, so do Process 3 and 4. Therefore B = 0 and
(5.4) holds. �

Lemma 5.4 v(i, j) is a unimodal function in i, i.e., if v(i + 1, j) −
v(i, j) ≥ 0, then v(i + 2, j) − v(i + 1, j) ≥ 0.

Proof. Define two processes on the same probability space so that they
see the same arrivals and potential services. Process 1 follows the optimal
policy and starts in state (i + 2, j). Process 2 starts in state (i + 1, j)
and follows policy φ that is described below.

Let τ be the first time Process 1 has i + 1 class 1 customers. Process
2 takes the same action as Process 1 upon arrivals until τ then follow
the optimal policy afterwards. Thus, at time τ Process 2 has i class
1 customers and the same number of class 2 customers, say j ′, as in
Process 1. We have j ′ ≥ j, since no class 2 customers have started
service yet. Hence

v(i + 2, j) − v(i + 1, j) ≥ v(i + 2, j) − vφ(i + 1, j)

= E

∫ τ

0
e−αth1dt + Ee−ατ (v(i + 1, j′) − v(i, j′)),

where j′ ≥ j. From supermodularity, we have

v(i + 1, j′) − v(i, j′) ≥ v(i + 1, j) − v(i, j) ≥ 0.

Therefore v(i + 2, j) − v(i + 1, j) ≥ 0. �

Theorem 5.5 The socially optimal policy for admitting class 1 cus-
tomers is characterized by a monotonically decreasing switching curve,
i.e., for each j ≥ 0, there exists a threshold Ls

1(j), such that a class 1
arrival in state (i, j) is accepted if and only if i < Ls

1(j). Furthermore,
Ls

1(j) is monotonically decreasing in j.

Proof. We follow the convention that a customer is accepted when
accepting or rejecting that customer makes no difference in terms of
cost. Then a class 1 arrival in state (i, j) is accepted if and only if
v(i + 1, j) ≤ v(i, j). For any fixed j, let

Ls
1(j) = min{i : v(i + 1, j) > v(i, j)}.
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Using Lemma 5.4, one can easily show that a class 1 arrival is accepted
if and only if i < Ls

1(j).
For j1 ≤ j2, we have v(i + 1, j2) − v(i, j2) ≥ v(i + 1, j1) − v(i, j1),

which follows from supermodularity. By definition of Ls
1(j1), we have

v(Ls
1(j1) + 1, j1) > v(L1(j1), j1), so v(Ls

1(j1) + 1, j2) > v(Ls
1(j1), j2). By

definition of Ls
1(j2), we have Ls

1(j1) ≥ Ls
1(j2). Thus, Ls

1(j) is decreasing
in j. �

Lemma 5.6 If h1 ≥ h2 and r1 ≥ r2, then v is diagonally dominant in
both i and j, i.e.,

v(i, j + 2) − v(i, j + 1) − v(i + 1, j + 1) + v(i + 1, j) ≥ 0, (5.8)

v(i, j + 1) − v(i + 1, j) − v(i + 1, j + 1) + v(i + 2, j) ≥ 0. (5.9)

Proof. (a). Consider (5.8) first.
Define four processes on the same probability space so that they see

the same arrivals and potential services. Process 1 and 4 follow optimal
policies and start in state (i, j +2) and (i+1, j), respectively. Process 2
and 3 start in state (i, j+1) and (i+1, j+1), respectively, and use policies
φ2 and φ3 which are described below. Denote the state of Process k at
time t by (Xk

t , Y k
t ), k = 1, 2, 3, 4.

Let τ1 be the first time Process 3 and 4 have 0 class 1 customers.
Since service rates are the same for both classes, Process 1 and 2 finish
serving the first class 2 customer at τ1. Let τ2 be the first time Process
1 and 4 take different actions. Define τ = min{τ1, τ2}. Let Process 2
and 3 take the same action as Process 1 and 4 upon each arrival until
time τ , then follow the optimal policy afterwards. Thus

v(i, j + 2) − v(i, j + 1) − v(i + 1, j + 1) + v(i + 1, j)
≥ v(i, j + 2) − vφ2(i, j + 1) − vφ3(i + 1, j + 1) + v(i + 1, j)

= E

∫ τ

0
e−αt[h(X4

t − 1, Y 4
t + 2) − h(X4

t − 1, Y 4
t + 1)

−h(X4
t , Y 4

t + 1) + h(X4
t , Y 4

t )]dt

+Ee−ατ (−R1 + R2 + R3 − R4)
+Ee−ατ (v(X1

τ , Y 1
τ ) − v(X2

τ , Y 2
τ ) − v(X3

τ , Y 3
τ ) + v(X4

τ , Y 4
τ )),

where Ri is the potential reward generated in Process i at time τ . It
can be easily seen that the first term is 0 because of the linear holding
cost rate.
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Define A, B as in (5.6), (5.7).
Case a.1: τ = τ1. Then the states in four processes at time τ are
(0, Y 4

τ + 1), (0, Y 4
τ ), (0, Y 4

τ + 1), and (0, Y 4
τ ), respectively. Note that

Process 1 and 3 couple, so do Process 2 and 4. Therefore B = 0. Also,
R1 = R2 = r2 and R3 = R4 = r1, so A = 0. Thus (5.8) holds.
Case a.2: τ = τ2. Then A = 0. We have the following possibilities.
Case a.2.1: A class 1 arrival is accepted by Process 1 and rejected by
Process 4. Let Process 2 accept the arrival and Process 3 reject it.
Then the states in four processes at time τ are (X4

τ , Y 4
τ + 2), (X4

τ , Y 4
τ +

1), (X4
τ , Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively. Adding and subtracting
v(X4

τ + 1, Y 4
τ + 1) + v(X4

τ + 1, Y 4
τ ), we have

B = v(X4
τ , Y 4

τ + 2) − v(X4
τ + 1, Y 4

τ + 1) − v(X4
τ , Y 4

τ + 1)
+v(X4

τ + 1, Y 4
τ ) + v(X4

τ + 1, Y 4
τ + 1) − v(X4

τ , Y 4
τ + 1)

−v(X4
τ + 1, Y 4

τ ) + v(X4
τ , Y 4

τ ).

Note that the first four terms are inequality (5.8) evaluated at (X4
τ , Y 4

τ ),
so the above argument can be repeated until Case a.1 or Case a.2.4
happens. The last four terms are inequality (5.4) evaluated at (X4

τ , Y 4
τ ),

which is non-negative by Lemma 5.3.
Case a.2.2: A class 1 arrival is rejected by Process 1 and accepted by
Process 4. Let Process 2 accept the arrival and Process 3 reject it. Then
the states in four processes at time τ are (X4

τ −2, Y 4
τ +2), (X4

τ −1, Y 4
τ +1),

(X4
τ − 1, Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively. Adding and subtracting
v(X4

τ − 2, Y 4
τ + 1) + v(X4

τ − 1, Y 4
τ ), we have

B = v(X4
τ − 2, Y 4

τ + 2) − v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ + 1)
+v(X4

τ − 1, Y 4
τ ) + v(X4

τ − 2, Y 4
τ + 1) − v(X4

τ − 1, Y 4
τ + 1)

−v(X4
τ − 1, Y 4

τ ) + v(X4
τ , Y 4

τ ).

Note that the first four terms are inequality (5.8) evaluated at (X4
τ −

2, Y 4
τ ), so the above argument can be repeated until Case a.1 or Case

a.2.4 happens. The last four terms are inequality (5.9) evaluated at
(X4

τ −2, Y 4
τ ), so the argument in part (b) can be repeated until Case b.1

or Case b.2.1 happens.
Case a.2.3: A class 2 arrival is accepted by Process 1 and rejected by
Process 4. Let Process 2 accept the arrival and Process 3 reject it. Then
the states in four processes at time τ are (X4

τ −1, Y 4
τ +3), (X4

τ −1, Y 4
τ +

2), (X4
τ , Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively. Adding and subtracting
v(X4

τ − 1, Y 4
τ + 2) + v(X4

τ , Y 4
τ + 2) + v(X4

τ , Y 4
τ + 1), we have

B = v(X4
τ − 1, Y 4

τ + 3) − v(X4
τ − 1, Y 4

τ + 2) − v(X4
τ , Y 4

τ + 2)
+v(X4

τ , Y 4
τ + 1) + v(X4

τ − 1, Y 4
τ + 2) − v(X4

τ − 1, Y 4
τ + 1)
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−v(X4
τ , Y 4

τ + 1) + v(X4
τ , Y 4

τ ) + v(X4
τ − 1, Y 4

τ + 1)
−v(X4

τ − 1, Y 4
τ + 2) − v(X4

τ , Y 4
τ + 1) + v(X4

τ , Y 4
τ + 2).

Note that the first four terms and the second four terms are inequality
(5.8) evaluated at (X4

τ −1, Y 4
τ +1) and (X4

τ −1, Y 4
τ ), respectively. So the

above argument can be repeated until Case a.1 or Case a.2.4 happens.
The last four terms are inequality (5.4) evaluated at (X4

τ − 1, Y 4
τ + 1),

which is non-negative by Lemma 5.3.
Case a.2.4: A class 2 arrival is rejected by Process 1 and accepted by
Process 4. Let Process 2 accept the arrival and Process 3 reject it. Then
the states in four processes at time τ are (X4

τ −1, Y 4
τ +1), (X4

τ −1, Y 4
τ +1),

(X4
τ , Y 4

τ ), (X4
τ , Y 4

τ ), respectively. Note that Process 1 and 2 couple, so
do Process 3 and 4. Therefore B = 0 and hence (5.8) holds.

(b). Consider (5.9) next.
Define four processes on the same probability space so that they see

the same arrivals and potential services. Process 1 and 4 follow optimal
policies and start in state (i, j +1) and (i+2, j), respectively. Process 2
and 3 start in state (i+1, j) and (i+1, j+1), respectively, and use policies
φ2 and φ3 which are described below. Denote the state of Process k at
time t by (Xk

t , Y k
t ), k = 1, 2, 3, 4.

Let β be the first time Process 2 and 3 have 0 class 1 customers. Let
τ1 be the first time Process 4 has 0 class 1 customers. Since service
rates are the same for both classes, Process 1 finishes serving the first
class 2 customer at β and the second class 2 customer (if any) at τ1.
Process 2 and 3 finish serving the first class 2 customer (if any) at τ1.
So between β and τ1, Process 1 and 2 have identical customers, and
Process 3 has one more class 2 customer but one less class 1 customer
than Process 4. While Process 4 is serving the last class 1 customer,
the servers in Process 1 and 2 are either serving class 2 customers or
idle. In the former case, the rewards generated in four processes at τ1

are respectively r2, r2, r2, and r1. In the latter case, the rewards are
respectively 0, 0, r2, and r1. Let τ2 be the first time Process 1 and 4
take different actions. Define τ = min{τ1, τ2}. Let Process 2 and 3 take
the same action as Process 1 and 4 upon each arrival until time τ , then
follow the optimal policy afterwards.
Case b.1: τ = τ1. Then

v(i, j + 1) − v(i + 1, j) − v(i + 1, j + 1) + v(i + 2, j)
≥ v(i, j + 1) − vφ2(i + 1, j) − vφ3(i + 1, j + 1) + v(i + 2, j)

= E

∫ β

0
e−αt[h(X4

t − 2, Y 4
t + 1) − h(X4

t − 1, Y 4
t )

−h(X4
t − 1, Y 4

t + 1) + h(X4
t , Y 4

t )]dt
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+Ee−αβ(−r2 + r1 + r1 − r1)

+E

∫ τ

β
e−αt(h1 − h2)dt + Ee−ατ (r2 − r1)

+Ee−ατ

⎧⎨
⎩

[v(0, 0) − v(0, 0) − v(0, 0) + v(0, 0)], if Y 1
τ− = Y 2

τ− = 0

[v(0, Y 4
τ − 1) − v(0, Y 4

τ − 1) − v(0, Y 4
τ ) + v(0, Y 4

τ )], o.w.

The first term is 0 because of the linear holding cost rate. Using the fact
that h1 ≥ h2 and τ ≥ β, one can show that (5.9) holds.
Case b.2: τ = τ2. Then

v(i, j + 1) − v(i + 1, j) − v(i + 1, j + 1) + v(i + 2, j)
≥ v(i, j + 1) − vφ2(i + 1, j) − vφ3(i + 1, j + 1) + v(i + 2, j)

= E

∫ τ

0
e−αt[h(X4

t − 2, Y 4
t + 1) − h(X4

t − 1, Y 4
t )

−h(X4
t − 1, Y 4

t + 1) + h(X4
t , Y 4

t )]dt

+Ee−ατ (v(X1
τ , Y 1

τ ) − v(X2
τ , Y 2

τ ) − v(X3
τ , Y 3

τ ) + v(X4
τ , Y 4

τ )).

We have the following possibilities.
Case b.2.1: A class 1 arrival is accepted by Process 1 and rejected by
Process 4. Let Process 2 accept the arrival and Process 3 reject. Then
the states in four processes at τ are (X4

τ − 1, Y 4
τ + 1), (X4

τ , Y 4
τ ), (X4

τ −
1, Y 4

τ +1), and (X4
τ , Y 4

τ ), respectively. Note that Process 1 and 3 couple,
so do Process 2 and 4. So (5.9) holds.
Case b.2.2: A class 1 arrival is rejected by Process 1 and accepted by
Process 4. Let Process 2 accept the arrival and Process 3 reject. Then
the states in four processes at τ are (X4

τ − 3, Y 4
τ + 1), (X4

τ − 1, Y 4
τ ),

(X4
τ − 2, Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively. Adding and subtracting
v(X4

τ − 2, Y 4
τ ) + v(X4

τ − 2, Y 4
τ + 1) + v(X4

τ − 1, Y 4
τ + 1), we have

B = v(X4
τ − 3, Y 4

τ + 1) − v(X4
τ − 2, Y 4

τ ) − v(X4
τ − 2, Y 4

τ + 1)
+v(X4

τ − 1, Y 4
τ ) + v(X4

τ − 2, Y 4
τ + 1) − v(X4

τ − 1, Y 4
τ )

−v(X4
τ − 1, Y 4

τ + 1) + v(X4
τ , Y 4

τ ) + v(X4
τ − 2, Y 4

τ )
−v(X4

τ − 2, Y 4
τ + 1) − v(X4

τ − 1, Y 4
τ ) + v(X4

τ − 1, Y 4
τ + 1).

Note that the first four terms and the second four terms are inequality
(5.9) evaluated at (X4

τ − 3, Y 4
τ ) and (X4

τ − 2, Y 4
τ ), respectively, so the

above argument can be repeated until Case b.1 or Case b.2.1 happens.
The last four terms are inequality (5.4) evaluated at (X4

τ −2, Y 4
τ ), which

is non-negative by Lemma 5.3.
Case b.2.3: A class 2 arrival is accepted by Process 1 and rejected by
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Process 4. Let Process 2 accept the arrival and Process 3 reject. Then
the states in four processes at τ are (X4

τ − 2, Y 4
τ + 2), (X4

τ − 1, Y 4
τ + 1),

(X4
τ − 1, Y 4

τ + 1), and (X4
τ , Y 4

τ ), respectively. Adding and subtracting
v(X4

τ − 2, Y 4
τ + 1) + v(X4

τ − 1, Y 4
τ ), we have

B = v(X4
τ − 2, Y 4

τ + 2) − v(X4
τ − 1, Y 4

τ + 1) − v(X4
τ − 2, Y 4

τ + 1)
+v(X4

τ − 1, Y 4
τ ) + v(X4

τ − 2, Y 4
τ + 1) − v(X4

τ − 1, Y 4
τ )

−v(X4
τ − 1, Y 4

τ + 1) + v(X4
τ , Y 4

τ ).

Note that the first four terms are inequality (5.8) evaluated at (X4
τ −

2, Y 4
τ ), so the argument in part (a) can be repeated until Case a.1 or

Case a.2.4 happens. The last four terms are inequality (5.9) evaluated
at (X4

τ − 2, Y 4
τ ), so the above argument can be repeated until Case b.1

or Case b.2.1 happens.
Case b.2.4: A class 2 arrival is rejected by Process 1 and accepted by Pro-
cess 4. Let Process 2 accept the arrival and Process 3 reject. Then the
states in four processes at τ are (X4

τ −2, Y 4
τ ), (X4

τ −1, Y 4
τ ), (X4

τ −1, Y 4
τ ),

and (X4
τ , Y 4

τ ), respectively. Adding and subtracting v(X4
τ − 2, Y 4

τ + 1) +
v(X4

τ − 1, Y 4
τ + 1), we have

B = v(X4
τ − 2, Y 4

τ ) − v(X4
τ − 2, Y 4

τ + 1) − v(X4
τ − 1, Y 4

τ )
+v(X4

τ − 1, Y 4
τ + 1) + v(X4

τ − 2, Y 4
τ + 1) − v(X4

τ − 1, Y 4
τ )

−v(X4
τ − 1, Y 4

τ + 1) + v(X4
τ , Y 4

τ ).

Note that the first four terms are inequality (5.4) evaluated at (X4
τ −

2, Y 4
τ ), which is non-negative by Lemma 5.3. The last four terms are

inequality (5.9) evaluated at (X4
τ − 2, Y 4

τ ), so the above argument can
be repeated until Case b.1 or Case b.2.1 happens. �

Corollary 5.7 If h1 ≥ h2 and r1 ≥ r2, then v is convex in both i and
j, i.e.,

v(i + 2, j) − v(i + 1, j) ≥ v(i + 1, j) − v(i, j), (5.10)

v(i, j + 2) − v(i, j + 1) ≥ v(i, j + 1) − v(i, j). (5.11)

Proof. (5.10) is implied by (5.4) and (5.9), and (5.11) is implied by (5.4)
and (5.8). �

Theorem 5.8 The socially optimal policy for admitting class 2 cus-
tomers is characterized by a monotonically decreasing switching curve,
i.e., for each i ≥ 0, there exists a threshold Ls

2(i), such that a class 2
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arrival in state (i, j) is accepted if and only if j < Ls
2(i). Furthermore,

Ls
2(i) is monotonically decreasing in i.

Proof. Using supermodularity and convexity in j, one can prove this
theorem by following similar argument as in the proof for Theorem 5.5.
�

3. Class Optimization
We consider class-optimal policies in this section. The objective of a

class-optimal policy for class k, k = 1, 2, is to minimize the expected
total discounted net cost generated by all customers in class k.

Optimal Policies for Class 1
We consider optimal admission control policies for class 1 customers

first. Denote v(i) the expected total discounted net cost generated by a
class-optimal policy for class 1 over an infinite horizon starting from state
i, where i is the number of class 1 customers in the system. Note that
class 1 customers don’t see class 2 customers under class optimization
because of their higher priority. Thus, after uniformizing, the optimality
equation can be written as

v(i) = h1i + λ1 min{v(i), v(i + 1)} + µv((i − 1)+ − r1I{i≥1}). (5.12)

Lemma 5.9 v(1) − v(0) + r1 ≥ 0.

Proof. Define two processes on the same probability space so that they
see the same arrivals and potential services. Process 1 starts with 1 class
1 customer and follows optimal policy. Process 2 starts with 0 class 1
customers and follows policy φ which is described below. Let τ be the
first time Process 1 has 0 class 1 customers. Let Process 2 take the
same action as Process 1 upon each arrival until time τ , then follow the
optimal policy afterwards. Therefore, Process 1 has one more class 1
customer than Process 2 until time τ . Two processes become identical
from then on. Thus,

v(1) − v(0) ≥ v(1) − vφ(0)

= E

∫ τ

0
e−αth1dt + Ee−ατ (−r1 + v(0) − v(0))

≥ −r1Ee−ατ ≥ −r1. �
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Lemma 5.10 v is convex, i.e.,

v(i + 2) − v(i + 1) − v(i + 1) + v(i) ≥ 0. (5.13)

Proof. Define four processes on the same probability space so that they
see the same arrivals and potential services. Process 1 and 4 follow
optimal policies and start in state i + 2 and i, respectively. Process 2
and 3 start in state i + 1 and use policies φ2 and φ3, respectively, which
are described below. Denote the state of Process k at time t by (Xk

t , Y k
t ),

k = 1, 2, 3, 4.
Let τ1 be the first time Process 2 and 3 have 0 class 1 customers.

Let τ2 be the first time Process 1 and 4 take different actions. Define
τ = min{τ1, τ2}. Let Process 2 and 3 take the same action as Process
1 and 4 upon each arrival until time τ , then follow the optimal policy
afterwards. Thus

v(i + 2) − v(i + 1) − v(i + 1) + v(i)
≥ v(i + 2) − vφ2(i + 1) − vφ3(i + 1) + v(i)

= E

∫ τ

0
e−αt[h(X4

t + 2) − h(X4
t + 1) − h(X4

t + 1) + h(X4
t )]dt

+Ee−ατ (−R1 + R2 + R3 − R4)
+Ee−ατ (v(X1

τ ) − v(X2
τ ) − v(X3

τ ) + v(X4
τ )),

where Ri is the potential reward generated in Process i at time τ . It
can be easily seen that the first term is 0 because of the linear holding
cost rate.

To simplify notation, define

D̄ = v(i + 2) − v(i + 1) − v(i + 1) + v(i), (5.14)

B̄ = v(X1
τ ) − v(X2

τ ) − v(X3
τ ) + v(X4

τ ). (5.15)

Also define A as in (5.6).
Case 1: τ = τ1. Then the states in four processes at τ are 1, 0, 0, 0,
respectively. The rewards generated at τ are R1 = R2 = R3 = r1, and
R4 = 0. Therefore,

D̄ ≥ Ee−ατ (v(1) − v(0) + r1) ≥ 0,

where the last inequality follows from Lemma 5.9.
Case 2: τ = τ2. Then A = 0. We have the following possibilities.
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Case 2.1: A class 1 arrival is accepted by Process 1 and rejected by Pro-
cess 4. Let Process 2 accept and Process 3 reject the arrival. Then the
states in four processes at τ are X4

τ +3, X4
τ +2, X4

τ +1, X4
τ , respectively.

Adding and subtracting v(X4
τ + 1) + v(X4

τ + 2), we have

B̄ = v(X4
τ + 3) − v(X4

τ + 2) − v(X4
τ + 2) + v(X4

τ + 1)
+v(X4

τ + 2) − v(X4
τ + 1) − v(X4

τ + 1) + v(X4
τ ).

Note that the first four terms and the last four terms are inequality
(5.13) evaluated at X4

τ +1 and X4
τ , respectively. So the above argument

can be repeated until Case 1 or Case 2.2 happens.
Case 2.2: A class 1 arrival is rejected by Process 1 and accepted by
Process 4. Let Process 2 accept and Process 3 reject the arrival. Then
the states in four processes at τ are X4

τ + 2, X4
τ + 2, X4

τ + 1, X4
τ + 1,

respectively. Notice that Process 1 and 2 couple, so do Process 3 and 4.
So B̄ = 0 and hence (5.13) holds. �

Theorem 5.11 The class-optimal policy for admitting class 1 customers
is characterized by a critical number, i.e., there exists a threshold Lc

1,
such that a class 1 arrival in state i is accepted if and only if i < Lc

1.

Proof. Define
Lc

1 = min{i : v(i + 1) > v(i)}.

Using Lemma 5.10 one can easily show that a class 1 arrival is accepted
if and only if i < Lc

1. �

Optimal Policies for Class 2
We consider optimal admission control policies for class 2 customers

next. Denote v(i, j) the expected total discounted net cost generated by
a class-optimal policy for class 2 over an infinite horizon starting from
state (i, j). Assuming class 1 customers are admitted according to the
class-optimal policy for class 1, the optimality equation can be written
as

v(i, j) = h2j + λ1

{
v(i + 1, j), if i < Lc

1

v(i, j), if i >= Lc
1

+λ2 min{v(i, j + 1), v(i, j)}

+µ

⎧⎨
⎩

v(i − 1, j), if i ≥ 1
v(0, j − 1) − r2, if i = 0, j ≥ 1
v(0, 0), if i = 0, j = 0.

(5.16)

Lemma 5.12 v(0, 1) − v(0, 0) + r2 ≥ 0.
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Proof. Same argument as in the proof for Lemma 5.2 applies. �

Lemma 5.13 v is convex in j, i.e.,

v(i, j + 2) − v(i, j + 1) − v(i, j + 1) + v(i, j) ≥ 0. (5.17)

Proof. Same argument as in the proof for Lemma 5.10 applies after the
following changes. Replace class 1 by class 2. Replace v(i) by v(i, j),
v(i + 1) by v(i, j + 1), etc. Replace r1 by r2. �

Lemma 5.14 v is supermodular, i.e.,

v(i + 1, j + 1) − v(i, j + 1) − v(i + 1, j) + v(i, j) ≥ 0. (5.18)

Proof. Same argument as in the proof for Lemma 5.3 applies after the
following changes. No reward is generated when a class 1 customer
finishes service, i.e., r1 = 0. Case 2.1 does not exist, since a class 1
arrival is always accepted in state (i, j) if it is accepted in state (i+1, j).
Case 2.2 is the same as in Lemma 5.3 except that it only happens when
i = Lc

1 − 1. �

Theorem 5.15 The class-optimal policy for admitting class 2 customers
is characterized by a monotonically decreasing switching curve, i.e., for
each i ≥ 0, there exists a threshold Lc

2(i), such that a class 2 arrival in
state (i, j) is accepted if and only if j < Lc

2(i). Furthermore, Lc
2(i) is

monotonically decreasing in i.

Proof. Using supermodularity and convexity in j, one can prove this
theorem by following similar argument as in the proof for Theorem 5.5.
�

4. Numerical Comparison
We compare policies under different criteria numerically in this sec-

tion. The numerical examples are computed by using standard value
iteration algorithm. We approximate the infinite state space by assum-
ing that no customers arrive when the total number of customers in the
system reaches an upper bound B, which is much larger than the ex-
pected queue length. Thus the state space is S = {(i, j) : 0 ≤ i, j ≤ B}.
The stopping criterion is max{|vn+1(i, j) − vn(i, j)| : (i, j) ∈ S} ≤ 10−5,
where vn(i, j) is the value function at the nth iteration.
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Figure 5.1 plots the cost of class-optimal policy for class 1 customers
against i, the number of class 1 customers in starting state. Figure 5.2
plots the cost of class-optimal policy for class 2 customers against j, the
number of class 2 customers in starting state, for different i. Figure 5.1
and 5.2 use the following parameters α = 0.2, µ = 0.5, λ1 = 0.15, λ2 =
0.15, h1 = 0.3, h2 = 0.2, r1 = 25, r2 = 18. Note that the class-optimal
v function is not non-decreasing in i or j, which is different from the
results in Chen and Kulkarni (2005).

Figure 5.3 and 5.4 plot the cost of socially optimal policy against i
and j for fixed j and i, respectively. They use the same parameters as in
Figure 1 and 2 except that r1 = 15, r2 = 10. Again the socially optimal
v function is not non-decreasing in i or j, which is different from the
results in Chen and Kulkarni (2005). So moving the reward from when
the customer join the system to when the service is completed changes
the nature of the problem.

Figure 5.5 and 5.6 plot the switching curves under three optimization
criteria for class 1 and class 2, respectively. Figure 5.5 uses the following
parameters α = 0.1, µ = 0.5, λ1 = 0.1, λ2 = 0.3, h1 = 25, h2 = 20, r1 =
450, r2 = 300. Figure 5.6 uses the following parameters α = 0.1, µ =
0.5, λ1 = 0.39, λ2 = 0.01, h1 = 2, h2 = 0.3, r1 = 550, r2 = 500.

Note that for class 1 (higher priority) customer, individually optimal
policy accepts the most and socially optimal policy accepts the least
number of customers, which is consistent with the existing results in
the literature. For class 2 (lower priority) customer, socially optimal
policy accepts more customers than class optimal policy, which is the
exact opposite to the comparison result for class 1. Depending on the
parameters, individually optimal policy can accept either more or less
customers than either of the other two policies. The above observations
are the same as in Chen and Kulkarni (2005). We restate the explana-
tion for the counter intuitive behavior of class 2 customers provided by
Chen and Kulkarni (2005) in the following. The total cost incurred by
each accepted customer can be divided into two parts: internal cost, i.e.,
individual holding cost, and external cost, i.e., effect on other customers.
The internal cost of a class 2 customer is the highest under individual
optimization and the lowest under social optimization, since the more
class 1 customers accepted, the longer a class 2 customer needs to wait.
The external cost of a class 2 customer is zero under individual optimiza-
tion and the same positive amount under class and social optimization,
which is the delay caused on later class 2 customers. Therefore, the total
cost of a class 2 customer is higher under class optimization than under
social optimization. It can be either higher or lower under individual op-
timization than under the other two criteria depending on which effect
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dominates. This behavior of class 2 customers also shows an interest-
ing socio-economic fact: the lower priority customers fare better under
centralized control than under class-based control.
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Figure 5.1. Plot of v against i: class optimization for class 1
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Figure 5.2. Plot of v against j for fixed i: class optimization for class 2
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Figure 5.3. Plot of v against i for fixed j: social optimization
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5. Conclusion
We have studied the admission control problem to a two-priority

M/M/1 queueing system. We consider the optimal policy from three
perspectives: individual optimization, class-optimization, and social op-
timization. Using sample path argument, we show that the optimal pol-
icy for each priority class from each perspective is of threshold type. We
also compare optimal policies from different perspectives numerically.
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Chapter 6

SOME BILINEAR STOCHASTIC
EQUATIONS WITH A FRACTIONAL
BROWNIAN MOTION

T.E. Duncan
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Abstract An explicit solution is given for a bilinear stochastic differential equation
with a fractional Brownian motion that is described by noncommuting
linear operators and that has the Hurst parameter H in the interval
( 1
2
, 1). It is shown that the expression for this family of solutions for

H in ( 1
2
, 1) extends to the solution for a Brownian motion, H = 1

2
.

Some examples are given to contrast the solutions for commuting and
noncommuting linear operators, in particular, the asymptotic behavior
of the solutions can be significantly different for commuting and non-
commuting operators. The methods to obtain the explicit solutions use
a stochastic calculus for a fractional Brownian motion and some Lie
theory.

Keywords: Fractional Brownian motions, bilinear stochastic differential equations,
explicit solutions of stochastic equations

1. Introduction
Fractional Brownian motion is a family of Gaussian processes that is

indexed by the Hurst parameter H in (0, 1). For H = 1
2 , this process is

a Brownian motion. These processes have a self-similarity and for (1
2 , 1)

they have a long range dependence. Since for H �= 1
2 these processes are

∗Research supported in part by NSF Grants DMS 0204669, DMS 0505706 and ANI 0125410
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not semimartingales, the usual stochastic calculus cannot be used so a
different calculus is required. In recent years, a stochastic calculus has
been developed for fractional Brownian motions with H ∈ (1

2 , 1) (e.g.
[1,3,4]) that has some properties of the stochastic calculus for Brownian
motion. The fractional Brownian motions were defined by Kolmogorov
[9] and some properties were given by Mandelbrot and Van Ness [10].
Hurst [8] noted the initial potential application of these processes and
subsequently their potential applicability has been noted in a wide range
of physical phenomena, especially for H ∈ (1

2 , 1).
Since there are no general conditions for the existence or the unique-

ness of the solutions of a significant family of nonlinear stochastic dif-
ferential equations with a fractional Brownian motion having H �= 1

2 ,
it is important to consider special families of equations that should be
particularly useful as models of physical phenomena.

One important family for its wide potential applicability is bilinear
stochastic differential equations which are also called multiplicative noise
equations. While these equations have been solved explicitly for com-
muting linear operators in a finite dimensional space [2] and in a Hilbert
space [5], apparently no results are available for explicit solutions for
noncommuting linear operators.

In this paper, explicit solutions are given for bilinear stochastic dif-
ferential equations with a fractional Brownian motion with H ∈ (1

2 , 1),
where the linear operators are noncommutative but they commute with
their commutator. The method of solution combines some stochastic
analysis for a fractional Brownian motion (e.g. [1,3,4]) and some Lie
theory for these equations, especially the Baker-Campbell-Hausdorff for-
mula (e.g. [11]). These solutions are shown to extend in H to H = 1

2 ,
that is, Brownian motion.

With explicit solutions, the asymptotic behavior of these solutions can
be determined and compared for commuting and noncommuting linear
operators. Using some simple examples it is shown that the asymptotic
behavior of solutions can be quite different in these two cases.

Bilinear stochastic differential equations have been used with Brow-
nian motions to model diverse physical phenomena, e.g. the Merton-
Samuelson model of a stock price, as well as to describe mathematical
objects e.g. Radon-Nikodym derivatives. In studies of stock prices, it
has been noted that there is often a long range dependence which indi-
cates the potential use of a fractional Brownian motion in some aspects
of financial modeling.
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2. Preliminaries
The family of fractional Brownian motions is a family of Gaussian

processes that is indexed by the Hurst parameter H in the interval (0, 1).
For some fixed H ∈ (0, 1), a standard fractional Brownian motion

(B(t), t ≥ 0) is a process with continuous sample paths such that E[B(t)]
= 0 and

E[B(s)B(t)] =
1
2
[s2H + t2H − |s − t|2H ] (1)

for all s, t ∈ R+.
Let (Ω,F , P) be a complete probability space for (B(t), t ≥ 0). It

suffices to choose Ω = C(R+, R) with the topology of local uniform
convergence, F is the completion of the Borel σ-algebra and P is the
Gaussian measure for the fractional Brownian motion. A fractional
Brownian motion is self-similar, that is, if a > 0 then (B(at), t ≥ 0)
and (aHB(t), t ≥ 0) have the same probability law. If H > 1

2 then
(B(t), t ≥ 0) has a long range dependence, that is, Σr(n) = ∞, where

r(n) = E[B(1)(B(n + 1) − B(n))].

For H = 1
2 , the process is a standard Brownian motion. For H �= 1

2 ,
these processes are not semimartingales. So the stochastic calclus for
semimartingales is not applicable. A stochastic calculus is available (e.g.
[1,3,4]) which uses either the Wick product or some methods from Malli-
avin calculus for defining a stochastic integral. This stochastic integral
for a suitable family of integrands has zero mean and an explicitly com-
putable second moment. However, there is no general theory for the
solutions of stochastic differential equations with a fractional Brownian
motion if H �= 1

2 . Nevertheless, especially for H ∈ (1
2 , 1), solutions

can be given for various families of stochastic differential equations such
as linear and bilinear . Fractional calculus plays an important role for
fractional Brownian motion because for s, t ∈ [0, T ]

E[B(s)B(t)] = ρ(H)
∫ T

0
u2

1
2
−H

(r)

(I
H− 1

2
T− uH− 1

2
1[0,s])(r)(I

H− 1
2

T− uH− 1
2
1[0,t])(r)dr

(2)

where ua(r) = ra for a ∈ R,

(Iα
T−f)(s) =

1
Γ(α)

∫ T

s
f(r)(r − s)α−1dr
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for α > 0,

(I−α
T−f)(s) =

−1
Γ(1 − α)

d

ds

∫ T

s
f(r)(r − s)−αdr

for α ∈ (0, 1), and

ρ(H) =
2HΓ(H + 1

2)Γ(3
2 − H)

Γ(2 − 2H)
.

While solutions for bilinear stochastic differential equations with a
fractional Brownian motion for H ∈ (1

2 , 1) have been given explicitly
([1,5]), it was assumed that the linear operators in the equations are
commutative. Since this commutivity condition is quite restrictive, in
this paper, explicit solutions are given for some noncommuting opera-
tors.

3. Main Result
Consider the following bilinear stochastic differential equation

dX(t) = X(t)(Adt + CdB(t)),
X(0) = I,

(3)

where X(t) ∈ GL(n) ⊂ L(Rn, Rn), A, C ∈ L(Rn, Rn). (B(t), t ≥ 0) is a
real-valued standard fractional Brownian motion with H ∈ (1

2 , 1). It is
assumed that A and C may not commute but they commute with their
commutator, that is,

[A, [A,C]] = [C, [A,C]] = 0 (4)

where [·, ·] is the Lie bracket in gl(n) = L(Rn, Rn), that is, [E, F ] =
EF − FE.

The following result gives an explicit solution to the stochastic differ-
ential equation (3).
Theorem A solution to the equation (3) with the Lie bracket assump-
tion (4) is the process (X̂(t), t ≥ 0) where

X̂(t) =
6∏

j=1

eZj(t), (5)

Z1(t) = tA, (6)

Z2(t) = CB(t), (7)
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Z3(t) = −[A,C]
∫ t

0
B(s)ds, (8)

Z4(t) =
1
2
C[A,C]t2H+1, (9)

Z5(t) =
−1

2(2H + 2)
[A,C]2t2H+2, (10)

Z6(t) = −1
2
C2t2H . (11)

Proof. Initially some commutation properties of A and the other terms
in the solution (5) are proved that arise in the verification by substitution
that X̂ is a solution of (3). Consider the product of A and eZ2(t),

AeZ2(t) = eZ2(t)e−Z2(t)AeZ2(t)

= eCB(t)AdeCB(t)(A)

= eCB(t)e−B(t)adC (A).

(12)

The second and third equality in (12) follow from the definitions of Ad
and ad, the adjoint representation of the group and the algebra, respec-
tively, and naturally occur in such computations (e.g. p.65, [6]). These
equalities are valid here because the real-valued random variable B(t)
may be considered as a parameter and the (measurable) computation is
done for almost all ω ∈ Ω. It follows from the assumption (4) that

e−B(t)adC (A) = A − B(t)[C, A]
= A + B(t)[A,C].

(13)

Since A commutes with [A,C], it also commutes with eZ3(t) and eZ5(t)

for each t ≥ 0. It remains to investigate the commutivity property of A
with eZ4(t) and eZ6(t). For the product A and eZ4(t) compute the bracket
[A,C[A,C]],

[A,C[A, C]] = AC(AC − CA) − C(AC − CA)A
= AC(AC − CA) − CA(AC − CA)

= [A,C]2.
(14)

Making computations analogous to (12) and (13), the following equal-
ities are satisfied
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AeZ4(t) = eZ4(t)e−αadC[A,C](A).

e−αadC[A,C](A) = A − α[C[A, C], A]

= A + α[A,C]2
(15)

where α = 1
2 t2H+1.

Now consider A and eZ6(t) and initially compute [C2, A]. By the
assumption (4), it follows that

[C, [C, A]] = C2A − CAC − CAC + AC2 = 0.

So
C2A = 2CAC − AC2

and

[C2, A] = C2A − AC2 = 2CAC − AC2 − AC2

= 2[C, A]C = 2C[C, A].
(16)

It is clear that [C2, [C2, A]] = 0 and

AeZ6(t) = eZ6(t)e−Z6(t)AeZ6(t)

= eZ6(t)e
1
2
t2HadC2 (A).

(17)

So

e
1
2
t2HadC2 (A) = A +

1
2
t2H [C2, A]

= A + t2HC[C, A].
(18)

The terms [A,C] and C[C, A] that have arisen from the commutation
computations for A above, commute with eZi(t) for i = 2, · · · , 6.

Collecting the computations in (13), (15), (17) and (18), it follows
that

AX̂(t) = X̂(A + B(t)[A,C] +
1
2

t2H+1[A,C]2 − t2HC[A, C]). (19)

Since C commutes with [C, A], C[A,C], [A,C]2 and C2, it commutes
with eZi(t) for i = 3, · · · , 6. Since [A,C] commutes with C[A,C], [A,C]2
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and C2, it commutes with eZi(t) for i = 4, 5, 6. Since C[A,C] commutes
with [A,C]2 and C2, it commutes with eZi(t) for i = 5, 6 and since [A,C]2

commutes with C2, it commutes with eZ6(t). Summarizing, the following
equalities are satisfied

C
6∏

j=2

eZj(t) =
6∏

j=2

eZj(t)C, (20)

[A,C]
6∏

j=3

eZj(t) =
6∏

j=3

eZj(t)[A, C], (21)

C[A,C]
6∏

j=4

eZj(t) =
6∏

j=4

eZj(t)C[A,C], (22)

[A,C]2eZ6(t) = eZ6(t)[A,C]2. (23)

To determine the additional terms that arise from the stochastic cal-
culus for a fractional Brownian motion, some terms that occur in an
application of Taylor’s formula applied at the points of a partition of
[0, t] are considered because no Itô formula for fractional Brownian mo-
tion is available for noncommutting linear operators.

Let P = {t0, · · · , tn} be a partition of [0, t] and let ti, ti+1 ∈ P for
i ∈ {0, · · · , n−1}. It follows from the stochastic calculus for a fractional
Brownian motion that

6∏
j=1

eZj(ti)

∫ ti+1

ti

CdB(s) =
∫ ti+1

ti

6∏
j=1

eZj(ti)CdB(s)

+
∫ ti+1

ti

∫ ti

0

6∏
j=1

eZj(ti)C2φH(r − q)drdq

+
∫ ti+1

ti

∫ ti

0

∫ ti

0

6∏
j=1

eZj(ti)[C, A]C1[0,q](r)φH(s − r)dqdrds.

(24)

The third term on the RHS of (24) can be rewritten to eliminate the
indicator function by interchanging the order of integration for q and r
as ∫ ti+1

ti

∫ ti

0

∫ q

0

6∏
j=1

eZj(ti)[C, A]CφH(s − r)drdqds.



104

The equality (24) is satisfied by a basic property of the stochastic cal-
culus for H ∈ (1

2 , 1). (e.g. [1, 4])
Choosing a sequence of partitions (Pn, n ∈ N) of [0, t] such that |Pn| →

0 as n → ∞, Pn ⊂ Pn+1 for each n ∈ N, and Pn = {t(n)
0 , · · · , t

(n)
n } where

0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = t, the limit in probability of the sum of

terms of the form (24) from Pn as n → ∞ is

∫ t

0
X̂(s)CdB(s) +

∫ t

0
X̂(s)C2Hs2H−1ds

+
∫ t

0
X̂(s)[C, A]C(H − 1

2
)s2Hds.

(25)

A brief explanation is given for the occurrence of the six terms Z1, · · · ,
Z6 that describe the solution. The term Z1 in (6) arises from the linear
operator Adt in (3) and the term Z2 in (7) arises from the linear operator
CdB(t). The term Z3 in (8) arises from the noncommutivity of A and
C. The term Z4 in (9) arises from the stochastic calculus that follows
from the equality (24) and from the noncommutivity of A and C2. The
term Z5 in (10) arises from the noncommutivity of A and C[A,C] and
the term Z6 in (11) arises from the stochastic calculus.

Combining (19), (25) and the first order differentials of eZi(t) for i =
3, · · · , 6, it follows that

∫ t

0
dX̂(s) =

∫ t

0
X̂(s)(A + B(s)[A,C]

+
1
2

s2H+1[A,C]2 − s2H [A,C]C + Hs2H−1C2

− (H − 1
2
)s2H [A,C]C − B(s)[A,C] + (H +

1
2
)s2HC[A,C]

− 1
2

s2H+1[A,C]2 − Hs2H−1C2)ds +
∫ t

0
X̂(s)CdB(s)

=
∫ t

0
X̂(s)(Ads + CdB(s)).

(26)

This equality verifies that (X̂(t), t ≥ 0) is a solution of (3). �
It is useful to compare the solution (5) for H ∈ (1

2 , 1) with the solution
for H = 1

2 , that is, where the process (B(t), t ≥ 0) in (3) is a standard
Brownian motion.
Corollary If (B(t), t ≥ 0) in (3) is a standard Brownian motion, that
is, H = 1

2 , then a solution of (3) is (X̂(t), t ≥ 0) where
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X̂(t) =
6∏

j=1

eZj(t) (27)

and
Z1(t) = tA, (28)

Z2(t) = CB(t), (29)

Z3(t) = −[A,C]
∫ t

0
B(s)ds, (30)

Z4(t) =
1
2
C[A,C]t2, (31)

Z5(t) =
1
6
[A,C]2t3, (32)

Z6(t) = −1
2
C2t. (33)

Proof. It suffices to note that Itô formula implies that the same terms
arise except the third term in (25) which is zero for H = 1

2 . �
It follows immediately that the solution (5) is valid for H ∈ [12 , 1).

4. Some Examples
A few examples are considered to show some different asymptotic

behavior for the solution (5) depending on the commutation properties
of A and C in (3).

Let n = 3 so that a solution of (3), X(t) ∈ GL(3) ⊂ L(R3, R3). Let
Eij ∈ L(R3, R3) be the elementary matrix with 1 in the (i, j) position
and 0 elsewhere, and let I be the identity and H ∈ (1

2 , 1). Let

A0 = C0 = I, (34)

A1 = E12 + E13, (35)

C1 = E23. (36)

A solution of

dY (t) = Y (t)(A0dt + C0dB(t)),
Y (0) = I,

(37)



106

is the process (Y0(t), t ≥ 0) that follows from the scalar case [2] as well
as [5], that is,

Y0(t) = etIeB(t)Ie−
1
2
t2HI . (38)

¿From the Law of the Iterated Logarithm for a fractional Brownian
motion [7], it is elementary to verify that

lim
t→∞Y0(t) = 0, a.s. (39)

Now consider the equation (37) where A0 and C0 are replaced by
A0 + A1 and C0 + C1 respectively, that is,

dY (t) = Y (t)((A0 + A1)dt + (C0 + C1)dB(t)),
Y (0) = I.

(40)

The following equalities are easily verified

[A0 + A1, C0 + C1] = [A1, C1] = E13,

[A0 + A1, [A1, C1]] = 0,

[C0 + C1, [A1, C1]] = 0,

[A1, C1]2 = 0,

(C0 + C1)[A1, C1] = 0,

(C0 + C1)2 = I + 2E23.

A solution for (40) is given by

Y1(t) = e(tA1)e(tA0+Σ6
j=2Zj(t))

= (I + t(E12 + E13))etIeB(t)IeB(t)E23

(I + (−
∫ t

0
B(s)ds + αt2H+1)E13)e−

t2H

2
(I+2E23)

= (I + t(E12 + E13))(et+B(t)− t2H

2 I)(I + B(t)E23)

(I − (
∫ t

0
B(s)ds + αt2H+1)E13)(I − t2HE23)

(41)

where α = 1
2 .

The following limit follows directly
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lim
t→∞Y1(t) = 0, a.s. (42)

Now consider the equation (37) where A0 and C0 are replaced by A1

and C1, respectively, that is,

dY (t) = Y (t)(A1dt + C1dB(t)),
Y (0) = I.

(43)

It easily follows that

[A1, C1]2 = 0,

C1[A1, C1] = 0,

C2
1 = 0.

A solution of (43) is

Y2(t) = e(tA1)eC1B(t)e[A1,C1]
∫ t
0 B(s)ds

= (I + t(E12 + E13))(I + B(t)E23)(I − E13

∫ t

0
B(s)ds)

= I + B(t)E23 + tE12 + (t + tB(t) −
∫ t

0
B(s)ds)E13.

(44)

Clearly (Y2(t), t ≥ 0) does not converge as t → ∞, e.g.

lim sup
t→∞

(Y2(t))23 = +∞, a.s. (45)

lim inf
t→∞ (Y2(t))23 = −∞, a.s. (46)

These examples provide some indication that the asymptotic behavior
of the solutions of these bilinear equations with noncommuting operators
can deviate significantly from the commutative case.
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Abstract The risk encountered in many environmental problems appears to ex-
hibit special “two-sided” characteristics. For instance, in a given area
and in a given period, farmers do not want to see too much or too little
rainfall. They hope for rainfall that is in some given interval. We formu-
late and solve this problem with the help of a “two-sided loss function”
that depends on the above range. Even in financial portfolio optimiza-
tion a loss and a gain are “two sides of a coin”, so it is desirable to
deal with them in a manner that reflects an investor’s relative concern.
Consequently, in this paper, we define Type I risk: “the loss is too big”
and Type II risk: “the gain is too small”. Ideally, we would want to
minimize the two risks simultaneously. However, this may be impossi-
ble and hence we try to balance these two kinds of risk. Namely, we
tolerate certain amount of one risk when minimizing the other. The
latter problem is formulated as a suitable optimization problem and
illustrated with a numerical example.

Keywords: Two-sided risk, rainfall, temperature, value-at-risk, conditional value-
at-risk, Type I risk, value-of-gain, conditional value-of-gain, Type II
risk, assurance, scenarios, portfolio optimization.
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Introduction
The risk encountered in many environmental problems appears to

exhibit special “two-sided” characteristics. The “fundamental security”
in an environmental problem may be a variable such as a rainfall or
a temperature. For instance, in a given area and in a given period,
farmers do not want to see too much or too little rainfall. They hope
for rainfall that is in some given interval. Similarly, we often hope that
the temperature is neither too high nor too low. We formulate and solve
this problem with the help of a “two-sided loss function” that depends
on the above range.

In financial mathematics, there is an extensive literature discussing
the risk of a financial portfolio using the value-at-risk concept, see [3–5,
14–18]. However, these authors consider only the “one-sided” risk using
the return of the portfolio. We argue that - even in financial context - a
loss and a gain are “two sides of a coin”, so it is desirable to differentiate
between the loss and the gain of a portfolio and deal with them in a
manner that reflects an investor’s relative concern about loss and gain.
This is because different people have different attitudes toward a loss
and a gain. Thus, it might be useful to provide models that trade-off
the aversion to these two types of risk. Trying to minimize these kinds
of risks is somewhat different from minimizing conditional value-at-risk
using the usual loss or gain function (as is done in, for instance, [14, 15]).

Based on the above discussion, we define Type I risk: “the loss is too
big” and Type II risk: “the gain is too small”. Ideally, we would want to
minimize the two risks simultaneously. However, this may be impossible
and hence we try to balance these two kinds of risk. Namely, we tolerate
certain amount of one risk when minimizing the other. In the financial
context, investors can then suitably choose parameters according to their
own attitude towards the loss and gain risk.

The paper is organized as follows: we provide a new loss function
for the two-sided problem such as rainfall or temperature. Using the
new loss function together with conditional value-at-risk, we show how
to formulate such a risk in Section 1. In Section 2 we introduce two
types of risk associated with the new loss and gain function. We suggest
a way to balance a loss and a gain in a more general case. We also
provide a criterion for users to choose parameters in these problems. Fi-
nally, in Section 3, together with the portfolio problem, we put forward
the concept and some properties of conditional value-at-risk and condi-
tional value-of-gain with the new loss and gain functions respectively.
All proofs are provided in Section 4.
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1. Two-sided risk
Risks in environmental problems are different from financial market

risk in some aspects. For example, in the rainfall problem, too much
rain or too little rain are both undesirable. Too much rain will lead to a
flood, whereas too little rain will lead to a drought. A similar problem
arises with temperature. We do not want the temperature in a location
to be too high or too low. In this section we introduce one natural
formulation of this “two-sided risk” problem.

Let a random variable (r.v.,for short) X denote the rainfall in a lo-
cation during some specific period. Let us suppose, for instance, that
farmers in this location hope that the rainfall in this season is in the
interval [ν1, ν2]. That is, exceeding ν2 or being lower than ν1 are both
risky in some sense. We shall call [ν1, ν2] the riskless interval.

Let X1 := max{ν1 − X, 0} define the lower risk random variable.
Obviously, as X falls below ν1, X1 increases above 0. Since, insufficient
rain is undesirable, so are large values of X1. Similarly, we define X2 :=
max{X − ν2, 0} as the upper risk random variable. Again, as X raises
above ν2, the r.v. X2 increases above 0. Therefore, the smaller are the
values of both X1 and X2, the better is the result for our risk sensitive
farmers. Figure 7.1 illustrates this situation.

Ν1 Ν2
x

f�x�

Figure 7.1. Two-sided risk.

It follows immediately that

P{X /∈ [ν1, ν2]} = P{X < ν1}+P{X > ν2} = P{X1 > 0}+P{X2 > 0}.
While the above probability of an undesirable event is an entity that

we would like to be “small”, in practical situations, it could well be that
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the event {X1 > 0} is relatively more, or less, undesirable than the event
{X2 > 0} (for instance, some crops may withstand drought better than
excessive moisture). To capture this, unequal, concern about the lower
and upper risks we now introduce a single two-sided risk function (also
called loss function) parameterized by γ ∈ [0, 1]:

h(X, γ, ν1, ν2) = γX1+(1−γ)X2 = γ max{ν1−X, 0}+(1−γ) max{X−ν2, 0}.
Here, γ captures the relative importance of lower risk versus the upper
risk.

Note that, if we assume the distribution of X is F (x), namely F (x) =
P (X ≤ x), then the distribution function of h(X, γ, ν1, ν2) is:

H(x, γ, ν1, ν2) = P (h(X, γ, ν1, ν2) ≤ x) = F

(
ν2 +

x

1 − γ

)
−F

(
ν1 −

x

γ

)
.

Given γ, ν1 and ν2, it is now easy to see h(X, γ, ν1, ν2) is a convex
function in X. It is also clear that the function h(X, γ, ν1, ν2) is non-
negative everywhere in its domain. Since here we use nonnegative num-
bers to describe the risk, we can now use the loss function h(X, γ, ν1, ν2)
in place of the “portfolio f(x, y)” in [15]. Similarly to [15] we now define
value-at-risk (VaR) and conditional value-at-risk (CVaR) based on this
two-sided risk function as follows.

For a given distribution or given data sample of X and the con-
fidence level α, we can obtain the VaR (ζα(X, γ, ν1, ν2)) and CVaR
(φα(X, γ, ν1, ν2)) of h(X, γ, ν1, ν2) as follows:

φα(X, γ, ν1, ν2) = min
ζ

Fα(ζ, X, γ, ν1, ν2),

where Fα(ζ, X, γ, ν1, ν2) = ζ + 1
1−αE[h(X, γ, ν1, ν2) − ζ]+, and

ζα(X, γ, ν1, ν2) ∈ argminζFα(ζ, X, γ, ν1, ν2).

In fact, value-at-risk is the maximal loss the farmer will face with the
confidence level α ∈ [0, 1] and conditional value-at-risk is the mean loss
in the (1 − α) worst case of the two-sided risk function h(X, γ, ν1, ν2).

Figure 7.2 below portrays the essence of these concepts in the case
where the distribution function of h(X, γ, ν1, ν2) is continuous. Note that
the shaded area is on the right (rather than left) tail of the distribution
because large values of our two-sided risk function are undesirable.

Based on these definitions, some limit properties of ζα(X, γ, ν1, ν2)
and φα(X, γ, ν1, ν2) follow immediately:

lim
α→0

ζα(X, γ, ν1, ν2) = 0, lim
α→0

φα(X, γ, ν1, ν2) = E[h(X, γ, ν1, ν2)];

lim
α→1

ζα(X, γ, ν1, ν2) = lim
α→1

φα(X, γ, ν1, ν2) = sup
X

h(X, γ, ν1, ν2).
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Figure 7.2. α−VaR (ζα) and α−CVaR (φα).

Two-sided risk as an optimization problem
Assume we obtain a sample of observations of X denoted by x1, x2, · · · , xN .

After specifying γ, ν1 and ν2, using the method provided in [15] we can
state the following mathematical programming problem.

min
ζ

ζ +
1

N(1 − α)

N∑
k=1

uk

subject to

mk ≥ 0, mk − γ(ν1 − xk) ≥ 0, k = 1, · · · , N ;

nk ≥ 0, nk − (1 − γ)(xk − ν2) ≥ 0, k = 1, · · · , N ;

uk ≥ 0, uk − mk − nk + ζ ≥ 0, k = 1, · · · , N,

where ζ; u1, u2, · · · , uN ; m1, m2, · · · , mN ; n1, n2, · · · , nN are the decision
variables of this optimization problem.

The optimal objective value of this mathematical program constitutes
an estimate - based on the sample - of the conditional value-at-risk of
the two-sided risk function h(X, γ, ν1, ν2). Furthermore, the ζ∗α entry of
an optimal solution is an estimate of value-at-risk corresponding to this
CVaR.

To explain how the above mathematical program arises, we note that
after obtaining the sample x1, x2, . . . , xN from the r.v. X, the sample
mean 1

N

∑N
k=1[h(xk, γ, ν1, ν2)−ζ]+ approximates the nonnegative devia-

tion of the loss from ζ, that is, E[h(X, γ, ν1, ν2)−ζ]+. Hence, we can use
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following function to approximate the function Fα(ζ, X, γ, ν1, ν2) defined
above:

F̃α(ζ, X, γ, ν1, ν2) = ζ +
1

N(1 − α)

N∑
k=1

[h(xk, γ, ν1, ν2) − ζ]+ =

ζ +
1

N(1 − α)

N∑
k=1

[γ max{ν1 − xk, 0} + (1 − γ) max{xk − ν2, 0} − ζ]+.

Thus, instead of minimizing Fα(ζ, X, γ, ν1, ν2), we try to minimize
F̃α(ζ, X, γ, ν1, ν2):

min
ζ

ζ +
1

N(1 − α)

N∑
k=1

[γ max{ν1−xk, 0}+(1−γ) max{xk −ν2, 0}−ζ]+.

In terms of auxiliary real variables uk, mk and nk, for k = 1, · · · , N ,
after setting uk = [γ max{ν1 − xk, 0} + (1 − γ) max{xk − ν2, 0} − ζ]+,
mk = γ max{ν1 −xk, 0} and nk = (1−γ) max{xk −ν2, 0}, the preceding
is equivalent to minimizing the linear expression

min
ζ

ζ +
1

N(1 − α)

N∑
k=1

uk

subject to the linear constrains as follows:

mk ≥ 0, mk − γ(ν1 − xk) ≥ 0, k = 1, · · · , N ;

nk ≥ 0, nk − (1 − γ)(xk − ν2) ≥ 0, k = 1, · · · , N ;

uk ≥ 0, uk − mk − nk + ζ ≥ 0, k = 1, · · · , N.

Note that the above linear constraints can be obtained from properties
of the function [x]+ = max{x, 0}.

Numerical examples
In the first example we generated 1000 observations with log normal

distribution N(1, 2), namely, log X ∼ N(1, 2), and set ν1 = 15, ν2 =
50, γ = 0.5. We obtained ζ0.95 = 62.93 and ζ0.99 = 225.50. If we choose
ν1 = 0.3, ν2 = 250, we will know that ζ0.95 = 0.28.

For instance, this means that with probability 0.95, the two-sided risk
associated with our hypothetical rainfall r.v. X satisfies

P{h(X, .5, 15, 50) ≤ 62.93)} = P{.5X1 + .5X2 ≤ 62.93)} ≥ 0.95.
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Figure 7.3. Density function of Extreme(1,2).

In the next example we will see how the parameter γ influences this
problem. Here we use the asymmetric extreme distribution: X ∼ Ex-
treme(1,2), see Figure 7.3.

Again, we obtained N = 1, 000 observations for which maxxi =
16.33, min xi = −3.25, range = 19.59. We chose α = 0.9, then the
following results were obtained from the optimization problem above:

ζα(X, 0.7, 10, 15) = 7.48, ζα(X, 0.3, 10, 15) = 3.21;

ζα(X, 0.7, 1, 15) = 1.18, ζα(X, 0.3, 1, 15) = 0.52.

Take ζα(X, 0.7, 10, 15) = 7.48 as an example to explain the meaning of
value-at-risk here. As before, the following inequality holds:

P (h(X, 0.7, 10, 15) ≤ 7.48) = P{.7X1 + .3X2 ≤ 7.48)} ≥ 0.9.

This means that our, unequally weighted, two-sided risk of missing the
rainfall interval [10, 15] is less than 7.48 with probability 0.9. Similarly,

P (h(X, 0.3, 10, 15) ≤ 3.21) = P{.3X1 + .7X2 ≤ 3.21)} ≥ 0.9.

We can see that, in this instance, the VaR drops sharply as we place less
weight on the lower risk X1.

This shows that the weight γ plays an important role. However, its in-
fluence is interconnected with the size and location of the interval [ν1, ν2]
in the domain of the density function of this asymmetric distribution.
From Figure 7.4 we see that VaR can both decrease or increase as γ
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Figure 7.4. Relationship between ζα for fixed α and γ for different intervals.

increases, depending on the exact specification of the riskless interval.
For instance, as a function of γ, VaR could be concave, convex, linear,
or nonlinear.

Of course, with γ and the riskless interval held fixed, VaR and CVaR
exhibit the usual dependence on the percentile parameter α. For in-
stance, in the above, with fixed γ = 0.3, ν1 = 10, ν2 = 15, we observe
the relationship between ζα, φα and α that is displayed in Figure 7.5.
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2. Two types of risk
Recall that, X1 was defined as the part of X that is lower than ν1,

and X2 as the part of X that exceeds ν2. In the environmental problems
that motivated the preceding section it was natural to aim to minimize
X1 and X2 simultaneously. Hence, a convex combination of X1 and X2

was a good choice for that purpose.
However, there are some applications (e.g., the standard financial re-

turn) where we have a different requirement with respect to X1 and X2.
For example, we may want X1 (a loss below ν1 threshold) to be small
and X2 (a gain above ν2 threshold) to be large. In such a case, we re-
quire a different analysis of the two tails of the underlying probability
distribution. In what follows, we discuss this problem in the special case
where ν1 = ν2 = 0. The analysis in the general, ν1 �= ν2, case can be
performed in an analogous manner.

Thus, as before, we begin by considering X1 = max{−X, 0} and
X2 = max{X, 0}, where X1, X2 are negative part and positive part of
X respectively. In a typical financial market, X1, X2 will, respectively,
represent the loss and the gain resulting from an investment. However,
in this case, we clearly want X1 to be small whereas X2 to be large.

Unlike the discussion in Section 1, it will be convenient to deal with the
above as two separate, yet interrelated, aspects of the underlying port-
folio optimization problem. The essential observation is that in many
(most?) situations, investments that increase a probability of a large
gain may also increase a probability of large loss. In this sense, the
problem is reminiscent of the classical problem of Type I and II errors
in Statistics.

Type I and Type II risk
Following the above motivation we define the risk associated with

large values of X1 as Type I risk, and the risk associated with small
values of X2 as Type II risk.

We note that the above formulation of Type I risk is similar to already
standard concepts (e.g., see [16]). In particular, we now briefly recall
definitions of VaR and CVaR on X1. More detailed discussion together
with some financial applications will be given in Section 3.

Mathematically, we treat above random variables (r.v.’s) as functions
X : Ω → R that belong to the linear space L2 = L2(Ω,F , P ), that is,
(measurable) functions for which the mean and variance exist.

We denote by Ψ1(·) on R the distribution function of X1 as follows:

Ψ1(ζ) = P{X1 ≤ ζ}.



118

Definition 7.1 The value-at-risk (VaR) of the loss X1 associated with
a confidence level α is the functional ζα : L2 → (−∞,∞):

ζα(X) := inf{ζ|P{X1 ≤ ζ} ≥ α} = inf{ζ|Ψ1(ζ) ≥ α},

which shows the maximal loss the investor will face with the confidence
level α. That is, ζα(X) is the maximal amount of loss that will be in-
curred with probability at least α. However, with probability 1 − α, the
loss will be greater than ζα(X), so we will define:

Definition 7.2 Conditional value-at-risk (CV aR) is the functional φα :
L2 → (−∞,∞):

φα(X) = mean of the α − tail distribution of X1,

where the distribution in question is the one with distribution function
Ψ1,α(ζ) defined by

Ψ1,α(ζ) =
{

0, ζ < ζα(X),
(Ψ1(ζ) − α)/(1 − α), ζ ≥ ζα(X).

Since X1 = max{−X, 0} is a convex function of X, φα(X) defined
above is a convex function of X as well.

Similarly, let us denote by Ψ2(·) on R the distribution function of X2

as follows:
Ψ2(ξ) = P{X2 ≤ ξ}.

Definition 7.3 The value-of-gain (VoG) of the gain X2 associated with
a assurance level β is the functional ξβ : L2 → (−∞,∞):

ξβ(X) = sup{ξ|P{X2 > ξ} ≥ β} = sup{ξ|1 − Ψ2(ξ) ≥ β},

which shows the minimum gain the investor can achieve with a specified
assurance level β. That is, ξβ(X) is the minimal amount of gain that
will be incurred with probability at least β. However, with probability
1 − β, the gain will be less than ξβ(X), so we will define:

Definition 7.4 Conditional value-of-gain (CVoG) is the functional ψβ :
L2 → (−∞,∞):

ψβ(X) = mean of the β − left tail distribution of X2,

where the distribution in question is the one with distribution function
Ψ2,β(·) defined by

Ψ2,β(x) =
{

Ψ(x)/(1 − β), x ≤ ξβ(X),
1, x > ξβ(X).
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Figure 7.6. β−VoG (ξβ) and β−CVoG (ψβ).

Figure 7.6 portrays the essence of these concepts and you could see the
differences between CVoG and CVaR.

One of the important properties of conditional value-of-gain, ψβ(X),
concave in X, will be proved in Section 3 together with some financial
applications.

Two problems and properties of parameters
Investors who want to minimize Type I risk will try to minimize CVaR,

and those who want to minimize Type II risk will try to maximize CVoG.
However, one of these types of risk will tend to stay high when the other
one is minimized. In addition, some parties may want to minimize a
combination of Type I and Type II risks. Our discussion below indicates
one reasonable approach to these important and difficult problems.

Basically, we are assuming that by choosing a “portfolio” (defined
formally in the next section) an investor can select the r.v. X from a
family of r.v.’s with known probability distributions. Hence, an “optimal
portfolio” may involve solving the following two problems:

Problem I

min
X

φα(X) (minimize the CVaR loss)

Subject to:

ψβ(X) ≥ τ. (guarantee a CVoG gain level of τ)

Since Conditional Value of Gain, ψβ(X) is a concave function of X, for
any real number τ the set {X : ψβ(X) ≥ τ} is a convex set. Hence, the
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above optimization problem is a convex problem, that is, in principle,
suitable for fast numerical solution.

Problem II

max
X

ψβ(X), (maximize the CVoG gain)

Subject to:

φα(X) ≤ v. (tolerable CVaR risk level v)

Since −ψβ(X) is a convex function of the decision variable x and the
set {X : φα(X) ≤ v} is a convex set, above problem is also a convex
problem.

In above problems, we have four parameters in total. Those are con-
fidence level α, assurance level β, Type I risk tolerance v and gain target
τ . Selection of values of these parameters constitutes a characterization
of the investor’s attitudes towards the “loss versus gain dilemma”. How-
ever, an intelligent investor will want to select these values on the basis
of their interrelationship that are, ultimately, influenced by the proba-
bility distribution function of the asset X. The analysis below, should
enable such an investor to make an informed decision.

Firstly, we assume that we have chosen and fixed α and β, and in
this case, we want to choose τ and v so that above two problems are
meaningful and interesting. We shall require following notations:

τ∗(β) := max
X

ψβ(X), v∗(α) := min
X

φα(X),

and we shall denote the optimal objective function value of Problems I
and II by

Z1(α, β, τ), Z2(α, β, v),

respectively. Select X∗(α) ∈ argminφα(X) and let ψβ(X∗(α)) = τ∗(β, α),
then we have following lemma.

Ideally, an investor would want a portfolio that is an optimal solution
to both Problems I and II. However, in order to achieve this, some ad-
justments to the target τ (respectively, tolerance level v) maybe needed.

Lemma 7.5 (1) If (α, β) ∈ {(α, β)|τ∗(β, α)} = τ ∗(β)}, then we can
choose τ ≤ τ ∗(β), and for any such τ, Z1(α, β, τ) = v∗(α).

(2) If (α, β) ∈ {(α, β)|τ∗(β, α) < τ∗(β)}, then a choice of
τ ∈ (τ∗(β, α), τ∗(β)] yields Z1(α, β, τ) > v∗(α).

The first case in the Lemma corresponds to the ideal situation since
we obtain the maximum gain while at the same time we minimize our
risk of loss. However, when the second case occurs, namely the strict
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inequality holds, perhaps, the best we can do is to choose our gain target
level τ in that kind of interval. Of course, we will face a greater risk of
loss when we do this.

For Problem II, we can obtain similar conditions for choosing the risk
tolerance v. As before, we define the notation: X∗(β) ∈ argmaxψβ(X),
and let v∗(α, β) = φα(X∗(β)), then the following lemma follows imme-
diately:

Lemma 7.6 (1) If (α, β) ∈ {(α, β)|v∗(α) = v∗(α, β)}, then we can choose
v ≥ v∗(α), and for any such v, Z2(α, β, v) = τ∗(β).

(2) If (α, β) ∈ {(α, β)|v∗(α) < v∗(α, β)}, then a choice of
v ∈ [v∗(α), v∗(α, β)) yields Z2(α, β, v) < τ∗(β).

The first case of this lemma corresponds to the ideal situation where
we attain minimum risk of loss while maximizing our gain. But, when the
second case happens, that means the risk of loss has not been minimized.
We can improve it while trying to maximize our gain but, of course, we
will sacrifice part of the gain.

In fact, combining the analysis of Problem I with that of II, we obtain
the following equation:

{(α, β)|τ∗(β, α) = τ ∗(β)} =

{(α, β)| {argminXφα(X)}
⋂

{argmaxXψβ(X)} �= ∅} =

{(α, β)|v∗(α) = v∗(α, β)}.
What we are interested in now is the set

{(α, β)| {argminXφα(X)}
⋂

{argmaxXψβ(X)} �= ∅}.

From an investor’s point of view, the larger this set is, the better. We
experimented with different distributions of X and obtained a range of
results. For a symmetric distribution, e.g. normal distribution, it is easy
to find parameters µ, σ that permit the above set to be large. However,
for asymmetric distributions, it is harder to do so.

In fact, generally speaking, if we denote the distribution function of
X by F (x), then the distributions of X1, X2 are (1 − F (−x))Ix≥0 and
F (x)Ix≥0, respectively. We observe their typical graphs in Figure 7.7.

The next lemma shows that the non-overlapping feature in the left
panel of Figure 7.7 always occurs in the case of a symmetric underlying
distribution of X.
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Figure 7.7. Distribution function of the loss and gain, when X is a normal distribu-
tion on the left and an extreme distribution on the right.

Lemma 7.7 (symmetric property) Assume X is a symmetric random
variable with the distribution function F (x). By symmetric with respect
to µ, F (µ + x) + F (µ − x) = 1. Then if µ �= 0, F (x) �= 1 − F (−x), in
fact, F (x) < 1 − F (−x), when µ > 0; F (x) > 1 − F (−x), when µ < 0
and F (x) = 1 − F (−x), when µ = 0.

However, after calculating some examples, we found that for asym-
metric distributions it is hard to find α, β such that {argminXφα(X)} ∩
{argmaxXψβ(X)} �= ∅.
Remark: We note that definitions of optimality for Problems I and
II could be generalised to “ε-optimality”, ε > 0 and (typically) very
small. This is because, in practice, investors would be satisfied with
portfolios that are only slightly sub-optimal. All of the previous analysis
generalizes to this situation in a natural way. For details we refer the
reader to Boda’s thesis [8].

3. Financial interpretation
In this section, we explicitly apply the analysis of Type I and Type

II risk to the portfolio optimization problem and interpret the results.
Therefore we concentrate on financial analysis and related optimization
algorithms.

Loss function, gain function and Type I risk
We now apply the general concepts of two types of risk to a spe-

cific portfolio optimization problem and derive methods to optimize and
balance Type I and Type II risks.

Let vector Y = (Y1, · · · , Ym)T be the random return on m stocks.
We define a portfolio to be an m-vector x = (x1, · · · , xm)T such that
xT e = 1, x ≥ 0. We also define the random loss function and a gain



Two Types of Risk 123

function, induced by the portfolio x = (x1, · · · , xm)T as follows:

l(x, Y ) = max{−xT Y, 0}, g(x, Y ) = max{xT Y, 0}.

Note that we are not assuming that the distribution of Yj ’s is symmetric.
For a portfolio, we believe it is a loss if it is negative, otherwise it is a gain.
For the loss function l(x, Y ), we define value-at-risk (VaR) similarly to
Definition 7.1 or, equivalently, [15].

Namely, for each x, we denote by L(x, ·) on R the distribution function
of l(x, Y ) as follows:

L(x, ζ) = PY {l(x, Y ) ≤ ζ}.

Next, choose and fix a confidence level α ∈ [0, 1]. The α-VaR of the
loss associated with a portfolio x, and the loss function l(x, Y ) is the
value:

ζα(x) = min{ζ|L(x, ζ) ≥ α},
which shows the maximal loss the investor will face with the confidence
level α.

Further, we recall that the conditional value-at-risk (CVaR) was de-
fined as:

φα(x) = mean of the α − tail distribution of Z = l(x, Y ),

where the distribution in question is the one with distribution function
Lα(x, ·) defined by

Lα(x, ζ) =
{

0, ζ < ζα(x),
(L(x, ζ) − α)/(1 − α), ζ ≥ ζα(x).

Analogously to the analysis in [15] we use l(x, Y ) = max{−xT Y, 0} in
place of f(x, Y ) to define VaR and CVaR. Note that l(x, Y ) is convex
with x, so if we let

Fα(x, ζ) = ζ +
1

1 − α
E{[l(x, Y ) − ζ]+},

then following conclusions will hold, by the same arguments as those
given in [15].

Theorem 7.8 As a function of ζ ∈ R, Fα(x, ζ) is finite and convex
(hence continuous), with

φα(x) = min
ζ

Fα(x, ζ),
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and moreover,
ζα(x) ∈ argminζFα(x, ζ).

In particular, one always has:

ζα(x) ∈ argminζFα(x, ζ), φα(x) = Fα(x, ζα(x)),

Corollary 7.9 The conditional value-at-risk, φα(x), is convex with
respect to x. Indeed, in this case Fα(x, ζ) is jointly convex in (x, ζ).

Theorem 7.10 Minimizing φa(x) with respect to x ∈ X is equivalent
to minimizing Fα(x, ζ) over all (x, ζ) ∈ X × R, in the sense that

min
x∈X

φα(x) = min
(x,ζ)∈X×R

Fα(x, ζ)

where moreover,

(x∗, ζ∗) ∈ argmin(x,ζ)∈X×RFα(x, ζ) ⇐⇒

x∗ ∈ argminx∈Xφα(x), ζ∗ ∈ argminζ∈RFα(x∗, ζ).

One kind of approximation of Fα(x, ζ) obtained by sampling the prob-
ability distribution of Y . So a sample set y1, · · · , yN of observations of
Y yields the approximation function

F̃α(x, ζ) = ζ +
1

N(1 − α)

N∑
k=1

max{max{−xT yk, 0} − ζ, 0}.

Because here l(x, yk) = max{−xT yk, 0} is a non-smooth function of
x, the formulation of the problem min(x,ζ) F̃α(x, ζ) in [15] should be
changed to the following linear programming problem:

min ζ +
1

N(1 − α)

N∑
k=1

uk

Subject to:
x ≥ 0, xTe = 1;

lk ≥ 0, lk + xT yk ≥ 0, k = 1, · · · , N ;

uk ≥ 0, lk − ζ − uk ≤ 0, k = 1, · · · , N.

Similarly to arguments in [14], VaR and CVaR corresponding to l(x, Y )
can be approximated by the optimizer and the optimal objective function
value of the above linear programming problem. Of course, the quality
of this approximation increases with the sample size N .
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Type II risk
Whereas the preceding analysis of Type I risk was completely analo-

gous to that in [14], when considering properties of Type II risk a few,
natural, adjustments need to be made when considering the problem
of minimizing the risk associated with the new gain function g(x, Y ) =
max{xT Y, 0} failing to take sufficiently large values.

Concept of conditional value-of-gain. For each x, the distri-
bution function of g(x, Y ) is defined by: G(x, ξ) = PY {g(x, Y ) ≤ ξ}.
Choose and fix β ∈ [0, 1], the investor’s assurance level.

Definition 7.11 The value-of-gain (VoG) associated with a portfolio x
and g(x, Y ) is the value:

ξβ(x) = sup{ξ|PY {g(x, Y ) > ξ} ≥ β} = sup{ξ|1 − G(x, ξ) ≥ β},

which shows the minimum gain the investor can achieve with a specified
assurance level β.

However, with probability 1 − β, the gain will be less than ξβ(x), so
the following definition is now natural.

Definition 7.12 Conditional value-of-gain (CVoG):

ψβ(x) = mean of the β − left tail distribution of Z = g(x, Y ),

where the distribution in question is the one with distribution function
Gβ(x, ·) defined by

Gβ(x, ξ) =
{

G(x, ξ)/(1 − β), ξ ≤ ξβ(x),
1, ξ > ξβ(x).

The fact that the distribution function of Z = g(x, Y ) need not be
continuous necessitates the following two additional definitions.

Definition 7.13 The β− CVoG+ (“upper” β− CVoG) of the gain as-
sociated with a decision x is the value:

ψ+
β (x) = E{g(x, Y )|g(x, Y ) ≤ ξβ(x)},

whereas the β− CVoG− (“lower” β− CVoG) of the gain is the value:

ψ−
β (x) = E{g(x, Y )|g(x, Y ) < ξβ(x)}.
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It is important to differentiate between the cases where the upper and
lower conditional values-of-gain coincide, or differ. This is done in the
following proposition that is proved in Section 4.

Proposition 7.14 (Basic CVoG relations). If there is no probability
atom at ξβ(x), one simply has:

ψ−
β (x) = ψβ(x) = ψ+

β (x).

If a probability atom does exist at ξβ(x), one has:

ψ−
β (x) < ψβ(x) = ψ+

β (x),when G(x, ξβ(x)) = 1 − β,

or on the other hand,

ψβ(x) = ψ+
β (x),when G(x, ξβ(x)) = 0,

(with ψ−
β (x) then being ill defined). But in all the remaining cases, we

have
0 < G(x, ξβ(x)) < 1 − β,

and one has the strict inequality

ψ−
β (x) < ψβ(x) < ψ+

β (x).

The next proposition (also proved in Section 4) shows that ψβ(x) =
mean of the β− left tail distribution of Z = g(x, Y ) can be expressed as
convex combination of value-of-gain and the upper conditional value-of-
gain.

Proposition 7.15 (CVoG as a weighted average). Let λβ(x) be the
probability assigned to the gain amount z = ξβ(x) by the β− left tail
distribution, namely

λβ(x) = G(x, ξβ(x))/(1 − β) ∈ [0, 1].

If G(x, ξβ(x)) > 0, so there is a positive probability of a gain less than
ξβ(x), then

ψβ(x) = λβ(x)ψ+
β (x) + [1 − λβ(x)]ξβ(x),

with λβ(x) < 1. However, if G(x, ξβ(x)) = 0, ξβ(x) is the lowest gain
that can occur (and thus λβ(x) = 0 but ψ−

β (x) is ill defined), then

ψβ(x) = ξβ(x).
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For a gain function in finance, following [15], we can easily derive
some useful properties of CVoG as a measure of risk with significant
advantages over VoG. For a discrete distribution and a “scenario case”,
the following results will illustrate a method to estimate VoG and CVoG
from historical data.

Proposition 7.16 (CVoG for scenario models). Suppose the probabil-
ity measure P is concentrated on finitely many points yk of Y , so that
for each x ∈ X the distribution of the gain Z = g(x, Y ) is likewise con-
centrated on finitely many points, and G(x, ·) is a step function with
jumps at those points. Fixing x, let those corresponding gain points
zk := g(x, yk) be ordered as z1 < z2 < · · · < zN , with the probability of
zk being pk > 0. For any fixed assurance level β ∈ [0, 1], let kβ be the
unique index such that

kβ∑
k=1

pk ≤ 1 − β <

kβ+1∑
k=1

pk.

The β−VoG of the gain is given by

ξβ(x) = zkβ
,

whereas the β−CVoG of the gain is given by

ψβ(x) =
1

1 − β

⎡
⎣ kβ∑

k=1

pkzk +

⎛
⎝1 − β −

kβ∑
k=1

pk

⎞
⎠ zkβ

⎤
⎦ .

Furthermore, in this situation the weight from Proposition 7.15 is given
by

λβ(x) =
1

1 − β

kβ∑
k=1

pk.

Corollary 7.17 (Lowest gain). In the notation of Proposition 7.16, if
z1 is the lowest point with probability p1 > 1 − β, then ψβ(x) = ξβ(x) =
z1.

Maximization rule and coherence. We can define the function

Hβ(x, ξ) := ξ − 1
1 − β

E{[g(x, Y ) − ξ]−}

that enables us to determine CVoG and VoG from solutions of an appro-
priate optimization problem formulated in the next theorem. The proof
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(given in Section 4) is inspired by the line of argument used to prove
somewhat similar results in [14, 15].

Theorem 7.18 As a function of ξ ∈ R, Hβ(x, ξ) is finite and concave
(hence continuous), with

ψβ(x) = max
ξ

Hβ(x, ξ),

and moreover,
ξβ(x) ∈ argmaxξHβ(x, ξ).

In particular, one always has:

ψβ(x) = Hβ(x, ξβ(x)).

Corollary 7.19 (Concavity of CVoG) If g(x, y) is convex with respect
to x, then ψβ(x) is concave with respect to x. Indeed, in this case
Hβ(x, ξ) is jointly concave in (x, ξ).

Theorem 7.20 Maximizing ψβ(x) with respect to x ∈ X is equivalent
to maximizing Hβ(x, ξ) over all (x, ξ) ∈ X × R, in the sense that

max
x∈X

ψβ(x) = max
(x,ξ)∈X×R

Hβ(x, ξ).

Moreover,
(x∗, ξ∗) ∈ argmax(x,ξ)∈X×RHβ(x, ξ) ⇐⇒

x∗ ∈ argmaxx∈Xψβ(x), ζ∗ ∈ argmaxζ∈RHβ(x∗, ξ).

It is also possible, and interesting, to optimize an arbitrary portfolio
performance function subject to a number of gain-assurance level con-
straints. This is summarized in the next theorem.

Theorem 7.21 (Gain-shaping with CVoG) Let g be any objective func-
tion chosen on X. For any selection of assurance levels βi and corre-
sponding target levels τi, i = 1, · · · , l, the problem

minimize g(x) over x ∈ X satisfying ψβi(x) ≥ τi for i = 1, · · · , l,

is equivalent to the problem

minimize g(x) over (x, ξ1, · · · , ξl) ∈ X ×R× · · · × R

satisfying Hβi(x, ξi) ≥ τi, for i = 1, · · · , l.
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Indeed, (x∗, ξ∗1 , · · · , ξ∗l ) solves the second problem if and only if x∗ solves
the first problem and the inequalities Hβi(x

∗, ξ∗i ) ≥ τi, hold for i =
1, · · · , l.

Moreover one then has ψβi(x
∗) ≥ τi for every i, and actually ψβi(x

∗) =
τi for each i such that Hβi(x

∗, ξ∗i ) = τi (i.e., those that correspond to ac-
tive CVoG constraints).

Based on Theorem 7.18, we can construct the following approximat-
ing algorithm for maximizing the CVoG. We assume that Yk’s are i.i.d
distributed according to p(y), and a sample of observations from p(y) is
denoted by y1, y2, · · · , yN . Maximizing CVoG can then be approximated
by the following mathematical programming problem:

max ξ − 1
N(1 − β)

N∑
k=1

uk

subject to
x ≥ 0, xTe = 1;

uk ≥ 0, g(x, yk) − ξ + uk ≥ 0, k = 1, · · · , N.

However, since g(x, yk) = max{xT yk, 0} is not a smooth function of
x, the above mathematical programming problem is not in a directly
tractable form. Hence, we introduce 0 − 1 integer variables for each
sample point to change the above mathematical programming problem
to one that can be solved using mixed integer programming method as
follows:

max ξ − 1
N(1 − β)

N∑
k=1

uk

subject to
x ≥ 0, xTe = 1;

nk ∈ {0, 1}, 0 ≤ gk ≤ nkM, 0 ≤ lk ≤ (1 − nk)M, k = 1, · · · , N ;

gk − lk = xT y, k = 1, · · · , N ;

uk ≥ 0, gk − ξ + uk ≥ 0, k = 1, · · · , N,

where, M is a suitably chosen large number. Of course, when the sample
size N is large, this means that the computational effort required to solve
the above optimality can be prohibitively difficult. Nonetheless, there
are now many heuristics for solving large scale integer programming
problems.
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Table 7.1. Portfolio mean return m

Instrument Mean return

S&P 0.0101110
Gov.bond 0.0043532
Small cap 0.0137058

Table 7.2. Portfolio variance-covariance matrix V

S&P Gov.bond Small cap

S&P 0.00324625 0.00022983 0.00420395
Gov.bond 0.00022983 0.00049937 0.00019247
Small cap 0.00420395 0.00019247 0.00764097

Examples. Here we use the data from [14] to calculate VaR, CVaR
and VoG, CVoG using our new loss and gain function. The data are as
follows:

We assume the return of three stocks satisfy a multivariate normal dis-
tribution N(m, V ). The mean vector and variance-covariance matrix are
shown in Table 7.1 and Table 7.2 respectively. We can use these param-
eters to generate samples that satisfy multivariate normal distribution
and then use the samples and the above constructions and mathematical
programs to calculate VaR, VoG and optimize CVaR and CVoG.

The calculated VaR, optimized CVaR and the optimal portfolio cor-
responding to different confidence levels α and the sample size of 10, 000
are shown in Table 7.3. The calculated VoG, optimized CVoG and the
optimal portfolio corresponding to different assurance levels β and the
sample size of 1, 000 are shown in Table 7.4.

Table 7.3. Results of Minimizing Type I risk (minimizing CVaR) using the new loss
function

α Sample Size S&P Gov.bond Small cap VaR CVaR

0.90 10000 0.0784 0.9215 0 0.0193 0.0233
0.95 10000 0.0741 0.9258 0 0.0321 0.0413
0.99 10000 0.0924 0.9075 0 0.0479 0.0532

The results are as might be expected. In particular, we note that when
optimizing the portfolio with respect Type I risk, we find that zero weight
is allocated to “Small cap”, a small weight to “S&P” and a large weight
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Table 7.4. Results of Minimizing Type II risk (maximizing CVoG) using the new
gain function

β Sample Size S&P Gov.bond Small cap VoG CVoG

0.33 1000 0 0 1 0.0919 0.0210
0.4 1000 0 0 1 0.0575 0.0098
0.6 1000 0.0951 0 0.9048 0.0219 0.0024

to “Gov. bond”. This merely reflects the fact that government bonds
have a variance that is very close to zero, followed by “S&P”, followed
by “Small cap”. Correspondingly, when optimizing the portfolio with
respect to Type II risk, we find that zero weight is allocated to “Gov.
bond”, and very large weights are allocated to “Small cap”. This reflects
the fact that the mean return of “Small cap” is the highest while the
government bonds have the lowest mean return.

Balancing two types of risks
Returning to the discussion of Section 2, we will continue to consider

two problems associated with our loss and gain functions. Since we
have seen that an investor who focuses on just Type I risk will obtain
very different results to those that would be obtained if Type II risk
were of the main concern. However, most investors will be sensitive -
albeit, in varying degrees - to both types of risk. Hence, the challenge
is to formulate a portfolio optimization problem that captures these
dual concerns. Here, we will give two possible formulations of this “risk
balancing problem” and illustrate them with an example based on the
above data.

Two problems. Basically, we want to solve the following problems:
Problem I

min
x

φα(x), (minimize the CVaR loss)

Subject to:

ψβ(x) ≥ τ. (guarantee a CVoG target level of τ).

Since conditional value-of-gain, ψβ(x) is a concave function of x, the
set {x : ψβ(x) ≥ τ} for any real number τ is a convex set. Hence, the
above Problem I is a convex programming problem that is, in principle,
suitable for fast numerical solution.



132

Problem II

max
x

ψβ(x), (maximize the CVoG gain)

Subject to:

φα(x) ≤ v. (tolerable CVaR risk level v)

Since −ψβ(x) is a convex function of the decision variable x and the set
{x : φα(x) ≤ v} is a convex set, the above problem is also a convex
programming problem.

According to our Theorem 7.21 and Theorem 16 in [15], if we have
observations of returns yk, k = 1, · · · , N generated by the distribution
p(y), then we can change the above two problems to the following Mixed
Integer Programming (MIP) problems:

Problem I’

min ζ +
1

N(1 − α)

N∑
k=1

ηk

Subject to:
x ≥ 0, xTe = 1;

nk ∈ {0, 1}, 0 ≤ gk ≤ nkM, 0 ≤ fk ≤ (1 − nk)M, k = 1, · · · , N ;

gk − fk − xT yk = 0, k = 1, · · · , N ;

ηk ≥ 0, fk − ζ − ηk ≤ 0, k = 1, · · · , N ;

uk ≥ 0, gk − ξ + uk ≥ 0, k = 1, · · · , N ;

ξ − 1
N(1 − β)

N∑
k=1

uk ≥ τ ;

where, M is a suitably chosen large number.
Problem II’

max ξ − 1
N(1 − β)

N∑
k=1

uk

Subject to:
x ≥ 0, xTe = 1;

nk ∈ {0, 1}, 0 ≤ gk ≤ nkM, 0 ≤ fk ≤ (1 − nk)M, k = 1, · · · , N ;

gk − fk − xT yk = 0, k = 1, · · · , N ;

uk ≥ 0, gk − ξ + uk ≥ 0, k = 1, · · · , N ;

ηk ≥ 0, fk − ζ − ηk ≤ 0, k = 1, · · · , N ;
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ζ +
1

N(1 − α)

N∑
k=1

ηk ≤ v;

where, M is a suitably chosen large number.
From above, it is easy to see that if we chose α, β, τ and v, we can

use the above two optimization problems to calculate two optimized
portfolios that capture a given investor’s attitude to Type I and Type
II risks.

Examples. We still use the data in Table 7.1 and Table 7.2. We let
α = 0.9, β = 0.6 be fixed. Using a sample size of 1000, we first calculate
the maximal conditional value-of-gain, τ ∗(β) = τ∗(0.6) = 0.0024 and the
minimal conditional value-at-risk v∗(α) = v∗(0.9) = 0.0233. Then, we
choose τ ≤ τ ∗(0.6) and v ≥ v∗(0.9) and solve the preceding two mixed
integer programming problems. We obtain the following results.

Table 7.5. Results of Problem I

τ Sample Size S&P Gov.bond Small cap Z1(0.9, 0.6, τ)

0.001 1000 0.0809 0.9190 0 0.0249
0.0015 1000 0.0902 0.9097 0 0.0257
0.002 1000 0.2160 0.5468 0.2371 0.0626
0.0023 1000 0.3597 0.2655 0.3746 0.0955

From Table 7.5 we can see that, Z1(α, β, τ) is very close to v∗(α) when
our target level τ is very small, that means low requirement for the gain
will yield low risk and vice versa.

Table 7.6. Results of Problem II

v Sample Size S&P Gov.bond Small cap Z2(0.9, 0.6, v)

0.024 1000 0.0697 0.9302 0 0.0003
0.030 1000 0.0576 0.8566 0.0857 0.0016
0.060 1000 0.2046 0.5691 0.2262 0.0019
0.1 1000 0.3791 0.2276 0.3931 0.0023

We can see that Z2(α, β, v) is close to τ ∗(β) when our risk tolerance v
is large from Table 7.6, that shows the relaxation of the risk requirement
will lead to a larger gain and vice versa.
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4. Proofs
In this section, we will provide proofs of each lemma, proposition,

theorem and corollary in above sections.
Proof of Lemma 7.5: If (α, β) ∈ {(α, β)|τ∗(β, α)} = τ ∗(β)}, then

ψβ(X∗(α)) = τ∗(β, α) = τ∗(β) = maxX ψβ(X). So X∗(α) ∈ argmaxX

ψβ(X), that means for any X ∈ L2, we can’t find one such that ψβ(X) >
τ∗(β), so we should choose τ ≤ τ ∗(β), however based on the above
relationship, there exists at least one X that will minimize φα(X) and
maximize ψβ(X) simultaneously, so in this case, Z1(α, β, τ) = v∗(α).

In another case when (α, β) ∈ {(α, β)|τ∗(β, α) < τ∗(β)}, that means
we will obtain a lower gain τ∗(β, α) when we try to minimize the risk
φα(X), but we can’t obtain a gain that will exceed τ ∗(β), reasonably,
we will choose τ ∈ (τ∗(β, α), τ∗(β)], however for this τ , there won’t exist
X ∈ argminXφα(X) such that ψβ(X) ≥ τ , this will yield a higher risk,
that is Z1(α, β, τ) > v∗(α). �

Proof of Lemma 7.6: Similarly to the proof of Lemma 7.5, we can
prove Lemma 7.6. �

Proof of Lemma 7.7: Since F (µ + x) + F (µ − x) = 1, so F (x) =
F (µ−µ + x) = F (µ− (µ−x)) = 1−F (µ + (µ−x)) = 1−F (2µ−x). It
is easy to use the above relationship to prove the lemma together with
the monotonicity of the distribution function F (x). �

Proof of Proposition 7.14: We define:

β−(x) = G(x, ξβ(x)−), β+(x) = G(x, ξβ(x)+).

In comparison with the definition of ψβ(x) in Definition 7.12, ψ−
β (x) is

the mean of the gain distribution associated with

G−
β (x, ξ) =

{
G(x, ξ)/(1 − β−(x)), ξ ≤ ξβ(x),

1, ξ > ξβ(x),

whereas the ψ+
β (x) value is the mean of the gain distribution associated

with

G+
β (x, ξ) =

{
G(x, ξ)/(1 − β+(x)), ξ ≤ ξβ(x),

1, ξ > ξβ(x).

It is easy to see that β−(x) and β+(x) mark the bottom and top of
the vertical gap at ξβ(x) for the original distribution function G(x, ·) (if
a jump occurs there).

The case of there being no probability atom at ξβ(x) corresponds to
having β−(x) = β+(x) = β ∈ (0, 1). Then the first equation holds
because the distribution functions G−

β (x, ξ), Gβ(x, ξ) and G+
β (x, ξ) are

identical.
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When a probability atom exists but β = β+(x), we have: β−(x) <
β+(x) < 1 and thus the second relations. If β+(x) = 0, we can neverthe-
less get the third one since β−(x) < β+(x) < 1. Under the alternative
of 0 < G(x, ξβ(x)) < 1, the strict inequalities in the fifth prevail. �

Proof of Proposition 7.15: According to the definition of CVoG and
when G(x, ξβ(x)) > 0, we can calculate the mean in the definition di-
rectly as follows: for a fixed portfolio x,

ψβ(x) =
∫ ξβ(x)
0 d(G(x, ξ)/(1 − β)) + (1 − G(x, ξβ(x))/(1 − β))ξβ(x)

= G(x,ξβ(x))
1−β ×

∫ ξβ(x)

0 dG(x,ξ)
G(x,ξβ(x)) +

(
1 − G(x,ξβ(x))

1−β

)
ξβ(x)

= G(x,ξβ(x))
1−β E{g(x, Y )|g(x, Y ) ≤ ξβ(x)} +

(
1 − G(x,ξβ(x))

1−β

)
ξβ(x)

= G(x,ξβ(x))
1−β ψ+

β (x) +
(
1 − G(x,ξβ(x))

1−β

)
ξβ(x),

so we can obtain the following equation after defining λβ(x) = G(x,ξβ(x))
(1−β) ,

ψβ(x) = λβ(x)ψ+
β (x) + [1 − λβ(x)]ξβ(x).

We know λβ(x) ∈ [0, 1] since 0 ≤ Gβ(x, ξβ(x)) ≤ 1− β. If G(x, ξβ(x)) =
0, ξβ(x) is the lowest gain that can occur (and thus λβ(x) = 0 but ψ−

β (x)
is ill defined), then ψβ(x) = ξβ(x). �

Proof of Proposition 7.16: According to the following relationship:

kβ∑
k=1

pk ≤ 1 − β <

kβ+1∑
k=1

pk,

we have

G(x, ξβ(x)) =
kβ∑

k=1

pk, G(x, ξβ(x)−) =
kβ−1∑
k=1

pk,

G(x, ξβ(x)) − G(x, ξβ(x)−) = pkβ
.

The assertions then follow from Definition 7.12 and Proposition 7.15. �

Proof of Corollary 7.17: This amounts to the special case in Proposi-
tion 7.16 with kβ = 0, then we know ψβ(x) = ξβ(x) = z1. �

Proof of Theorem 7.18: Firstly, we will prove the Theorem in the case
that the distribution function G(x, ξ) of the gain g(x, Y ) for fixed x is
everywhere continuous with respect to ξ. We also assume the random
return Y has desity function p(y). Before proceeding main steps, we will
give a lemma for preparation.
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Lemma 7.22 With x fixed, let Q(ξ) =
∫
y∈Rn q(ξ, y)p(y)dy, where q(ξ, y) =

[g(x, y) − ξ]−. Then Q is a convex continuously differentiable function
with derivative

Q′(ξ) = G(x, ξ).

Proof: This lemma follows from Proposition 2.1 of Shapiro and wardi
(1994) in [20].

Now, let’s prove the Theorem in this particular case. In view of the
defining formula for Hβ(x, ξ),

Hβ(x, ξ) = ξ − 1
1 − β

E{[g(x, Y ) − ξ]−},

it is immediate from Lemma 7.22 and the fact that linear function is a
concave function that Hβ(x, ξ) is concave and continuously differentiable
with derivative

∂

∂ξ
Hβ(x, ξ) = 1 − 1

1 − β
G(x, ξ).

Therefore, the values of ξ that furnish the maximum of Hβ(x, ξ) are
precisely those for which G(x, ξ) = 1−β. They form a nonempty closed
interval, inasmuch as G(x, ξ) is continuous and nondecreasing in ξ with
limit 1 as ξ → ∞ and limit 0 as ξ → −∞. This further yields the validity
of the formula ξβ(x) ∈ argmaxξHβ(x, ξ). In particular, then, we have

max
ξ∈R

Hβ(x, ξ) = Hβ(x, ξβ(x)) = ξβ(x)− 1
1 − β

∫
y∈R

[g(x, y)−ξβ(x)]−p(y)dy.

But the integral here equals∫
g(x,y)≤ξβ(x)

[ξβ(x) − g(x, y)]p(y)dy = ξβ(x)
∫

g(x,y)≤ξβ(x)
p(y)dy−

∫
g(x,y)≤ξβ(x)

g(x, y)p(y)dy,

where the first integral on the right is by definition G(x, ξβ(x)) = 1 − β
and the second is (1 − β)ψβ(x). Thus,

max
ξ∈R

Hβ(x, ξ) = ξβ(x) − 1
1 − β

[(1 − β)ξβ(x) − (1 − β)ψβ(x)] = ψβ(x).

This confirms the formula for β− CVoG, ψβ(x) = maxξ Hβ(x, ξ), and
completes the proof of the Theorem in this special case.

In the following, I’ll prove it in a more general sense, including the
discreteness of the distribution.
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The finiteness of Hβ(x, ξ) is a consequence of our assumption that
E{|g(x, y)|} < ∞ for each x ∈ X. It’s concave follows at once from the
convexity of [g(x, y)− ξ]− with respect to ξ. Similar to convex function,
a finite concave function, Hβ(x, ξ) has finite right and left derivatives at
any ξ. The following approach of proving the rest of the assertions in
the theorem will rely on first establishing for these one-sided derivatives,
the formulas,

∂+Hβ

∂ξ
(x, ξ) =

1 − β − G(x, ξ)
1 − β

,
∂−Hβ

∂ξ
(x, ξ) =

1 − β − G(x, ξ−)
1 − β

.

(7.1)
We start by observing that

Hβ(x, ξ′) − Hβ(x, ξ)
ξ′ − ξ

= 1 − 1
1 − β

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
.

When ξ′ > ξ, we have:

[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

⎧⎨
⎩

= 0 if g(x, Y ) ≥ ξ′
= 1 if g(x, Y ) ≤ ξ

∈ (0, 1) if ξ < g(x, Y ) < ξ′

Since PY {ξ < g(x, Y ) ≤ ξ′} = G(x, ξ′)−G(x, ξ), this yields the existence
of a value ρ(ξ, ξ′) ∈ [0, 1] for which

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
= G(x, ξ)+ρ(ξ, ξ′)[G(x, ξ′)−G(x, ξ)].

Since furthermore G(x, ξ′) ↘ G(x, ξ) as ξ′ ↘ ξ, it follows that

lim
ξ′↘ξ

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
= G(x, ξ).

So, we obtain

lim
ξ′↘ξ

Hβ(x, ξ′) − Hβ(x, ξ)
ξ′ − ξ

= 1 − 1
1 − β

G(x, ξ) =
1 − β − G(x, ξ)

1 − β
,

thereby verifying the first formula in (7.1). For the second formula in
(7.1), we argue similarly that when ξ′ < ξ we have

[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

⎧⎨
⎩

= 0 if g(x, Y ) ≥ ξ
= 1 if g(x, Y ) ≤ ξ′

∈ (0, 1) if ξ′ < g(x, Y ) < ξ
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where PY {ξ′ < g(x, Y ) < ξ} = G(x, ξ−) − G(x, ξ′). Since G(x, ξ′) ↗
G(x, ξ−) as ξ′ ↗ ξ we obtain

lim
ξ′↗ξ

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
= G(x, ξ−),

and then

lim
ξ′↗ξ

Hβ(x, ξ′) − Hβ(x, ξ)
ξ′ − ξ

= 1 − 1
1 − β

G(x, ξ−) =
1 − β − G(x, ξ−)

1 − β
.

That gives the second formula in (7.1).
Because of concavity, the one-sided derivatives in (7.1) are non-increasing

with respect to ξ, with the formulas assuring that

lim
ξ→∞

∂+Hβ

∂ξ
(x, ξ) = lim

ξ→∞
∂−Hβ

∂ξ
(x, ξ) = − β

1 − β

and on the other hand,

lim
ξ→−∞

∂+Hβ

∂ξ
(x, ξ) = lim

ξ→−∞
∂−Hβ

∂ξ
(x, ξ) = 1.

On the basis of these limits, we know that the level set {ξ|Hβ(x, ξ) ≥
c} are bounded (for any choice of c ∈ R) and therefore that the maximum
in the theorem is attained, with the argmax set being a closed, bounded
interval. The values of ξ in that set are characterized as the ones such
that

∂+Hβ

∂ξ
(x, ξ) ≤ 0 ≤ ∂−Hβ

∂ξ
(x, ξ).

According to the formulas in (7.1), they are the values of ξ satisfying
G(x, ξ−) ≤ 1− β ≤ G(x, ξ). The rest of the Theorem is a direct conclu-
sion of the above results. �

Proof of Corollary 7.19: The joint concavity of Hβ(x, ξ) in (x, ξ) is an
elementary consequence of the definition of this function, the relation-
ship between convexity and concavity and the convexity of the function
(x, ξ) → [g(x, y)−ξ]− when g(x, y) is convex in x. The concave of ψβ(x)
in x follows immediately then from the maximization formula in The-
orem 7.18. (In convex analysis, when a convex function of two vector
variables is minimized with respect to one of them, the residual is a
convex function of the other: see Rockafellar [13]. Here, we can obtain
the result just simply applying the above theory to the convex function
−Hβ(x, ξ).) �

Proof of Theorem 7.20: This rests on the principle in optimization
that maximization with respect to (x, ξ) can be carried out by maximiz-
ing with respect to ξ for each x and then maximizing the residual with
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respect to x. In the situation at hand, we invoke Theorem 7.18 and in
particular, in order to get the equivalence in the second formula in the
Theorem, the fact there that the maximum of Hβ(x, ξ) in ξ (for fixed x)
is always attained. �

Proof of Theorem 7.21: This relies on the maximization formula in
Theorem 7.18 and the assured attainment of the maximum there. The
arguments are very much like that for Theorem 7.20. Because ψβ(x) =
maxξ Hβ(x, ξ), we have ψβi(x) ≥ τi, if and only if there exists ξi such
that Hβi(x, ξi) ≥ τi. �
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Abstract This paper is concerned with the optimal production planning in a dy-
namic stochastic manufacturing system consisting of a single or parallel
machines that are failure prone and facing a constant demand. The ob-
jective is to choose the production rate over time to minimize the long-
run average cost of production and surplus. The analysis is developed
by the infinitesimal perturbation approach. The infinitesimal pertur-
bation analysis and identification algorithms are used to estimate the
optimal threshold value. The asymptotically optimal threshold value
and the convergence rate of the identification algorithms are obtained.
Furthermore, the central limit theorem of the identification algorithms
is also established.

Keywords: Manufacturing system; perturbation analysis; stochastic approximation;
truncated Robbins-Monro algorithm.

1. Introduction
We consider the problem of a dynamic stochastic manufacturing sys-

tem consisting of a single or parallel machines that must meet the de-
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mand for its products at a minimum long-run average cost of production
and surplus. The stochastic nature of the system is due to the machine
that are failure-prone. The machine capacity is assumed to be a finite-
state Markov chain. There is a considerable literature devoted to the
production planning for manufacturing systems with the long-run aver-
age cost criterion, see Bielecki and Kumar (1988) and Sethi et al. (2004).
Bielecki and Kumar deal with a single machine (only with two sates: up
and down), single product problem with linear surplus cost. Because of
the simple structure of their problem, they are able to obtain the opti-
mal production policy which is of threshold. Furthermore, the explicit
threshold value is given. When their problem is generalized to convex
costs, explicit solutions are no longer possible. As a result, some gen-
eralizations of the Bielecki-Kumar problem such as those by Sharifnia
(1988), and Liberopoulos and Hu (1995) are only heuristic in nature.
Sethi et al. develop appropriate dynamic programming equations to
rigorously prove that the optimal production policy is in the class of
threshold policies. However, they cannot get the explicit threshold val-
ues.

In this paper, the infinitesimal perturbation is used to analyze the
threshold value. Formally, combining infinitesimal perturbation analysis
(IPA) with the truncated Robbins-Monro algorithm gives the stochas-
tic approximation to estimate the derivative of the long-run average
cost function with respect to the threshold value. This estimation, in
sequence, implies an approximation for the optimal threshold value. A
similar procedure used in this paper appears in Tang and Boukas (1999),
however, they are constitutionally different. In Tang and Boukas (1999),
they are absorbed in the manufacturing system consisting of one ma-
chine with two states–up and down producing one part type. Based
on the work in Hu and Xiang (1993) which proves the equivalence be-
tween the queueing and a manufacturing system with two states–up and
down, the problem in Tang and Boukas (1999) is solved in the context
of queueing theory. When the machine has more than two states, the
equivalence given by Hu and Xiang (1993) does not hold. Using the
asymptotic analysis for Markov chains (see Sethi et al. (2004), and Yin
and Zhang (1997)), we directly prove the convergence of the truncated
Robbins-Monro algorithm, and hence get the approximation for the opti-
mal threshold value. Furthermore we obtain the asymptotical normality
of the approximation.

The plan of the paper is as follows. In Section 2, we introduce the
problem and specify required assumptions. Section 3 is devoted to study
the approximation of the optimal threshold value including the strong
consistence and convergence rate. Section 4 concludes the paper.
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2. Problem Formulation
We consider a product manufacturing system with stochastic produc-

tion capacity and constant demand for its production over time. In order
to specify the model, let x(t), u(t) and d denote, respectively, the sur-
plus level, the production rate, and the positive constant demand rate at
time t ∈ R+ = [0, +∞). Here, surplus refers to inventory when x(t) ≥ 0
and backlog when x(t) < 0. We assume that x(t) ∈ R = (−∞, +∞)
and u(t) ∈ R+. The system dynamic behavior is given by

dx(t)
dt

= u(t) − d, x(0) = x. (8.1)

Let M(t) represent the maximum production capacity of the system
at time t. We assume that M(·) is a Markov process defined on a prob-
ability space (Ω,F , P ) with a finite state space M = {0, 1, · · · , m}. The
representation for M stands usually, but not necessarily, for the case of
m identical machines, each with a unit capacity and having two states–
up and down. This is not an essential assumption. In general, M could
be any finite set of nonnegative numbers representing production capac-
ities in the various states of the system. Of course, the production rate
u(t) must satisfy the constraint 0 ≤ u(t) ≤ M(t). Just as what we men-
tioned in the introduction, we only consider the following hedging point
control policy:

u(θ, t) =

⎧⎨⎩
M(t), x(t) < θ,
d ∧ M(t), x(t) = θ,
0, otherwise

(8.2)

for all t ≥ 0, where θ is the threshold value. Under control u(θ, t), we
denote the inventory level process by x(θ, t). The problem is to find θ
that minimizes the cost function

J(θ) = lim
t→∞

1
t
E

∫ t

0
[H(x(θ, s)) + C(u(θ, s))] ds, (8.3)

where H(·) defines the cost of inventory/shortage, and C(·) is the pro-
duction cost.

We impose the following assumptions on the Markov process M(·)
and the cost functions H(·) and C(·) through the paper.

(A1) Let the (m + 1) × (m + 1) matrix Q = (qij) be the generator of
Markov process M(·). We assume that Q is strongly irreducible in
the following sense: The system of equations

(ν0, ν1, · · · , νm)Q = 0 and
m∑

i=0

νi = 1
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has a unique solution (ν0, ν1, · · · , νm) with νi > 0, i = 0, 1, · · · , m.
Furthermore, the average capacity level m̄ =

∑m
i=0 iνi > d.

(A2) H(·) is a nonnegative continuously differentiable convex function
with H(0) = 0. Let h(z) = dH(z)

dz . Furthermore, there exist posi-
tive constants Ch and Kh such that for any z1, z2 ∈ R,

|h(z1) − h(z2)| ≤ Ch · (|z1|Kh−1 + |z2|Kh−1) · |z1 − z2|.
(A3) C(·) is a nonnegative continuously differentiable convex function

defined on interval [0, m]. C(0) is assumed to be zero. Let c(z) =
dC(z)

dz .

For any θ ∈ R, if x(θ, 0) = θ, it follows from (8.2) that

x(θ, t) = x(0, t) + θ, t ≥ 0. (8.4)

This simple relationship implies that J(θ) is a convex function of thresh-
old value θ. In fact, for r ∈ [0, 1] and θ1, θ2 ∈ R, in view of Assumptions
(A2) and (A3),

rJ(θ1) + (1 − r)J(θ2)

≥ lim
t→∞

1
t
E

∫ ∞

0
[rH(x(θ1, s)) + (1 − r)H(x(θ2, s)) + rC(u(θ1, s))

+(1 − r)C(u(θ2, s))] ds

≥ lim
t→∞

1
t
E

∫ ∞

0
[H(rx(θ1, s) + (1 − r)x(θ2, s)) + C(ru(θ1, s)

+(1 − r)u(θ2, s))] ds

= lim
t→∞

1
t
E

∫ ∞

0
[H(x(rθ1 + (1 − r)θ2, s)) + C(u(rθ1+

(1 − r)θ2, s))] ds

= J(rθ1 + (1 − r)θ2),

this gives the convexity of J(·).

3. Approximation for the Optimal Threshold
Value

Since J(θ) is convex, there is an optimal threshold value θ0. In what
follows, we need to estimate θ0. The estimation is started with the
derivative of the long-run average cost function J(θ) with respect to the
threshold value θ. To get the derivative of J(θ), let

T ∗
0 (θ) = 0,

T ∗
i (θ) = {t > T ∗

i−1(θ) : x(θ, t) = θ, M(t−) ≥ d, M(t) < d},
τ∗
i (θ) = T ∗

i (θ) − Ti−1(θ), i = 1, 2, · · · .
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Since the cost function J(θ) is independent of the initial state, without
loss of generality, we assume that x(θ, 0) = θ and M(0) < d. It follows
from (8.4) that T ∗

i (θ) and τ∗
i (θ) do not depend on the threshold value

θ (in following, we simply write them as T ∗
i and τ∗ respectively). For

a fixed θ, {(x(θ, t), M(t)), t > 0} is a regenerative process, where the
regeneration points or regeneration times are {T ∗

i , i ≥ 1}. Moreover,
{τ∗

i , i = 1, 2, · · ·} is an iid sequence. Define

Jt(θ) =
1
t

∫ t

0
[H(x(θ, x)) + C(u(θ, x))] ds.

By Assumptions (A2) and (A3), it follows that with probability one

dJt(θ)
dθ

=
1
t

∫ t

0
[h(x(θ, s)) + c(u(θ, s))] ds. (8.5)

dJt(θ)
dθ is called the infinitesimal perturbation analysis (IPA) derivative of

Jt(θ). In practice, we use dJt(θ)
dθ as an estimate for dJ(θ)

dθ . One concern is
whether dJ(θ)

dθ = lim
t→∞

dJt(θ)
dθ a.s., which is called the strong consistency of

the IPA derivative estimate, see Ho and Cao (1991), and Yan, Yin and
Lou (1994). If Eτ∗

1 < ∞, along the same lines as in Glasserman (1991)
and by Theorem 3.6.1 in Ross (1996), we can prove the following lemma.
Eτ∗

1 < ∞ will be given by Lemma 3.2.

Lemma 3.1 If Assumptions (A1)–(A3) hold, then the IPA derivative
estimate (8.5) is strongly consistent and

dJ(θ)
dθ

=
1

E[τ∗
1 ]

E

∫ τ∗
1

0
[h(x(θ, s)) + c(u(θ, s))] ds. (8.6)

In view of the convexity of J(·), we know that to find an optimal
threshold value θ0, it suffices to find the zero of J(θ). Using Lemma 3.1,
we only need to find the zero of E

∫ τ∗
1

0 [h(x(θ, s)) + c(u(θ, s))] ds. Next
we design a sequence of hedging point policies to approximate this zero
value. Let T0 = 0, θ0 = 0 and {an, n ≥ 0} be a sequence of positive
numbers with an ≥ an+1 and limn→∞ an = 0. Define

x(1)(t) = 0 +
∫ t

T0

[u(θ0, s) − d] ds, (8.7)

T1 = inf{t > T0 : x(θ0, t) = θ0, M(t−) ≥ d, M(t) < d}, (8.8)

f1 =
∫ T1

T0

[h(x(θ0, s)) + c(u(θ0, s))] ds, (8.9)
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θ̂1 = θ0 − a0f1, (8.10)

θ1 = θ̂1I{|θ̂1|<b} − bI{θ̂1≤−b} + bI{θ̂1≥b}, (8.11)

ε1 = f1 − [Eτ∗
1 ] · f(θ0), (8.12)

where f(θ) = dJ(θ)
dθ , and b > 0 is an arbitrary constant with θ0 ∈ [−b, b].

Assume that {x(k)(t), t ≥ Tk−1, 1 ≤ k ≤ n} and {(θk, Tk), 0 ≤ k ≤ n}
have been defined, where θn is considered as the nth estimate for θ0. For
t ≥ Tn, define

x(n+1)(t) = x(Tn) +
∫ t

Tn

[u(θn, s) − d] ds, (8.13)

Tn+1 = inf{t > Tn : x(n+1)(t) = θn,

M(t−) ≥ d, M(t) < d}, (8.14)

fn+1 =
∫ Tn+1

Tn

[
h(x(n+1)(s)) + c(u(θn, s))

]
ds, (8.15)

θ̂n+1 = θn − anfn+1, (8.16)

θn+1 = θ̂n+1I[|θ̂n+1|<b] − bI[θ̂n+1≤−b] + bI[θ̂n+1≥b], (8.17)

εn+1 = fn+1 − [Eτ∗
1 ] · f(θn). (8.18)

θn+1 is the (n+1)th estimate for θ0, fn+1 is the (n+1)th IPA derivative
estimate for [Eτ∗

1 ] · f(θn), and εn+1 is the estimate noise. The above
algorithm to approximate the optimal threshold value θ0 is a truncated
Robbins-Monro algorithm, an is the step-size of the Robbins-Monro al-
gorithm, see Robbins and Monro (1951). Furthermore, {Tn, n ≥ 1} is a
sequence of stopping times with respect to M(·). Based on {x(n)(t), t ≥
Tn−1, n ≥ 1}, define x̂(t) as

x̂(t) = x(n)(t) t ∈ [Tn−1, Tn), n = 1, 2, · · · . (8.19)

As a standard procedure in the Robbins-Monro algorithm, we introduce
conditions:

(A4) an > 0, lim
n→∞nan = α �= 0, where α is a constant.

(A5) 0 ≤ a−1
n+1 − a−1

n → β > 0, as n → ∞.

(A6) As θ → θ0, f(θ) can be expressed as f(θ) = γ · (θ − θ0) + O(|θ −
θ0|2) for some constant γ < −β/(2[Eτ∗

1 ]), where β is defined in
Assumption (A5).

Lemma 3.2 Let Assumptions (A1) and (A4)–(A5) hold, then for any
r > 0 and n ≥ 0, E[(Tn+1 − Tn)r] ≤ γr where γr < ∞ is a constant only
depending on r. In particular, E[τ∗

1 ]r < γr.
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Proof. The proof consists of two steps.
Case 1. θn ≥ θn−1. For any � ≥ 0, define

T̂n+1(�) = inf{t > Tn :
∫ t

Tn

[M(s) − d] ds = �}, (8.20)

T̃n+1 = inf{t ≥ T̂n+1(θn − θn−1) : M(t) < d}. (8.21)

It follows from the definition of Tn that

Tn+1−Tn = T̃n+1−Tn = [T̃n+1−T̂n+1(θn−θn−1)]+[T̂n+1(θn−θn−1)−Tn].

Noting that θn − θn−1 < 2b and Using Lemma 3.1 and Corollary 3.1 in
Sethi et al. (2004), there exists a constant γr such that

E[T̃n+1 − T̂n+1(θn − θn−1)]r ≤ γr and E[T̂n+1(θn − θn−1) − Tn]r ≤ γr.

This completes the proof.
Case 2. θn < θn−1. In this case, it follows from the definition of Tn+1

that

Tn+1 − Tn = inf
{

t ≥ Tn +
θn−1 − θn

d
: x(n+1)(t) = θn,

M(t) < d and M(t−) ≥ d} − Tn.

Using again Lemma 3.1 and Corollary 3.1 in Sethi et al. (2004) we have
the lemma.

Finally, E[τ∗
1 ]r < γr directly follows from τ∗

1 = T1. Q.E.D.

Theorem 3.1 Suppose that Assumptions (A1)–(A5) hold, then
∞∑

n=1

a1−δ
n εn+1

converges a.s., where δ is a constant in [0, 1/2).

Proof. Let

τn+1 = inf
{

t > Tn :
∫ t

Tn

[M(s) − d] ds ≥ 0 and M(t) < d

}
− Tn,

and

fn+1(θn) =
∫ Tn+τn+1

Tn

[h(x∗(θn, s)) + c(u∗(θn, s))] ds, (8.22)

where u∗(θn, ·) is given by (8.2) with θ = θn, and

dx∗(θn, s)
ds

= u∗(θn, s) − d, x∗(θn, Tn) = θn.
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Using (8.18) and (8.22),
∞∑

n=1

a1−δ
n εn+1 =

∞∑
n=1

a1−δ
n (fn+1(θn) − [Eτ∗

1 ] · f(θn))

+
∞∑

n=1

a1−δ
n (fn+1 − fn+1(θn)). (8.23)

Let Fn = σ(M(s) : s ≤ Tn), then

E [fn+1(θn)|Fn] = E

[∫ Tn+τn+1

Tn

[h(x∗(θn, s)) + c(u∗(θn, s))] ds

∣∣∣∣∣Fn

]

=

(
E

∫ τ∗
1

0
[h(x(θ, s)) + c(u(θ, s))] ds

)∣∣∣∣∣
θ=θn

= [Eτ∗
1 ] · E [f(θn)|Fn] .

This consequently implies {fn+1(θn)− [Eτ∗
1 ] · f(θn),Fn, n ≥ 0} is a mar-

tingale difference sequence. Note that for t ∈ [Tn, Tn+1],

|θn| ≤ b and |x(n+1)(t)| ≤ |x(Tn)| + (m ∨ d) · (t − Tn).

It follows from Assumptions (A2) and (A3) that there exists a positive
constant C1 such that

|fn+1(θn)| ≤ C1 · τn+1 + Ch (|θn| + τn+1 · (m ∨ d))Kh · τn+1, (8.24)

[Eτ∗
1 ] · |f(θn)| ≤ E

[
C1 · τ∗

1 + Ch (|θn| + τ∗
1 · (m ∨ d))Kh · τ∗

1

]
. (8.25)

Hence, from Lemma 3.2, there exist positive constants C2 and C3 such
that

∞∑
n=1

a2(1−δ)
n E[(fn+1(θn) − [Eτ∗

1 ] · f(θn))2|Fn]

≤
∞∑

n=1

a2(1−δ)
n

(
C2 + C3 · E[(τn+1)2 + (τn+1)2Kh+2]

)
< ∞,

where Assumption (A4) is applied in the last inequality. By the local
convergence theorem of martingales (see Corollary 2.8.5 in Stout (1974)),

∞∑
n=1

a1−δ
n (fn+1(θn) − [Eτ∗

1 ] · f(θn)) converges a.s. (8.26)

Now we consider the second term in the right-hand of (8.23). First
we have

∞∑
n=1

a1−δ
n (fn+1 − fn+1(θn))
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=
∞∑

n=1

a1−δ
n (fn+1 − fn+1(θn)) · I{|θn−θn−1|≥(n−1)−δ1}

+
∞∑

n=1

a1−δ
n (fn+1 − fn+1(θn)) · I{|θn−θn−1|<(n−1)−δ1}, (8.27)

where δ1 is a positive constant which will be specified later on. From
the definition of θn, we have

|θn+1 − θn| ≤ an · |fn+1|.
Similar to (8.24),

|fn+1| ≤ C1 · (Tn+1 − Tn) + Ch [|θn|
+(Tn+1 − Tn) · (m ∨ d)]Kh · (Tn+1 − Tn).

Using this inequality, we have

|θn+1 − θn| ≤ an · {C1 · (Tn+1 − Tn) + Ch [|θn|
+(Tn+1 − Tn) · (m ∨ d)]Kh · (Tn+1 − Tn)

}
.(8.28)

Using Assumption (A4), Lemma 3.2 and (8.28)

Pr{|θn+1 − θn| ≥ n−δ1}
≤ n2δ1E[|θn+1 − θn|2]
≤ n2δ1a2

nE {C1 · (Tn+1 − Tn)

+Ch [|θn| + (Tn+1 − Tn) · (m ∨ d)]Kh · (Tn+1 − Tn)
}2

≤ C4n
−2(1−δ1), (8.29)

for some C4 > 0. Using Hölder’s inequality, for any r > 1,

E

[ ∞∑
n=1

a1−δ
n |fn+1 − fn+1(θn)|I{|θn−θn−1|≥(n−1)−δ1}

]

=
∞∑

n=1

a1−δ
n E

[
|fn+1 − fn+1(θn)|I{|θn−θn−1|≥(n−1)−δ1}

]
≤

∞∑
n=1

a1−δ
n (E|fn+1 − fn+1(θn)|r) 1

r ×

×
(
Pr{|θn − θn−1| ≥ (n − 1)−δ1}

)1− 1
r

≤
∞∑

n=1

a1−δ
n C4 · (n − 1)−2(1−δ1)(1− 1

r
) ×

× (E|fn+1 − fn+1(θn)|r) 1
r . (8.30)
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Using again Lemma 3.2 and (8.24), we know that there exists a positive
constant C5 such that

E|fn+1 − fn+1(θn)|r < C5.

We choose r = 2 and δ1 = 1/2. In view of (8.30), we have

E

[ ∞∑
n=1

a1−δ
n |fn+1 − fn+1(θn)|I{|θn−θn−1|≥(n−1)−δ1}

]
< ∞.

This implies that

∞∑
n=1

a1−δ
n (fn+1 − fn+1(θn))I{|θn−θn−1|≥(n−1)−δ1} converges a.s. (8.31)

Now we define

τ̂n+1 = inf{t > Tn : M(t) ≥ d} − Tn.

From the definition of Tn, we know that

M(Tn−) ≥ d and M(Tn+) < d.

By the Markov property of M(t), we have that

Pr

(
τ̂n+1 <

(n − 1)−δ1

d

)
≤ C6(n − 1)−δ1 ,

for some constant C6 > 0. Note that

E
∞∑

n=1

a1−δ
n |fn+1 − fn+1(θn)| · I{|θn−θn−1|<(n−1)−δ1} ·

·I{τ̂n+1<(1/d)(n−1)−δ1}

≤
∞∑

n=1

a1−δ
n E|fn+1 − fn+1(θn)| · I{τ̂n+1<(1/d)(n−1)−δ1}.

Similar to (8.30), using again Hölder’s inequality but with r > (1−2δ)−1,
we have

E
∞∑

n=1

a1−δ
n |fn+1 − fn+1(θn)| · I{|θn−θn−1|<(n−1)−δ1} ·

·I{τ̂n+1<(1/d)(n−1)−δ1} < ∞,
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which gives
∞∑

n=1

a1−δ
n (fn+1 − fn+1(θn)) · I{|θn−θn−1|<(n−1)−δ1} · I{τ̂n+1<(1/d)(n−1)−δ1}

converges a.s. (8.32)

Finally we consider
∞∑

n=1

a1−δ
n (fn+1 − fn+1(θn)) · I{|θn−θn−1|<(n−1)−δ1} · I{τ̂n+1≥(1/d)(n−1)−δ1}.

From the definitions of Tn+1 and τn+1, conditional on

{θn−1 ≥ θn} ∩ {|θn − θn−1| < (n − 1)−δ1} ∩ {τ̂n+1 ≥ (1/d)(n − 1)−δ1},
we have

Tn+1 − Tn = inf {t : M(t) < d and∫ t

Tn+
θn−1−θn

d

[M(s) − d] ds ≥ 0

}
− Tn, (8.33)

τn+1 = inf

{
t ≥ Tn : M(t) < d and

∫ t

Tn+
θn−1−θn

d

[M(s) − d] ds

≥ −
∫ Tn+

θn−1−θn
d

Tn

[M(s) − d] ds

⎫⎬⎭− Tn, (8.34)

|x(n+1)(s) − x∗(θn, s)| ≤ (θn−1 − θn)

+

∣∣∣∣∣∣
∫ Tn+

θn−1−θn
d

Tn

[M(z) − d] dz

∣∣∣∣∣∣ , s ∈ [Tn, Tn+1), (8.35)

u(θn, s) = u∗(θn, s), s ∈
[
Tn +

θn−1 − θn

d
, Tn+1

)
. (8.36)

Similarly, conditional on

{θn−1 < θn} ∩ {|θn − θn−1| < (n − 1)−δ1} ∩ {τ̂n+1 ≥ (1/d)(n − 1)−δ1},
we have

Tn+1 − Tn = inf {t : M(t) < d and∫ t

Tn

[M(s) − d] ds ≥ θn − θn−1

}
− Tn, (8.37)

τn+1 = inf
{

t : M(t) < d and
∫ t

Tn

[M(s) − d] ds ≥ 0
}
− Tn, (8.38)

|x(n+1)(s) − x∗(θn, s)| ≤ (θn − θn−1), s ∈ [Tn, Tn + τn+1),(8.39)
u(θn, s) = u∗(θn, s), s ∈ [Tn, Tn + τn+1). (8.40)
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Using the Markov property of M(t), from (8.33), (8.34), and (8.37)-
(8.38), we have

E {[τn+1 − (Tn+1 − Tn)] ·
·I{{θn−1≥θn}∩{|θn−θn−1|<(n−1)−δ1}∩{τ̂n+1≥(1/d)(n−1)−δ1}}

}
≤ C7(n − 1)−δ1 , (8.41)

E {[(Tn+1 − Tn) − τn+1] ·
·I{{θn−1<θn}∩{|θn−θn−1|<(n−1)−δ1}∩{τ̂n+1≥(1/d)(n−1)−δ1}}

}
≤ C7(n − 1)−δ1 , (8.42)

for some constant C7 > 0. Going alone the line of the proof of (8.32),
using (8.35)-(8.36) and (8.41), we can prove

∞∑
n=1

a1−δ
n (fn+1 − fn+1(θn)) ·

·I{{|θn−θn−1|<(n−1)−δ1}∩{τ̂n+1≥(1/d)(n−1)−δ1}∩{θn−1≥θn}}
converges a.s. (8.43)

In a same way, by (8.39)–(8.40) and (8.42),
∞∑

n=1

a1−δ
n (fn+1 − fn+1(θn)) ·

·I{{|θn−θn−1|<(n−1)−δ1}∩{τ̂n+1≥(1/d)(n−1)−δ1}∩{θn−1<θn}}
converges a.s. (8.44)

Combining (8.31), (8.32), and (8.43)-(8.44) yield the theorem. Q.E.D.

Theorem 3.2 If Assumptions (A1)–(A6) hold, then lim
n→∞ θn = θ0 a.s.

and |θn − θ0| = o(aδ
n) a.s. for δ ∈ [0, 1

2).

Proof. lim
n→∞ θn = θ0 follows from Lemma 3.1 and Theorem 2.2.1 in

Chen (2002), and the second claim follows from Lemma 3.2 and Theorem
3.1.1 in Chen (2002). QED.

Theorem 3.3 Suppose that

E

[∫ τ∗
1

0
(h(x(θ, s)) + c(u(θ, s))) ds

]2

is continuous at θ0 and Assumptions (A1)–(A6) hold, then

θn − θ0

√
an

⇒ N (0, σ2), n → ∞
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where N (0, σ2) is a normal random variable with mean zero and variance
σ2

1, and

σ2 =
σ2

1

2γ · [Eτ∗
1 ] + β

,

σ2
1 = E

[∫ τ∗
1

0

(
h(x(θ0, s)) + c(u(θ0, s))

)
ds

]2

.

Proof. By Theorem 3.2, |θn − θ0| = o(a1/4
n ) a.s. Thus after a fi-

nite number of truncations, (8.13)-(8.18) will become the usual Robbins-
Monto algorithm (see Chen (2002)), so we can get that there exists an
n0 (may depend on the sample path) such that for n ≥ n0,

θn+1 = θn − an([Eτ∗
1 ] · f(θn) + εn+1). (8.45)

Using Assumption (A5), we have,

( an
an+1

)
1
2 = (an−an+1

an+1
+ 1)

1
2

= 1 + 1
2an(a−1

n+1 − a−1
n ) + O((an−an+1

an+1
)2)

= 1 + 1
2βan + o(an).

(8.46)

It follows from (8.45) and (8.46) that for n ≥ n0

θn−θ0√
an+1

= ϕn,n0

θn0−θ0

√
an0

+
n∑

i=no

ϕn,i+1
√

aiεi+1

+
n∑

i=no

ϕn,i+1aiεi+1 · (β
√

ai

2 + o(
√

ai))

+
n∑

i=no

ϕn,i+1
√

ai(1 + 1
2βai + o(ai)) · O(|θi − θ0|2).

(8.47)

where

ϕn,i =

⎧⎨⎩
(1 + anAn) · · · (1 + aiAi), for i ≤ n
1, for i = n + 1
0, for i ≥ n + 2

(8.48)

and

An = [Eτ∗
1 ]γ + β

2 + [Eτ∗
1 ]γ · βan

2 + o(1) + [Eτ∗
1 ]γ · o(an)

→ A := [Eτ∗
1 ]γ + β

2 , n → ∞.
(8.49)

By some tedious algebraic calculations, (see Sections 3.1 and 3.3 of Chen
(2002)), there are constants λ0 > 0, λ > 0, the ϕn,i, n ≥ 0, i ≥ 0 defined
by (8.48) satisfy the following properties:

|ϕn,k| ≤ λ0 exp{−λ
n∑

j=k

aj}, (8.50)
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sup
n

n∑
i=1

ai|ϕn,i|r < ∞, r > 0, (8.51)

lim
n→∞

n∑
i=1

aiϕ
2
n,i+1 =

∫ ∞

0
e2Atdt =

1
2[Eτ∗

1 ]γ + β
. (8.52)

By (8.50),

ϕn,n0

θn0 − θ0

√
an0

converges to 0, a.s. (8.53)

For any fixed n1, by (8.50) again

n1∑
i=n0

ϕn,i+1aiεi+1(
β
√

ai

2
+ o(

√
ai)) → 0, a.s.

While for any given ε > 0, we may take n1 sufficiently large such that
for n > n1, |εn+1(

β
√

an

2 + o(
√

an))| < ε. Therefore

n∑
i=n1+1

ai|ϕn,i+1| · |εi+1 · (β
√

ai

2
+ o(

√
ai))|

≤ ε
n∑

i=n1+1

ai|ϕn,i+1|

≤ ε sup
n

n∑
i=n1+1

ai|ϕn,i+1| → 0 a.s.

Then
n∑

i=no

ϕn,i+1aiεi+1 · (β
√

ai

2
+ o(

√
ai)) converges to 0 a.s. (8.54)

For the given n1 and ε above, we may assume that for i ≥ n1∣∣∣∣∣(1 +
1
2
βai + o(ai))

O(|θi − θ0|2)√
ai

∣∣∣∣∣ < ε

because |θn − θ0| = o(a1/4
n ). Analogous to (8.54), we get that

n∑
i=no

ϕn,i+1
√

ai(1 +
1
2
βai + o(ai)) · O(|θi − θ0|2)

converges to 0, a.s. (8.55)
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Hence to complete the proof of theorem, it suffices to prove that
n∑

i=n0

ϕn,i+1
√

aiεi+1 ⇒ N (0, σ2), n → ∞. (8.56)

From (8.50) we can prove that

n0−1∑
i=0

ϕn,i+1
√

aiεi+1 → 0, a.s. as n → ∞.

So to prove (8.56), it suffices to prove that

n∑
i=0

ϕn,i+1
√

aiεi+1 ⇒ N (0, σ2), n → ∞. (8.57)

Now we decompose the right side of (8.57) into two parts:

n∑
i=0

ϕn,i+1
√

aiεi+1 =
n∑

i=0

ϕn,i+1
√

ai(fi+1(θi) − [Eτ∗
1 ]f(θi))

+
n∑

i=0

ϕn,i+1
√

ai(fi+1 − fi+1(θi)).

By Lemma 3.3.1 and Theorem 3.3.1 in Chen (2002), and (8.52), we
have

n∑
i=0

ϕn,i+1
√

ai(fi+1(θi) − [Eτ∗
1 ]f(θi)) ⇒ N (0, σ2), n → ∞. (8.58)

Therefore, to prove (8.57) we only need to prove

n∑
i=0

ϕn,i+1
√

ai(fi+1 − fi+1(θi)) converges to zero

in probability as n → ∞. (8.59)

We decompose it into two parts as follows:
n∑

i=0

ϕn,i+1
√

ai(fi+1 − fi+1(θi))

=
n∑

i=0

ϕn,i+1
√

ai(fi+1 − fi+1(θi))I{|θi−θi−1|≥(i−1)−δ1}

+
n∑

i=0

ϕn,i+1
√

ai(fi+1 − fi+1(θi))I{|θi−θi−1|<(i−1)−δ1}.
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Based on this decomposition, going along the same line of (8.27), we can
prove (8.59). Therefore, we get the theorem. QED.

Remark 3.1 In the Robbins-Monto algorithm defined by (8.13)-(8.18),
the integral interval [Tn, Tn+1] depends on the threshold value θn−1.
This dependence makes fn+1 to be complicated. To avoid this complex-
ity, we can modify Tn+1 as

Tn+1 = inf{t > ξn : x(n+1)(t) = θn, M(t−) ≥ d, M(t) < d},
ξn = inf{t > Tn : x(n+1)(t) = θn, M(t−) ≥ d, M(t) < d},

fn+1 =
∫ Tn+1

ξn

[
h(x(n+1)(s)) + c(u(θn, s))

]
ds.

Clearly, the interval [ξn, Tn+1] does not depend on θn−1. Using this
algorithm, going along the same lines, The results on the convergence,
the convergence rate and the central limit theorem can be proved.

4. Concluding Remarks
In this paper we use an infinitesimal perturbation analysis to approx-

imate the optimal threshold value. Specifically, the classic Robbins-
Monro algorithm is adopted as an identification algorithm to estimate
the optimal threshold value. It is of much interest to examine the com-
plex models such as multiproduct flexible manufacturing system, and
flowshop manufacturing system.
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Chapter 9

A STOCHASTIC CONTROL APPROACH
TO OPTIMAL CLIMATE POLICIES

Alain Haurie
Hon. Prof. University of Geneva and Director of ORDECSYS, Place de l’Etrier 4,
CH-1224 Chêne-Bougeries, Switzerland
alain.haurie@ordecsys.com

Abstract The purpose of this paper is to show how a discrete event stochastic con-
trol paradigm similar to the one proposed by Suresh Sethi in the realm
of finance, economic planning or manufacturing systems can be used to
analyze the important issue of optimal timing in global climate change
policies. One proposes a stochastic economic growth model to study the
optimal schedule of greenhouse gases (GHG) emissions abatement in an
economy that can invest in RD&D, in an existing or a future backstop
technology and faces uncertainty in both climate and technical progress
dynamics.

1. Introduction
In this paper one proposes a stochastic control formalism to address

the problem of defining the proper timing of climate mitigation policies
in the search for the optimal tradeoff between economic development and
long term sustainability. The fundamental economics of climate change
has been described by Nordhaus (1994), Nordhaus (1996), Manne &
al. (1995), Toth (2003) in a formalism of optimal economic growth
à la Ramsey (1928) which is much akin to an infinite horizon optimal
control formalism as indicated by Haurie (2003). In these approaches the
economic and climate dynamics are represented as deterministic systems
coupled in the same integrated assessment model. The economic activity
generates GHG1 emissions; concentrations of GHG produce a radiative

∗This work was partly supported by the NCCR-Climate program of the Swiss NSF
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forcing that triggers a temperature change; a damage function represents
the loss of output due to this temperature change. The optimal policy is
thus obtained as a tradeoff between the cost of emissions abatement and
the cost of the damages caused by temperature change. However a large
uncertainty remains in both the climate sensitivity2 and the damages
caused by climate change.

Another avenue of research consists in developing a cost-effectiveness
approach where, based on a precautionary approach, one will impose a
global cap on the cumulative emissions of the economy over the whole
planning horizon. Indeed this cap should be adapted to the knowledge
one gains when time passes concerning the climate sensitivity. In this
paper one adopts this modeling approach to study the optimal timing
and mixing of GHG abatement policies. This can be summarized by
the following questioning: (i) When should the economy make the max-
imum effort in abating GHG emissions? (ii) What is the optimal mix
of abatement vs RD&D effort in the optimal policies? To contribute to
answering these questions one proposes a piecewise deterministic control
formalism that permits the explicit consideration of different sources of
uncertainty in the design of optimal climate policies. The model is in
the vein of those discussed by Haurie (2003) and takes its inspiration
from the work of Prof. Suresh Sethi and his collaborators in the field
of manufacturing, finance and economic planning (Sethi (1997), Sethi &
Thompson (2000), Sethi & Zhang (1994)).

The paper is organized as follows. In section 2 one proposes an opti-
mal economic growth model, under a global cumulative emissions con-
straint. The model allows for uncertainty in the climate sensitivity and
in the endogenous technical progress triggered by RD&D investment.
In section 3 one reformulates the search for a cost-effective policy as
the solution of a control problem with an “isoperimetric” constraint and
one gives the dynamic programming conditions satisfied by an optimal
policy. In section 4 one proposes an interpretation of the optimality con-
ditions in terms of timing of abatement decisions. In section 3.4.3 one
concludes by an indication on a possible implementation of a numerical
technique to solve this class of problems.

2. The economic growth model
In this section one proposes an optimal economic growth formalism

to model a cost-effective climate policy under uncertainty. One assumes
that the decision makers have uncertain knowledge of the true climate
sensitivity and that technical progress which will bring new clean (back-
stop) technologies is also a stochastic process.
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2.1 The multi-sector economic growth model
Consider an economy described by an economic growth model simi-

lar to the one proposed by Ramsey (1928). It produces an homogenous
good that can be either consumed or invested in different types of capi-
tal. The capital of type 1, denoted K1 is the current productive capital;
it generates a high amount of emissions e1 as a by-product, whereas the
capital of type 2, denoted K2 is clean and it generates a much lower
amount of emissions e2 as a by-product. However the second type of
capital (also referred to as the “backstop technology”) will be available
only when a technological breakthrough happens as a result of RD&D
investment. let K3 denote the cumulative “knowledge” capital accumu-
lated in the economy, through this type of investment. Accumulating
this knowledge provides two benefits as it increases the probability of ac-
ceding to a backstop technology and it also increases the probability of
knowing what is the true value of the climate sensitivity. This economic
model is summarized below.

Welfare: Discounted sum of utility derived from consumption∫ ∞

0
e−ρtL(t) log[c(t)] dt,

where
c(t) =

C(t)
L(t)

denotes per capita consumption.

Population dynamics: Assume an exogenous population growth

L̇(t) = g(t)L(t). (9.1)

with g(t) → 0 when t → ∞.

Production functions: Assume the following form for the production3

function

F (t, e, K1, K2, Lj) = max
e1,e2

{
Lα(A1(t)e1

β1
K1

γ1

+A2(t)e2
β2

K2
γ2

) : e = e1 + e2

}
.(9.2)

where Ak(t), k = 1, 2 are C1 functions describing the autonomous
technical progress, with Ȧk(t) ≥ 0 and limt→∞ Ȧk(t) = 0. The
output

Y = F (t, e, K1, K2, L),
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thus depends4 on emissions e, dirty capital K1 available, clean
capital K2 available and labor L.

Capital dynamics: Capital accumulation is represented by the usual
equations with constant depreciation rates

K̇i(t) = Ii(t) − µiKi(t),
Ki(0) = Ko

i i = 1, 3.
(9.3)

For the clean productive capital a binary variable ξ ∈ {0, 1} is in-
troduced which indicates if the clean technology is available (ξ = 1)
or not yet (ξ = 0). The accumulation of clean capital is described
by

K̇2(t) = ξ(t)I2(t) − µ2K2(t),
K2(0) = K0

2 .
(9.4)

Breakthrough dynamics: The initial value ξ(0) = 0 indicates that
there is no access to the clean capital at initial time. The switch
to the value 1 occurs at a random time which is controlled through
the global accumulation of RD&D capital. More precisely one
introduces a jump rate function5 qb(t, K3(t)) which will serve to
determine the elementary probability of a switch

P[ξ(t + dt = 1|ξ(t) = 0, K3(t)]
= qb(t, K3(t)) dt + o(dt). (9.5)

Allocation of output: The flexible good can be consumed or invested

C = Y − I1 − I2 − I3. (9.6)

2.2 The climate sensitivity issue
One considers that the scientific community is arriving at a good un-

derstanding of the climate change effect of GHGs. To avoid irreparable
damages to the ecology of the planet one will have to impose a constraint
on the long term accumulation of GHGs in the atmosphere. However
there is still uncertainty about the true value of the climate sensitivity.
(Currently values ranging from 1.5 oC to 4.5 oC are considered in climate
models.) Therefore the real magnitude of the needed abatement effort
may only be known some time in the future. Assume that three possible
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values6 are considered at initial time t0 = 0 with a priori probabilities
π�, � = 1, 2, 3, as shown for example in Table 9.1, with

π� ≥ 0,
∑

�=1,2,3

π� = 1.

To gain knowledge about the true value of climate sensitivity, the in-

value probability

1.5 oC π1

3 oC π2

4.5 oC π3

Table 9.1. A priori probabilities of climate sensitivity values

ternational community may develop a research activity by investing in
the research capital (laboratories, advanced research programs, etc.).
The time θ at which the true climate sensitivity is known, is a random
(Markov) time with intensity depending on the accumulated research
capital stock

P[θ ∈ (t, t + dt)|θ ≥ t, K3(t)] = qc(t, K3(t))dt + o(dt) where

lim
dt→0

o(dt)
dt

= 0,
(9.7)

where the jump rate function qc(t, K3(t) is known.

2.3 The long term emissions constraint
Introduce now a long term constraint on cumulative emissions that

will limit the economic growth. GHGs are long lived and their effect on
climate change is relatively slow compared to the economic dynamics.
Therefore one represents the limit to growth in GHG accumulation by
the following constraint on the total discounted sum of emissions∫ ∞

0
e−ρte(t) dt ≤ Ē�, � = 1, 2, 3 (9.8)

where Ē� is a given bound corresponding to the climate sensitivity level
� = 1, 2, 3, e(t) represents the total emissions at time t and ρ is a pure
time preference rate.
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2.3.1 Justification of the discounted sum of emissions.
This extends to an infinite horizon setting the representation of the im-
pact of climate changes on the world economies proposed by Labriet &
Loulou (2003) who established a direct link between cumulative emis-
sions and damages. In the present model, the time horizon being in-
finite one proposes to represent the damage as a function of the total
discounted sum of emissions. To provide some justification for the use of
such a constraint assume that the damage at time t is a linear function7

of the total emissions up to time t

d(t) = α

∫ t

0
e(s) ds. (9.9)

It is also reasonable to assume that the emission rate e(s) is bounded.
Now consider that the planner wants to limit the total discounted

damage, represented as

D =
∫ ∞

0
e−ρtd(t) dt =

∫ ∞

0
e−ρt

(
α

∫ t

0
e(s) ds

)
dt. (9.10)

Integrating (9.10) by parts one obtains

D =

[
α

∫ t

0
e(s) ds × (−e−ρt

ρ
)

]∞
0

+
α

ρ

∫ ∞

0
e−ρte(t) dt. (9.11)

The term between square brackets vanishes and it remains

D =
α

ρ

∫ ∞

0
e−ρte(t) dt. (9.12)

Therefore the constraint on the discounted sum of emissions is equivalent
to a constraint on the discounted sum of damages.

2.3.2 An almost sure constraint. It will be convenient to
introduce a new state variable δ(t) with state equation

δ(t) =
∫ t

0
e−ρsē(s) ds. (9.13)

or in differential equation form

δ̇(t) = e−ρtē(t), (9.14)
δ(0) = 0. (9.15)

Because we cannot have e(t) < 0 at any time the constraints will be
expressed equivalently as

δ(t) ≤ E� ∀t ≥ 0, � = 1, 2, 3. (9.16)
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Consider a situation where at time θ one knows that the climate sensitiv-
ity is of type � whereas δ(θ) = Eθ. This means that the future emission
path8 should be such that∫ ∞

θ
e−ρse(s) ds ≤ E� − Eθ, (9.17)

or equivalently, if one makes the change of variable τ = s − θ∫ ∞

0
e−ρτe(τ) dτ ≤ eρθ(E� − Eθ). (9.18)

2.4 The timing issue
The stochastic economic growth model proposed above permits the

study of the optimal timing of GHG emissions abatement and of RD&D
investment when one imposes a constraint on the accumulated emissions.
Indeed the decision variables are the emission rates e(t) and the invest-
ment rates I(t) in the different types of capital. The model captures
the fundamental tradeoffs between economic development and climate
control, immediate action (precautionary principle) and delayed action
with better knowledge (wait and see). One recognizes here the terms of
the current debate concerning international climate policy.

3. A stochastic isoperimetric control problem
In this section the optimal economic growth problem introduced above

is reformulated as a stochastic control problem and the dynamic pro-
gramming equations characterizing the optimal policy are derived.

3.1 State, controls and policies
Define the state variable

s = (K, δ, ξ, ζ)

where K ∈ IR+3 represents the capital stocks, δ ∈ IR+ is the total dis-
counted emissions already accounted for, ξ ∈ {0, 1} indicates the even-
tual availability of the advanced (clean) technology and

ζ ∈ {0, 1, 2, 3}
represents the state of knowledge concerning climate sensitivity values
(0 indicates initial uncertainty, 1,2,3 indicate knowledge that one of the
3 possible sensitivity values is the true one).

At initial time t0 = 0 the state

s0 = (K0, δ0, ξ0, ζ0)
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is such that K0
2 = 0 and ξ = 0 since the advanced technology is not

yet available, while δ0 = 0 since one starts accounting for emission, and
ζ0 = 0 as one does not know the exact sensitivity of climate. It will
be convenient to introduce a special notation for the continuous state
variable x = (K, δ) and for the discrete variables η = (ξ, ζ). The control
variables are denoted u = (e, I) where

I(t) = (Ii(t))i=1,2,3.

One summarizes the capital and emissions accumulation dynamics under
the general state equations

ẋ(t) = fη(t)(t, x(t), u(t)) (9.19)

Here the dependence on the discrete variable η takes care of the con-
straint that

I2(t) = 0 if ξ(t) = 0.

3.2 The performance criterion
Given the state variables and x = (K1, K2, K3, δ), and the control

variable u = (e, I1, I2, I3) the instantaneous utility of consumption is
determined. Therefore one can introduce the reward function

L̃(t, x, u) = L log[(F (t, e, K1, K2, L) − I1 − I2 − I3)/L]. (9.20)

The controls are subject to the constraints e(t) ≥ 0, Ii(t) ≥ 0, i = 1, 2, 3
and this is summarized in general notations by u(t) ∈ U .

Consider the sequence of random times τ0, τ1, τ2 where τ0 = 0 is the
initial time and τ1, τ2 are the jump times of the

η(·) = (ξ(·), ζ(·))
process. Denote s0, s1, s2 the state observed at jump times τ0, τ1, τ2.
A policy γ is a mapping that associates with a jump time value τ and
an observed state s a control u(·) : [τ,∞) → Uη(t)(s) that will be used
until the next jump occurs. This corresponds to the concept of piecewise
deterministic control. Associated with a policy γ and an initial state s0

there is an expected reward defined by

J(γ; s0) = Eγ

[∫ ∞

0
e−ρtL̃(t, x(t), u(t)) dt

]
, (9.21)

where the expectation is taken w.r.t. the probability measure induced
by the policy γ.
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3.3 Optimal admissible policies
A policy γ is admissible if it generates a control which satisfies almost

surely the emission constraints (9.8). Due to this last type of constraints
one may call this problem a stochastic isoperimetric problem.

An optimal policy maximizes the expected reward (9.21) among all the
admissible policies. When ζ(t) = 1, 2, 3 the climate sensitivity is known
and the constraint is a standard isoperimetric constraint. When ζ(t) =
0 there is uncertainty on climate sensitivity. Because the constraints
must be satisfied almost surely we must therefore impose that δ(t) ≤
min�=1,2,3 E� as long as ζ(t) = 0.

An elegant way to take into account this constraint is to define an
extended reward function

Lη(t)(t, x(t), u(t)) =

{
L̃(t, x(t), u(t)) when δ(t) < Eζ(t)

−∞ when δ(t) ≥ Eζ(t),
(9.22)

when ζ(t) = 1, 2, 3. One thus introduces, by the way of a nondifferen-
tiable reward an infinite penalty of having over-emitted when the climate
sensitivity is known.

3.4 The dynamic programming equations
One writes the dynamic programming equations by considering the

jump times of the discrete jump process η(·). At each jump time, given
the state reached at that jump, one defines the optimization problem
which determines the reward-to-go value function. According to this
model formulation there are 3 jump times, including the initial time.

3.4.1 After the last jump. Assume that the last jump occurs
at time τ2 and that the cumulated emissions up to that time are given
by δ. From time τ2 onwards there is no more uncertainty, one knows the
true climate sensitivity and the new advanced technology is available.
The emission schedule e(·) : [τ2,∞) → IR+ is therefore subject to the
constraint ∫ ∞

τ2
e−ρte(t) dt ≤ Ē� − δ. (9.23)

At time τ2, given the state

s2 = (η2, x2) = (1, �, K2
1 , K2

2 , K2
3 , δ2)

let us define the value function

V 2
1,�(x

2)
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as the solution of the optimization problem

V 2
1,�(x

2) = max
u(·)

eρτ2
∫ ∞

τ2
e−ρtL(1,�)(t, x(t), u(t)) dt (9.24)

subject to the state equations

ẋ(t) = f (1,�)(t, x(t), u(t)) u(t) ∈ U t ≥ τ2; x(τ2) = x2. (9.25)

Note that the isoperimetric constraint is taken care of by the use of the
extended reward L(1,�)(x, u). Hence the value function V 2

1,�(x
2) is itself

defined over IR ∪ −∞, with

V 2
1,�(x

2) = −∞ if δ2 ≥ E�.

3.4.2 After the first jump. The first jump occurs at time τ1.
At this jump time the discrete state can switch from (0, 0) to (1, 0) which
means that the backstop technology becomes available before one knows
exactly what the true climate sensitivity is; or it can switch from (0, 0)
to (1, �), where � = 1, 2, 3 which means that one learns about the true
climate sensitivity before the backstop technology becomes available.

State s1 = (1, 0, x1). In the first type of transition, let s1
1,0 =

(K1, δ1, 1, 0) be the system’s state right after the jump time. The stochas-
tic control problem to solve can be described as follows

V 1
1,0(x

1) = max
u(·)

EK3(·)eρτ1

[∫ τ2

τ1
e−ρtL(1,0)(t, x(t), u(t)) dt

+e−ρτ2
V 2

1,ζ(τ2)(x(τ2))
]

s.t.

ẋ(t) = f (1,0)(t, x(t), u(t)) u(t) ∈ U t ≥ τ1; x(τ1) = x1.

Here the second jump time τ2 is stochastic. The associated jump rate
is qc(t, K3(t)) at any time t ≥ τ1. One has denoted s2(τ2) the random
state reached after the second jump time.

Using standard probability reasoning for this type of problem one
obtains the equivalent infinite horizon deterministic control problem

V 1
1,0(x

1) = max
u(·)

eρτ1
∫ ∞

τ1
e−ρt+

∫ t

0
qc(s,K3(s)) ds(L(1,0)(t, x(t), u(t))

+ qc(t, K3(t))(
3∑

�=1

π�V
2
1,�(x(t)) dt (9.26)

s.t.

ẋ(t) = f (1,0)(t, x(t), u(t)) u(t) ∈ U t ≥ τ1; x(τ1) = x1.
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Since the value functions

V 2
1,�(x), � = 1, 2, 3

take value in IR ∪ −∞ the function V 1
1,0(x

1) is also defined on IR ∪ −∞
and this will induce the observance of the isoperimetric constraint.

State s1 = (0, �, x1). In the second type of transition, let

s1 = (0, �,K1, δ1, 0, �)

be the system’s state right after the jump time when the true climate
sensitivity (� = 1, 2, 3) has been revealed. The stochastic control problem
to solve can be described as follows

V 1
0,�(x

1) = eρτ1
max
u(·)

EK3(·)

[∫ τ2

τ1
e−ρtL(0,�)(t, x(t), u(t)) dt

+e−ρτ2
V 2

1,ζ(τ2)(x
2(τ2))

]
s.t.

ẋ(t) = f (0,�)(t, x(t), u(t)) u(t) ∈ U t ≥ τ1; x(τ1) = x1.

The second jump time τ2 is still stochastic. The associated jump rate
is qb(t, K3(t)) at any time t ≥ τ1. One has denoted s2(τ2) the random
state reached after the second jump time.

Using the same standard reasoning one obtains the equivalent infinite
horizon deterministic control problem

V 1
0,�(x

1) = max
u(·)

eρτ1
∫ ∞

τ1
e−ρt+

∫ t

0
qc(s,K3(s)) ds

(
L(0,�)(t, x(t), u(t))

+ qb(t, K3(t))V 2
1,�(x(t))

)
dt (9.27)

s.t.

ẋ(t) = f (0,�)(t, x(t), u(t)) u(t) ∈ U t ≥ τ1; x(τ1) = x1.

Again, since the functions V 2
1,�(x) take value in IR ∪ −∞ the function

V 1
0,�(x

1) is also defined on IR ∪ −∞ and this will induce the observance
of the isoperimetric constraint.

3.4.3 At the initial time. At initial time the discrete state is
(0, 0), i.e. one does not know the true climate sensitivity and one does
not have access to the backstop technology.

V 0
0,0(x

0) = max
u(·)

EK3(·)

[∫ τ2

τ1
e−ρtL(t, x(t), u(t)) dt
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+e−ρτ1
V 1

ξ(τ1)(x
1(τ1))

]
s.t.

ẋ(t) = f (0,0)(t, x(t), u(t) u(t) ∈ U t ≥ 0; x(0) = x0.

Still the same classical probability reasoning yields the associated infinite
horizon control problem,

V 0
0,0(x

0) = max
u(·)

∫ ∞

0
e−ρt+

∫ t

0
(qc(s,K3(s))+qb(s,K

3(s)) ds (L(t, x(t), u(t))

+ qb(t, K3(t))V 1
1,0(x(t)

+ qc(t, K3(t))
3∑

�=1

π�V
1
0,�(x(t)

)
dt (9.28)

s.t.

ẋ(t) = f (0,0)(t, x(t), u(t) u(t) ∈ U t ≥ 0; x(0) = x0.

Since the functions V 1
0,�(x(t)) take value in IR∪−∞ the function V 0

0,0(x
0)

is also defined on IR ∪ −∞ and this will induce the observance of the
isoperimetric constraint.

4. Interpretation
The interpretation of the control formulation given above concerns

principally the initial time t = 0, when one has to implement the first
control and which represents the time when one negotiates an interna-
tional climate policy. It is interesting for that purpose to analyze the
components of the integrand of the associated infinite horizon control
problem (9.28).

There is first an endogenous, state dependent discount rate

−ρt +
∫ t

0
(qc(s, K3(s)) + qb(s, K3(s)) ds.

There is also an extended reward function

L(t, x(t), u(t)) + qb(t, K3(t))V 1
1,0(x(t) + qc(t, K3(t))

3∑
�=1

π�V
1
0,�(x(t)

which takes into account the possible futures when there will be a switch
in the discrete state (better knowledge of the climate sensitivity or access
to an improved technology). The decisions to abate (choice of e(t)) or
to invest in research (choice of I3(t)) are then dictated by the optimal
tradeoff between the different contributions to the reward. The reward
introduced in the auxiliary infinite horizon control problem (9.28) gives
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the correct information to the decision maker in order to produce the
optimal timing of actions. This reward depends on the value functions
obtains through the solving of other auxiliary infinite horizon control
problems, as defined by (9.26), (9.27). These value functions depend on
the value function (9.24) obtained by solving the optimal control problem
when all uncertainty has disappeared. This shows how the assessment
of future utility trickles down to the present and permits the evaluation
of the actions to undertake now.

5. Conclusion
The model proposed in this brief paper contains several elements that

appear in the current debate about the implementation of a global cli-
mate policy. There is uncertainty about the sensitivity of climate; the
solution may reside in the introduction of new carbon free technologies
that are not yet available; abating too early may limit unduly the eco-
nomic development whereas, not abating enough may cause immense
damages if the climate sensitivity is high.

The solution of the associated dynamic programming problem shows
how these different aspects will be taken into account in the design of an
optimal trade-off. The model that has been sketched in this short paper
could be parameterized as in the DICE, RICE or MERGE models, to
represent the world economy. A numerical solution could be relatively
easily obtained, by implementing a policy improvement algorithm. This
would imply a repeated solution of many control problems with candi-
date value functions. The numerical solutions obtained could give some
insights on the delicate problem of timing in GHG abatement abatement
policies. This could be an interesting contribution of stochastic control
theory to an important societal and economic problem.

Notes
1. Greenhouse gas.

2. Recall that the climate sensitivity parameter is the average surface atmospheric tem-
perature change triggered by a doubling of GHG concentration compared with preindustrial
level.

3. This choice is based on the interpretation of emissions as production factors. If one
reduces emissions for a fixed level of capital one decreases the output level. The marginal pro-
ductivity of emissions decreases when the emission level increases. The backstop technology
is characterized by a much higher productivity of emissions.

4. One makes the usual assumptions concerning the parameters βi, γi , i = 1, 2 which are
linked to the marginal productivity of the production factors.

5. We always assume the required regularity, e.g. continuous differentiability w.r.t. time
and state.

6. Indeed this number of 3 is chosen for convenience in the exposition.
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7. Damages are usually represented as a nonlinear function of the SAT change which
is due to the radiative forcing of GHG concentrations (itself a nonlinear function of these
concentrations). In Labriet & Loulou (2003) it has been observed that the damage functions
used in the literature can be accurately summarized by a linear dependence on the total
cumulative emissions.

8. If one considers, from initial time 0 on a constant emission rate that satisfies the

constraint one obtains ē� = E�

ρ
. From time θ onward, with the above condition at θ, the

sustainable constant emission rate would be ē� =
eρθ(E�−Eθ)

ρ
.
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Abstract The just in time sequencing is used to balance workloads throughout
just in time supply chains intended for low-volume high-mix family of
products. It renders supply chains more stable and carrying less inven-
tories of final products and components but at the same time it ensures
less shortages. A number of algorithms have been proposed in the litera-
ture to optimize just in time sequencing. This paper characterizes these
algorithms via characteristics developed by the apportionment theory.
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1. Introduction
The problem of sequencing different models of the same product for

production by a just in time system is refereed to as a just in time
sequencing problem. The just in time sequencing was introduced and
perfected by the Toyota Production System where it was originally used
to distribute production volume and mix of models as evenly as pos-
sible over the production sequence, see Monedn (Monden, 1983), and
also Groenevelt (Groenevelt, 1993), and Vollman, Berry and Wybark
(Vollman et al., 1992). The just in time sequencing has proven to be a
universal and robust tool used to balance workloads throughout just in
time supply chains intended for low-volume high-mix family of products,
Kubiak (Kubiak, 2005). It renders supply chains more stable and car-
rying less inventories of final products and components but at the same
time it ensures less shortages.
In the just in time sequencing problem, there are n different models with
positive integer demands d1, ..., dn for models 1, . . . , n respectively to be
sequenced. The total demand is then D =

∑n
i=1 di. The problem is to

find a sequence s1, . . . , sD, where model i occurs exactly di times that
minimizes a certain measure of deviation of the actual production level
of each model from its ideal level of production. The ideal level for model
i at t, t = 1, . . . , D, equals tri, where ri = di

D . The actual level for model
i at t, denoted by xit, is simply the number of copies of model i in the
prefix s1 . . . st of the sequence. The deviation between the actual and
the ideal levels of i at t is defined as |xit − tri|. Miltenburg (Miltenburg,
1989) suggests the total deviation defined as follows

f(x) =
n∑

i=1

D∑
t=1

|xit − tri| (10.1)

as the objective to minimize, whereas Steiner and Yeomans (Steiner and
Yeomans, 1993) subsequently propose maximum deviation defined as
follows

g(x) = max
it

|xit − tri| (10.2)

as another objective to minimize. Formally, the just in time sequencing
problem is to find nonnegative integers xit, t = 1, . . . , D and i = 1, . . . , n
that minimize either f(x) or g(x) subject to the constrains (10.3), (10.4),
and (10.5) defined as follows
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n∑
i=1

xit = t t = 1, . . . , D (10.3)

0 ≤ xit+1 − xit ≤ 1 n = 1, . . . , n; t = 1, . . . , D − 1 (10.4)

D∑
t=1

xit = di i = 1, . . . , n. (10.5)

Kubiak and Sethi (Kubiak and Sethi, 1991) and (Kubiak and Sethi,
1994) show, using the level curve concept, the reduction of the problem
of minimizing f(x) subject to (10.3), (10.4), and (10.5) to the assignment
problem. Their algorithm is the first efficient, that is polynomial in D
and n, algorithm for the problem. Subsequently, Steiner and Yeomans,
present an efficient algorithm for the problem of minimizing g(x) subject
to (10.3), (10.4), and (10.5). Their algorithm is based on the idea of level
curves introduced by Kubiak and Sethi (Kubiak and Sethi, 1991) and it
essentially reduces the sequencing problem to the matching problem in
convex graphs.
Independently, Tijdeman (Tijdeman, 1980) while studying a problem
called the chairman assignment problem effectively gives an algorithm
that finds a solution x such that g(x) < 1. This solution, however, does
not necessarily minimize g(x).
Inman and Bulfin (Inman and Bulfin, 1991) give an algorithm to mini-
mize

f(y) =
n∑

i=1

di∑
j=1

(
yij − τij

)2
, (10.6)

where τij = 2j−1
2ri

and yij is the position of copy j of model i, i = 1, . . . , n,
j = 1, . . . , di, in the sequence.
These four algorithms will be characterized in this paper using charac-
teristics of apportionment methods.
Bautista, Companys and Corominas (Bautista et al., 1996) are the first
to observe that the algorithm of Inman and Bulfin (Inman and Bulfin,
1991) is the Webster divisor method of apportionment. They also point
out a very strong link that exists between the just in time sequencing
and the apportionment problem. The latter addresses the fundamental
question of how to divide the seats of a legislature fairly according to the
populations of states, Balinski and Young (Balinski and Young, 1982).
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Balinski and Shahidi (Balinski and Shahidi, 1998) (see also Balinski and
Ramirez (Balinski and Ramirez, 1999)) propose an elegant approach to
the just in time sequencing via axiomatics originally developed for the
apportionment problem. The axiomatic method of apportionment the-
ory relies on some socially desirable characteristics that one requires an
apportionment to posses. These characteristics include, for instance,
quota satisfaction, house and population monotonicity but also many
others. They have been shown crucial for the solutions of the appor-
tionment problem, (Balinski and Young, 1982), to posses. However, the
famous Impossibility Theorem of Balinski and Young puts a clear limita-
tion on which characteristics do not contradict one another by showing
that having solutions that satisfy quota and that are at the same time
population monotone is generally impossible.
This paper will characterize the four algorithms: the algorithm of Ku-
biak and Sethi, the algorithm of Steiner and Yeomans, the algorithm of
Tijdeman, and the algorithm of Inman and Bulfin via the characteristics
introduced in the apportionment theory. These characteristics will be
described in detail in Section 2. The material there will closely follow
the exposition given in the book by (Balinski and Young, 1982). Section
3 will present the transformation between the just in time sequencing
problem and the apportionment problem. Section 4 will characterize
the Steiner and Yeomans algorithm. Section 5 will characterize the Ti-
jdeman algorithm. Section 6 will characterize the Kubiak and Sethi
algorithm. Section 7 will summarize the characteristics of the just in
time sequencing algorithms. Finally, Section 8 will present concluding
remarks and open problems.

2. The apportionment problem
The apportionment problem has its roots in the proportional election

system designed for the House of Representatives of the United States
where each state receives seats in the House proportionally to its popu-
lation, Balinski and Young (Balinski and Young, 1982).
The instance of the problem is defined by the house size h and an integer
vector of state populations:

p = (p1, p2, p3, . . . , ps). (10.7)

An apportionment of h seats among s states is an integer vector

a = (a1, a2, a3, ..., as) ≥ 0 (10.8)
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s∑
i=1

ai = h.

The solution for the apportionment problem is found by a method M(p, h)
that for any vector p and house size h returns a vector a, which is written
as a ∈ M(p, h). We refer to this method as an apportionment method
or algorithm.

2.1 Characterization of apportionments
Balinski and Young (Balinski and Young, 1982) propose the following

characteristics of an apportionment method:

satisfying the quota (staying within the quota),

house monotone,

population monotone,

divisor,

parametric,

uniform (rank-index).

Their details will be described in the subsequent sections.

2.2 Satisfying the quota
The apportionment of ai seats to state i satisfies the lower quota for

population vector p and house size h if and only if

ai + 1 >
pih∑s
k=1 pk

(10.9)

and it satisfies the upper quota if and only if

ai − 1 <
pih∑s
k=1 pk

. (10.10)

The ai satisfies the quota if it satisfies simultaneously the lower and the
upper quota. The apportionment vector a satisfies the quota if and only
if it satisfies simultaneously the lower and the upper quota for all states.
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2.3 House monotone method
The house monotonicity requirement stipulates that for an apportion-

ment vector a and the house size h if this size increases by 1, then the
actual apportionment of any state cannot decrease. Any apportionment
method that gives an apportionment vector a for the house size h and
the population vector p, and an apportionment vector a′ ≥ a for the
house of size h′ = h + 1 and the same population vector p is said to
be house monotone. All divisor methods defined later in Section 2.6
are house monotone. There are however important, at least historically,
apportionment methods that are not house monotone. The Hamilton
method, known also as the largest reminder method, described in detail
in Balinski and Young (Balinski and Young, 1982) is an example of a
method that is not house monotone.

2.4 House monotone method that stays within
the quota

Historically, the first method that stays within the quota and that is
simultaneously house monotone is the Quota method proposed by Balin-
ski and Young (Balinski and Young, 1975). However, a more general
method is proposed by Still (Still, 1979), his algorithm works as follows:

For the house size h = 0, assign each state 0 seats. For the house size
h > 0 assign one additional seat to one of the states from the eligible set
E(h) defined as follows.

The eligible set E(h) for any house size h > 0 consists of all states i
that pass the following two tests:

1 The upper quota test. The number of seats that state i has in a
house of size h before the additional seat is assigned is less then
the upper quota for state i at house size h.

2 The lower quota test. Let hi be the house size at which state i first
becomes entitled to obtain the next seat, i.e. hi is the smallest
house size h′ ≥ h at which the lower quota of state i is greater or
equal ai(h−1) + 1, or

hi =

⌈
ai(h−1)+1

pi

n∑
i=1

pi

⌉
.

For each house size g in the interval h ≤ g ≤ hi define si(g, i) =
ai(h−1) +1 (the number of seats that state i has in a house of size h
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before an additional seat is assigned + 1); for j �= i sj(g, i) = max {
number of seats that state j has at house size h before an additional
seat is assigned, lower quota of state j }. If there is no house size
g, h ≤ g ≤ hi, for which

∑
j sj(g, i) > g, then state i satisfies the

lower quota test.

The eligible set E(h) for house size h consist of all the states which
may receive the available seat without causing a violation of quota, ei-
ther for h or any larger house size. This can be written as follows:

E(h)={ state i: state i passes the upper quota test and state i passes
the lower quota test }.

Still proved, that E(h) is never empty and that all methods that
provide solutions that are house monotone and stay within the quota
belong to this general method. The states from the eligible set E(h)
can be chosen in a number of ways for example by using quota-divisor
methods. The class of quota-divisor methods is based on the divisor
methods defined in Section 2.6. The crucial detail that differentiates the
quota-divisor methods from the divisor methods is that in the former
the states selected by the quota-divisor methods must be eligible, that
is they must come form E(h). This algorithm is defined as follows

1 M(p, 0) = 0

2 If a ∈ M(p, h) and k, i ∈ E(h) satisfies pk
d(ak) = maxi

pi

d(ai)
, then

b ∈ M(p, h + 1) with bk = ak + 1 for i = k and bi = ai for i �= k,

where E(h) is the eligible set defined above.

2.5 Population monotone method
Balinski and Young (Balinski and Young, 1982) introduce population

monotone apportionment methods. These methods are designed to en-
sure that if state i’s population increases and j’s decreases, then state i
gets no fewer seats and state j gets no more seats with the new popula-
tions than they do with the original populations and unchanged house
size h. Formally, if for any two vectors of populations p, p′ > 0 and
vectors of apportionments a ∈ M(p, h), a′ ∈ M(p′, h′)
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p′i′
p′j′

≥ pi

pj
⇒

⎧⎪⎪⎨
⎪⎪⎩

(a′i′ ≥ ai ∨ a′j′ ≤ aj)
or

p′
i′

p′
j′

= pi
pj

and a′i′ , a
′
j′ can be substituted for ai, aj in a.

⎫⎪⎪⎬
⎪⎪⎭ .

(10.11)

Balinski and Young (Balinski and Young, 1982) show that any popu-
lation monotone method is house monotone as well but not the other
way around. Their famous Impossibility Theorem shows that the fail-
ure to stay within the quota is the price that any population monotone
apportionment method must pay for its desirable qualities.

Theorem 1 It is impossible for an apportionment method to be pop-
ulation monotone and stay within the quota at the same time for any
reasonable instance of the problem (s ≥ 4 and h ≥ s + 3).

2.6 Divisor method
An important way of finding proportional share of h seats is to find

an ideal district size or divisor x to compute the quotients qx
i of each

state

qx
i =

pi

x
(10.12)

and to round them according to some rule. The sum of all quotients must
equal h. There are many ways to round the quotient. Any rounding
procedure can be described by specifying a dividing point d(a) in each
interval of quotients [a, a + 1] for each non negative integer a. Balinski
and Young define in (Balinski and Young, 1982) a d-rounding of any
positive real z, [z]d, to be an integer a such that d(a − 1) ≤ z ≤ d(a),
which is unique unless z = d(a), in which case the value is either a or
(a+1). It is also required that d(a) < d(a+1). Any monotone increasing
d(a) defined for all integers a ≥ 0 and satisfying a ≤ d(a) ≤ a + 1 is
called a divisor criterion. The divisor method based on d is thus defined
as follows:

M(p, h) = {a : ai =
[pi

x

]
d

and
s∑

i=1

ai = h for some x}. (10.13)

Using (10.13) and having d(a−1) ≤ pi
x ≤ d(a) the method can be defined

alternatively as follows.
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M(p, h) = {a : min
ai>0

pi

d(ai − 1)
≥ max

ai≥0

pj

d(aj)
,

s∑
i=1

ai = h} (10.14)

where pi
0 is defined such that pi > pj implies pi

0 >
pj

0 .
Table 10.1 shows the d(a) function of the best known divisor methods.

Methods name Adams Dean Hill Webster Jefferson

d(a) a a(a+1)
a+1/2

√
a(a + 1) a + 1/2 a + 1

Table 10.1. The best known divisor methods

To summarize, a divisor method is defined as follows:

1 M(p, 0) = 0,

2 If a ∈ M(p, h) and k satisfies pk
d(ak) = maxi

pi

d(ai)
, then b ∈ M(p, h+

1) with bk = ak + 1 for i = k and bi = ai for i �= k.

Any divisor method is population monotone, and thus house monotone.
Therefore, by the Impossibility Theorem no divisor method stays within
the quota.

2.7 Parametric method
Parametric method φδ is a divisor method with d(a) = a + δ, where

0 ≤ δ ≤ 1. The parametric methods are cyclic. That is for two instances
of the just in time sequencing problem D1 = d1, d2, ..., dn and D2 =
kD1 = kd1, kd2, ..., kdn, the sequence for problem D2 is obtained by k
repetitions of the sequence for problem D1.

2.8 Uniform (rank-index) method
An apportionment method is said to be uniform if it ensures that

an apportionment a = (a1, a2, ..., as) of h seats of the house among
states with populations p = (p1, p2, ..., ps) will stay the same when
it is restricted to any subset S of these states and the house size∑

i∈S ai = h′. In other words, according to Balinski and Young (Balinski
and Young, 1982), if for every t, 2 ≤ t ≤ s, (a1, ..., as) ∈ M((p1, ..., ps), h)
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Figure 10.1. Classification of apportionment methods.

implies (a1, ..., at) ∈ M((p1, ..., pt),
∑t

i=1 ai) and if also (b1, ..., bt) ∈
M((p1, ..., pt),

∑t
i=1 ai), then (b1, ..., bt, at+1, ..., as) ∈ M((p1, ..., ps), h).

Each uniform method can be obtained by using a rank-index function.
A rank-index function r(p, a) is any real-valued function of rational p
and integer a ≥ 0 that is decreasing in a, i.e. r(p, a − 1) > r(p, a). Let
F be the set of all solutions defined as follows.

1 For h = 0 let f(p, 0) = 0.

2 If f(p, h) = a, then f(p, h + 1) is found by giving ai + 1 seats to
some state i such that r(pi, ai) ≥ r(pj , aj) and aj seats to each
j �= i.

The rank-index method based on r(p, a) is defined as follows:

M(p, h) = {a : a = f(p, h) for some f ∈ F} (10.15)

Balinski and Young (Balinski and Young, 1982) prove that every divisor
method is uniform. Because every uniform method is rank-index then
it is also house monotone.

3. Classification of the apportionment methods
The chart in Figure 1.1 summarizes our discussion in Section 2. The

abbreviations used in the chart are explained below:

1,2,3,4 = quarters 1, 2, 3 and 4 respectively.
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HM = House Monotone methods, quarters 1 and 2.

NHM = Not House Monotone methods, quarters 3 and 4.

Q = stay within the Quota methods, quarters 1 and 4.

NQ = Not within the Quota methods, quarters 2 and 3.

Un = Uniform methods.

Dv = Divisor methods.

P = Parametric methods.

Still = methods obtained with the Still algorithm, quarter 1.

QDv = Quota-Divisor methods.

J,W,A,H,D = Jefferson, Webster, Adams, Hill and Dean divisor
methods.

QJ, QW, QA, QH, QD = Quota-Jefferson, Quota-Webster, Quota-
Adams, Quota-Hill, Quota-Dean quota methods obtained using
Stills algorithm.

Ht = Hamilton method (Largest Remainder method).

4. Transformation
In the transformation between the just in time sequencing and ap-

portionment problems, state i corresponds to model i and the demand
di for model i corresponds to population pi of state i. The cumulative
number of units xit of i completed by t corresponds to the number ai

of seats apportioned to state i in a house of size t. The following is the
summary of the correspondences between the two problems:

number of states s ←→ number of models n
state i ←→ model i

population pi of state i ←→ demand di for model i
size of house h ←→ position in sequence t

for a house of size h, ai ←→ xit

total population P =
∑s

i=1 pi ←→ total demand D =
∑n

i=1 di.

5. The classification of sequencing algorithms
In this section, we show the location of the Inman-Bulfin algorithm

(Inman and Bulfin, 1991), the Steiner-Yeomans (Steiner and Yeomans,
1993) algorithm, the Tijdeman (Tijdeman, 1980) algorithm and the
Kubiak-Sethi (Kubiak and Sethi, 1994) algorithm in the chart in Figure
10.1.
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5.1 Inman-Bulfin algorithm
Bautista, Companys and Corominas (Bautista et al., 1996) observe

that the Inman and Bulfin algorithm (Inman and Bulfin, 1991) to mini-
mize function (10.6) is equivalent to the Webster divisor method. Con-
sequently, sequences produced by the Inman-Bulfin algorithm have all
the characteristics of the Webster apportionment method solutions, see
Figure 1.1.

5.2 Steiner-Yeomans algorithm
The algorithm is based on the following theorem of Steiner and Yeo-

mans (Steiner and Yeomans, 1993).

Theorem 2 A just in time sequence with

min max
it

|xit − tri| ≤ T (10.16)

exists if and only if there exists a sequence that allocates the j-th copy
of i in the interval [E(i, j), L(i, j)] where

E(i, j) =
⌈ 1
ri

(j − T )
⌉
, (10.17)

L(i, j) =
⌊ 1
ri

(j − 1 + T ) + 1
⌋
. (10.18)

The algorithm tests the values of T from the following list in ascending
order

T =
D − dmax

D
,
D − dmax+1

D
, . . . ,

D − 1
D

. (10.19)

For each T , the algorithm calculates the E(i, j) and L(i, j) for each
pair (i, j), i = 1, . . . , n and j = 1, . . . , di. Finally, it assigns positions t =
1, . . . , D starting with t = 1 and ending with t = D to the yet unassigned
but still available at t pairs (i, j) following the ascending order of their
L(i, j). A pair (i, j) is available at t if and only if E(i, j) ≤ t ≤ L(i, j).
If some pairs can not be assigned by the algorithm, then the value of T
is rejected as infeasible. Otherwise, T is feasible. Brauner and Crama
(Brauner and Crama 2001) show the following theorem.
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Theorem 3 At least one of the values on the list (10.19) is feasible.

Therefore, we have

min max
it

|xit − tri| ≤ 1 − 1
D

. (10.20)

We observe that if T ′ is feasible then all T , T ′ ≤ T ≤ 1− 1
D are feasible

as well. The smallest feasible T is denoted by T ∗ and it is referred to as
optimum.

5.3 Steiner-Yeomans algorithm is a
quota-divisor method

We are now ready to show that the Steiner-Yeomans algorithm is a
quota-divisor method of apportionment. We have the following theorem.

Theorem 4 The Steiner-Yeomans algorithm with T , T ∗ ≤ T < 1 and
a tie L(i, j) = L(k, l) between i and k broken by choosing the one with

min{ 1
ri

(j − 1 + T ),
1
rk

(l − 1 + T )}

is a quota-divisor method with

d(a) = a + T.

Proof: First, we observe that i can only receive its j-th seat in a house
of size h that falls between E(i, j) and L(i, j). More precisely h satisfies
the following inequality

j − T

ri
≤ E(i, j) ≤ h ≤ L(i, j) ≤ j − 1 + T

ri
+ 1. (10.21)

Replacing j by ai in (10.21), we obtain

ai − 1 < ai − T ≤ hri ≤ ai − 1 + T + ri < ai + 1, (10.22)

for T < 1. Therefore, ai stays within the quota for h.
Second, for position t + 1 the algorithm chooses i with

min
i

{
j − 1 + T

ri

}
(10.23)

or equivalently
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max
i

{
di

j − 1 + T

}
. (10.24)

However, xit = j − 1, thus

max
i

{
di

xit + T

}
(10.25)

defines a divisor method with d(x) = x+T , T < 1. This divisor method
always stays within the quota which proves the theorem.�

It is worth observing that the Steiner-Yeomans algorithm is in fact a
quota-parametric method with δ = T .

5.4 Tijdeman algorithm
Tijdeman (Tijdeman, 1980) introduced a problem called the chairman

assignment problem. The chairman assignment problem is defined as
follows. Suppose k states form a union S = (S1, S2, . . . , Sk) and every
year a union chairman has to be selected in such a way that at any time
the accumulated number of chairmen from each state is proportional to
its weight, Si has a weight λi with

∑k
i=1 λi = 1. We denote the state

designating the chairman in the jth year by ωj . Hence ω = {ωj}∞j=1 is a
sequence in the alphabet S. Let Aω(i, t) denote the number of chairmen
representing Si in the first t years and define

D(ω) = sup
it

|λit − Aω(i, t)|. (10.26)

The problem is to choose ω in such a way that D(ω) is minimal.
Tijdeman (Tijdeman, 1980) proves the following theorem.

Theorem 5 Let λit be a double sequence of non-negative numbers such
that

∑
1≤i≤k λit = 1 for t = 1, ... . For an infinite sequence S in

{1, . . . , n} let xit be the number of i’s in the t-prefix of S. Then there
exists a sequence S in {1, . . . , n} such that

max
it

|
∑

1≤j≤t

λit − xit| ≤ 1 − 1
2(n − 1)

.

Let us define λit = ri = di
D for t = 1, . . .. Then, this theorem ensures the

existence of an infinite sequence S such that

max
it

|tri − xit| ≤ 1 − 1
2(n − 1)

.
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To ensure that the required number of copies of each product is in D-
prefix of S consider the D-prefix of S and suppose that there is i with
xiD > di. Then, there is j with xjD < dj . It can be easily checked that
replacing the last i in the D-prefix by j does not increase the absolute
maximum deviation for the D-prefix. Therefore, we can readily obtain
a D-prefix where each i occurs exactly di times and with maximum
deviation not exceeding 1− 1

2(n−1) . We consequently have the following
upper bound stronger that the one in (1.20).

min max
it

|xit − tri| ≤ 1 − 1
2n − 2

(10.27)

The sequence satisfying this bound is built as follows. Let Jt, t =
1, . . . , D be a set of models satisfying the following condition at t:

σi = tri − xit−1 ≥ 1
2n − 2

, (10.28)

where xit−1 is the cumulative number of units of model i scheduled
between 1 and t − 1. Apportion t to model i from the set Jt with the
minimal value of

1 − 1
2n−2 − σi

ri
. (10.29)

5.5 Tijdeman algorithm is a quasi quota-divisor
method

The inequality defining the set Jt of eligible states (10.28) in the Ti-
jdeman algorithm defines the new upper quota test. In (10.28), i has
xit−1 seats in a house of size h = t − 1. Thus we can rewrite (10.28) as
follows:

(t + 1)ri − xit ≥
1

2n − 2
(10.30)

or equivalently

tri ≥ xit − 1 + 1 − ri +
1

2n − 2
. (10.31)

Replacing xit by ai and t by h in the inequality (10.31) we get the new
upper quota as follows
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ai − 1 + 1 − ri +
1

2n − 2
< h

pi∑s
k=1 pk

. (10.32)

This however implies

ai − 1 < qi = h
pi∑s

k=1 pk

since 1−ri + 1
2n−2 > 0. Therefore, (10.32) implies (10.10) and the upper

quota is satisfied. However, the following lemma shows that the eligible
sets in the Tijdeman algorithms are narrower than those of defined by
the original upper quota test from (10.10).

Lemma 1 The set of eligible i’s satisfying the new upper quota test in
(10.32) is a proper subset of the set of eligible i’s satisfying the upper
quota test in (10.10).

Proof: Consider an instance with n = 3 models: P1, P2, and P3 with
demands 2, 3, and 7 units, respectively. The Tijdeman algorithm makes
only models P2 and P3 eligible for one more unit at t = 1. Namely, for
(t = 1, x1t−1 = 0, x2t−1 = 0, x3t−1 = 0, r1 = 2

12 , r2 = 3
12 , r3 = 7

12) we
have

P1: tri − x1t−1 = 2
12 − 0 < 1

2n−2 = 1
4

P2: tri − x2t−1 = 3
12 − 0 = 1

2n−2 = 1
4

P3: tri − x3t−1 = 7
12 − 0 > 1

2n−2 = 1
4

and the inequality (10.28) is violated for P1. On the other hand all three
models are eligible for one more unit at t = 1 since with this unit they
will all satisfy the original upper quota test from the inequality (10.10).
This proves the lemma. �

At each step t of the Tijdeman algorithm the model that satisfies the
following condition is selected from the eligible set Jt:

min
i

{1 − 1
2n−2 − σi

ri

}
(10.33)

or

min
i

{1 − 1
2n−2 − tri + xit−1

ri

}
. (10.34)



Characterization of just in time sequencing via apportionment 191

By replacing (1− 1
2n−2) by ∆ in (10.34) we obtain an equivalent selection

criterion

max
i

{
di

∆ + xit−1

}
. (10.35)

The (10.35) may suggest that the Tijdeman algorithm is a quota-divisor
method with d(a) = a + ∆ where ∆ = 1 − 1

2n−2 . However, we show
in Lemma 2 that the algorithm narrows down the set of eligible models
more than quota-divisor methods would normally do. Therefore, to
distinguish the quota-divisor methods from the quota-divisor methods
with narrower eligible sets we call the latter quasi quota-divisor methods.

Lemma 2 The eligible set of i’s satisfying the new upper quota test in
(10.32) is a proper subset of the eligible set of i’s in the quota-divisor
method with d(a) = a + ∆ where ∆ = 1 − 1

2n−2 .

Proof: We consider the same three model instance as in Lemma 1. We
compare the selection made for the first two positions by the Tijdeman
algorithm with the one made by the quota-divisor method defined with
d(a) = a + ∆ where ∆ = 1 − 1

2n−2 .
Let us begin with the Tijdeman algorithm. For t = 1, we have x1t−1 =
0, x2t−1 = 0, x3t−1 = 0. We check which models make the eligible set
defined by the inequality (10.28):

P1: tri − x1t−1 = 2
12 − 0 < 1

2n−2 = 1
4

P2: tri − x2t−1 = 3
12 − 0 = 1

2n−2 = 1
4

P3: tri − x3t−1 = 7
12 − 0 > 1

2n−2 = 1
4

Thus, P2 and P3 are eligible, P1 is not. Moreover, P3 minimizes (10.33)
and receives position t = 1.
Then, for t = 2, we have x1t−1 = 0, x2t−1 = 0, x3t−1 = 1. We again check
which models make the eligible set defined by the inequality (10.28):

P1: tri − x1t−1 = 1
3 − 0 = 1

3 > 1
2n−2 = 1

4

P2: tri − x2t−1 = 1
2 − 0 = 1

2 > 1
2n−2 = 1

4

P3: tri − x3t−1 = 7
6 − 1 = 1

6 < 1
2n−2 = 1

4

Now P1 and P2 are eligible, P3 is not. Moreover, P2 minimizes (10.33)
and thus receives position t = 2.
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Now, let us consider the quota-divisor method with d(a) = a+1− 1
2n−2 .

For n = 3 we obtain d(a) = a + 1 − 1
4 .

For t = 1, x1t−1 = 0, x2t−1 = 0, x3t−1 = 0. We check if the models
belong to the eligible set E(t) defined in Section 2.4.
The upper quota test :
Each of the three models passes the upper quota test since a1 = a2 =
a3 = 1 satisfies the following inequalities

a1 − 1 = 1 − 1 < q1 = 1 · 2
12

a2 − 1 = 1 − 1 < q2 = 1 · 3
12

a3 − 1 = 1 − 1 < q3 = 1 · 7
12

The lower quota test :
Model Pi, i = 1, 2, 3, is entitled to receive its first position by ti = � 1

ri
�.

Thus, P1 is entitled to receive its first position by t1 = 6, P2 by t2 = 4,
and P3 by t3 = 2 (in other words h1 = 6, h2 = 4, h3 = 2). Consequently,
at t = 1 we have the following lower quota tests in the Still algorithm:

For model P1, t − 1 = 0, t1 = 6 we have to step through g = 1, 2, 3, 4, 5

g = 1 : s(g, P1) = 1, s(g, P2) = 0, s(g, P3) = 0 ⇒
∑

i

s(g, Pi) = 1 = g

g = 2 : s(g, P1) = 1, s(g, P2) = 0, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 = g

g = 3 : s(g, P1) = 1, s(g, P2) = 0, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 < g

g = 4 : s(g, P1) = 1, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 4 = g

g = 5 : s(g, P1) = 1, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 4 < g.

For P2, t − 1 = 0, t2 = 4 so we have to step through g = 1, 2, 3

g = 1 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 0 ⇒
∑

i

s(g, Pi) = 1 = g

g = 2 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 = g

g = 3 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 < g.
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For P3, t − 1 = 0, t3 = 2 so we have to step through g = 1

g = 1 : s(g, P1) = 0, s(g, P2) = 0, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 1 = g.

Clearly, for t = 1 all three models satisfy the lower quota test and so
they do the upper quota test. Therefore, the quota-divisor method with
d(a) = a + 1 − 1

4 selects model P3 since we have

7
0 + 1 − 1

4

>
3

0 + 1 − 1
4

>
2

0 + 1 − 1
4

.

For t = 2, x1t−1 = 0, x2t−1 = 0, x3t−1 = 1.
The upper quota test :
The three models pass the upper quota test since a1 = a2 = 1 and a3 = 2
satisfies the following inequalities

a1 − 1 = 1 − 1 < q1 = 2 · 2
12

a2 − 1 = 1 − 1 < q2 = 2 · 3
12

a3 − 1 = 2 − 1 < q3 = 2 · 7
12

.

The lower quota test :
Model P1 is entitled to receive its first position by t1 = 6, P2 is enti-
tled to receive its first position by t2 = 4 (in other words h1 = 6, h2 =
4, h3 = 4). Finally, model P3 is entitled to receive its second position by
t3 = �1+1

r3
� = �24

7 � = 4. Consequently, at t = 2 we have the following
lower quota tests in the Still’s algorithm:

For P1, t − 1 = 1, t1 = 6 so we have to step through g = 2, 3, 4, 5

g = 2 : s(g, P1) = 1, s(g, P2) = 0, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 = g

g = 3 : s(g, P1) = 1, s(g, P2) = 0, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 < g

g = 4 : s(g, P1) = 1, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 4 = g

g = 5 : s(g, P1) = 1, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 4 < g.
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For P2, t − 1 = 1, t2 = 4 so we have to step through g = 2, 3 as well
as through g = 4, 5, 6 to ensure that model P1 receives one unit by t1 = 6:

g = 2 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 = g

g = 3 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 1 ⇒
∑

i

s(g, Pi) = 2 < g

g = 4 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 3 < g

g = 5 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 3 < g

g = 6 : s(g, P1) = 1, s(g, P2) = 1, s(g, P3) = 3 ⇒
∑

i

s(g, Pi) = 5 < g.

For P3, t − 1 = 1, t3 = 4 and we have to step through g = 3, 4, 5, 6 to
assure that model P1 receives one unit by t1 = 6 and model P2 by t2 = 4:

g = 3 : s(g, P1) = 0, s(g, P2) = 0, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 2 < g

g = 4 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 3 < g

g = 5 : s(g, P1) = 0, s(g, P2) = 1, s(g, P3) = 2 ⇒
∑

i

s(g, Pi) = 3 < g

g = 6 : s(g, P1) = 1, s(g, P2) = 1, s(g, P3) = 3 ⇒
∑

i

s(g, Pi) = 5 < g

At t = 2 all three models satisfy both the lower quota and the upper
quota tests. Thus, the quota-divisor method with d(a) = a + 1 − 1

4 will
select either P3 or P2 since:

7
1 + 1 − 1

4

=
3

0 + 1 − 1
4

>
2

0 + 1 − 1
4

However, we proved earlier that P3 is not eligible for position t = 2 in
the Tijdeman’s algorithm. This proves the lemma. �

5.6 Kubiak-Sethi algorithm
This algorithm is designed to minimize function (10.1) subject to con-

straints (10.3)-(10.4). The key idea of this algorithm consists in reduc-
tion to the assignment problem. For each unit of model i the ideal
position is calculated according to the following formula
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Zi∗
j =

⌈
2j − 1

2ri

⌉
(10.36)

n = 1, . . . , n and j = 1, . . . , di. Let Ci
jt be the cost of assigning the j-th

unit of the model i to position t. If t = Z i∗
j , then the j-th unit of model

i is produced in its ideal position in the sequence and thus the cost of
such an assignment is Ci

jt = 0. If t < Zi∗
j , then the j-th unit of model

i is produced too early. Consequently, the penalty ψi
jl (the excessive

inventory cost) is incurred in each l between l = t and l = Z i∗
j − 1.

If t > Zi∗
j , then the j-th unit is produced too late. Consequently, the

penalty ψi
jl (the shortage cost) is incurred in each l between l = Z i∗

j and
l = t − 1. Therefore, the cost of sequencing the j-th unit of model i in
position t is calculated according to the following formula:

Ci
jt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑Zi∗
j −1

l=t ψi
jl if t < Zi∗

j

0 if t = Zi∗
j∑t−1

l=Zi∗
j

ψi
jl if t > Zi∗

j

(10.37)

where

ψi
jl = ||j − lri| − |j − 1 − lri|| (10.38)

(i, j) ∈ I = {(i, j) : i = 1, . . . , n; j = 1, . . . , di}, l = 1, . . . , D.

Kubiak and Sethi (Kubiak and Sethi, 1994; Kubiak and Sethi, 1991)
show that a solution minimizing function (10.1) subject to constraints
(10.3)-(10.4) can be constructed from any optimal solution of the follow-
ing assignment problem:

min
D∑

t=1

∑
(i,j)∈I

Ci
jtx

i
jt (10.39)

subject to

∑
(i,j)∈I

xi
jt = 1, t = 1, . . . , D

D∑
t=1

xi
jt = 1, (i, j) ∈ I
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xi
jt = 0 or 1, k = 1, . . . , D; (i, j) ∈ I

where

xi
jt =

{
1 if (i, j) is assigned to period t,
0 otherwise.

5.7 Characterization of Kubiak-Sethi algorithm
The characterization is based on the following three lemmas.

Lemma 3 The Kubiak-Sethi algorithm does not stay within the quota.

Proof: Corominas and Moreno (Corominas and Moreno, 2003) observe
that no solution minimizing function (10.1) subject to constraints (10.3)-
(10.4) stays within the quota for the instance of n = 6 models with their
demands being d1 = d2 = 23 and d3 = d4 = d5 = d6 = 1. This proves
the lemma since the Kubiak-Sethi algorithm minimizes (10.1). �

Lemma 4 The Kubiak-Sethi algorithm is house monotone.

Proof: The lemma follows from the constraint (10.4).�

Lemma 3 and Lemma 4 situate Kubiak-Sethi algorithm in the second
quarter of the chart in Figure 10.1.

Theorem 6 The Kubiak-Sethi algorithm is not uniform.

Proof: Let us consider an instance consisting of n = 5 models with the
following demand vector: (7, 6, 4, 2, 1). All the optimal sequences ob-
tained by the Kubiak-Sethi algorithm are listed below (sequences contain
only indexes of models):

1 (1,2,3,1,2,4,1,3,2,1,5,2,3,1,2,4,1,3,2,1)

2 (1,2,3,1,4,2,1,3,2,1,5,2,3,1,2,4,1,3,2,1)

3 (1,2,3,1,2,4,1,3,2,1,5,2,3,1,4,2,1,3,2,1)

4 (1,2,3,1,4,2,1,3,2,1,5,2,3,1,4,2,1,3,2,1)

5 (1,2,3,4,1,2,1,3,2,1,5,2,3,1,2,4,1,3,2,1)

6 (1,2,3,4,1,2,1,3,2,1,5,2,3,1,4,2,1,3,2,1)

7 (1,2,3,4,1,2,1,3,2,1,5,2,3,1,2,1,4,3,2,1)

8 (1,2,3,1,2,4,1,3,2,1,5,2,3,1,2,1,4,3,2,1)

9 (1,2,3,1,4,2,1,3,2,1,5,2,3,1,2,1,4,3,2,1).
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Moreover, there are 9 more that are the mirror reflection of the nine just
presented sequences.

Let us now consider four model subproblem of the original problem
(7, 6, 4, 2, 1) made up of models 2, 3, 4 and 5 with demand vector (6, 4, 2, 1).
This subproblem has only a single optimal solution

(2, 3, 4, 2, 3, 2, 5, 2, 3, 2, 4, 3, 2).

It follows from the definition of uniformity given in Section 2.8 that if
the Kubiak-Sethi algorithm is uniform, then it should also produce the
sequence

α = (2, 3, 2, 4, 3, 2, 5, 2, 3, 4, 2, 3, 2)

obtained from (1, 2, 3, 1, 2, 4, 1, 3, 2, 1, 5, 2, 3, 1, 4, 2, 1, 3, 2, 1) by deleting
model 1 but it does not since α is not optimal. Therefore, the Kubiak-
Sethi algorithm is not uniform which ends the proof.�

Balinski and Shahidi (Balinski and Shahidi, 1998) point out an impor-
tant practical feature of the uniform algorithms which is that the can-
celation of some models from just in time production does not impact
the order in which other models are sequenced for production by the
uniform algorithm.
Finally, Balinski and Young (Balinski and Young, 1982) show that all
population monotone methods are uniform, thus, by Theorem 6, the
Kubiak-Sethi algorithm is not population monotone.

5.8 Characterization of just in time sequencing
algorithms

The chart in Figure 1.3 summarizes our characterization of the Steiner-
Yeomans, the Inman-Bulfin, and the Tijdeman and Kubiak-Sethi algo-
rithms. The abbreviations used in the chart are explained below.
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Figure 10.2. Characterization of just in time sequencing algorithms.

SY = Steiner-Yeomans algorithm

T = Tijdeman algorithm

IB = Inman-Bulfin algorithm

K = Kubiak-Sethi algorithm

6. Conclusions
We have shown that the Steiner-Yeomans algorithm is essentially a

quota divisor method of apportionment. It remains open whether the
algorithm is in fact equivalent to the Still algorithm. That is whether it
is capable of producing any solution that the Still algorithm can produce
for any instance of the problem. We conjecture that it is not.
We have also shown that the Tijdeman algorithm is a quasi quota divisor
method which constraints the eligible sets more than the quota divisor
method would normally do. Finally, we have shown that the Kubiak-
Sethi algorithm is not uniform.

It also remains open if there exists any uniform method that stays
within the quota. Balinski and Young (Balinski and Young, 1982) show
that there exists no symmetric and uniform method that satisfies the
quota. Since only symmetric methods seem desirable for the appor-
tionment problem this result virtually closes the question by giving a
negative answer in the context of the apportionment problem. However,
the question remains open for the just in time sequencing. On the other
hand any method that is uniform and weakly population monotone, we
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refer the reader to (Balinski and Young, 1982) for the definition of the
latter, is a divisor method. Thus it is population monotone and, conse-
quently, according to the Impossibility Theorem it can not stay within
the quota.
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tional Brownian motion is not restricted. Sample path properties of the
solution are obtained that depend on the Hurst parameter. An example
of a stochastic partial differential equation is given.

1. Introduction
By comparison with the development of stochastic analysis of finite di-

mensional stochastic equations with fractional Gaussian noise, there are
relatively few results available for the corresponding stochastic equations
in an infinite dimensional space or for stochastic partial differential equa-
tions. For H ∈ (

1
2 , 1

)
, linear and semilinear equations with an additive

fractional Gaussian noise, the formal derivative of a fractional Brown-
ian motion are considered in [Dun00], [DPDM02], and [GA99]. Random
dynamical systems described by such stochastic equations and their ran-
dom fixed points are studied in [MS04]. A pathwise (or nonprobabilistic)
approach is used in [MN02] to study a parabolic equation with a frac-
tional Gaussian noise where the stochastic term is a nonlinear function
of the solution. Strong solutions of bilinear evolution equations with
a fractional Brownian motion are considered in [DMPD05] and [DJPD]
and the same typ! e of equation is studied in [TTV03] where a fractional
Feynman-Kac formula is obtained. A stochastic wave equation with a
fractional Gaussian noise is considered in [Cai05] and a stochastic heat
equation with a multiparameter fractional Gaussian noise is studied in
[Hu01] and [HØZ04].

In this paper, stochastic linear evolution equations with an additive
fractional Brownian motion are studied. In Section 2, some basic no-
tions are recalled and the stochastic integral with respect to a cylindrical
fractional Brownian motion in an infinite dimensional Hilbert space and
deterministic integrands is introduced analogous to [AMN01] or [PT00]
where the finite dimensional case is studied. Another approach to the
stochastic integral here can use the results in [DJPD]. In Section 3, an
infinite dimensional Ornstein-Uhlenbeck process is given as the solu-
tion of a linear stochastic equation in a Hilbert space. Some conditions
are given so that the stochastic convolution integral, that defines the
Ornstein-Uhlenbeck process as the mild solution of a linear equation, is
well-defined and is suitably regular. For a stable linear equation, the
existence of a limiting measure is verified. The case with the Hurst
parameter H in

(
0, 1

2

)
i! s emphasized because this paper can be consid-

ered as complementary to [DPDM02] where H ∈ (
1
2 , 1

)
is studied. An

example of a linear stochastic partial differential equation is given.
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2. Preliminaries
A cylindrical fractional Brownian motion in a separable Hilbert space

is introduced, a Wiener-type stochastic integral with respect to this pro-
cess is defined, and some basic properties of this integral are noted. Ini-
tially, some facts from the theory of fractional integration (e.g. [SKM93])
are described. Let (V, ‖ · ‖, 〈·, ·〉) be a separable Hilbert space and
α ∈ (0, 1). If ϕ ∈ L1([0, T ], V ), then the left-sided and right-sided
fractional (Riemann-Liouville) integrals of ϕ are defined (for almost all
t ∈ [0, T ]) by

(
Iα
0+ϕ

)
(t) =

1
Γ(α)

∫ t

0
(t − s)α−1ϕ(s) ds

and (
Iα
T−ϕ

)
(t) =

1
Γ(α)

∫ T

t
(s − t)α−1ϕ(s) ds

respectively where Γ(·) is the gamma function. The inverse operators
of these fractional integrals are called fractional derivatives and can be
given by their Weyl representations(

Dα
0+ψ

)
(t) =

1
Γ(1 − α)

(
ψ(t)
tα

+ α

∫ t

0

ψ(t) − ψ(s)
(t − s)α+1

ds

)
and (

Dα
T−ψ

)
(t) =

1
Γ(1 − α)

(
ψ(t)

(T − t)α
+ α

∫ T

t

ψ(s) − ψ(t)
(s − t)α+1

ds

)
where ψ ∈ Iα

0+

(
L1([0, T ], V )

)
and ψ ∈ Iα

T−
(
L1([0, T ], V )

)
respectively.

Let KH(t, s) for 0 ≤ s ≤ t ≤ T be the kernel function

KH(t, s) = cH(t − s)H− 1
2

+ cH

(
1
2
− H

)∫ t

s
(u − s)H− 3

2

(
1 −

( s

u

) 1
2
−H

)
du (11.1)

where

cH =

[
2HΓ

(
H + 1

2

)
Γ
(

3
2 − H

)
Γ (2 − 2H)

] 1
2

(11.2)

and H ∈ (0, 1). If H ∈ (
1
2 , 1

)
, then KH has a simpler form as

KH(t, s) = cH

(
H − 1

2

)
s

1
2
−H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du
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A definition of a stochastic integral of a deterministic V -valued func-
tion with respect to a scalar fractional Brownian motion (β(t), t ≥ 0)
is described. The approach follows from [AMN01], [DÜ99]. Another
approach is given in [DJPD].

Let K∗
H be the linear operator given by

K∗
Hϕ(t) = ϕ(t)KH(T, t) +

∫ T

t
(ϕ(s) − ϕ(t))

∂KH

∂s
(s, t) ds (11.3)

for ϕ ∈ E where E is the linear space of V -valued step functions on [0, T ]
and K∗

H : E → L2([0, T ], V ). For ϕ ∈ E ,

ϕ(t) =
n−1∑
i=1

xi [ti,ti+1)(t)

where xi ∈ V , i ∈ {1, . . . , n − 1} and 0 = t1 < · · · < tn = T .
Define ∫ T

0
ϕdβ :=

n∑
i=1

xi (βi(ti+1) − β(ti)) . (11.4)

It follows directly that∥∥∥∥∫ T

0
ϕdβ

∥∥∥∥2

= |K∗
Hϕ|2L2([0,T ],V ) (11.5)

Let (H, | · |H, 〈·, ·, 〉H) be the Hilbert space obtained by the completion
of the pre-Hilbert space E with the inner product

〈ϕ, ψ〉H := 〈K∗
Hϕ,K∗

Hψ〉L2([0,T ],V ) (11.6)

for ϕ, ψ ∈ E . The stochastic integral (11.4) is extended to ϕ ∈ H by
the isometry (11.5). Thus H is the space of integrable functions and it
is useful to obtain some more specific information. If H ∈ (

1
2 , 1

)
, then

it is easily verified that H ⊃ H̃ where H̃ is the Banach space of Borel
measurable functions with the norm | · |H̃ given by

|ϕ|2H̃ :=
∫ T

0

∫ T

0
‖ϕ(u)‖‖ϕ(v)‖φ(u − v) du dv (11.7)

where φ(u) = H(2H −1)|u|2H−2 and it is elementary to verify that H̃ ⊃
Lp([0, t], V ) for p > 1

H , and, in particular, for p = 2 (e.g. [DPDM02]).
If ϕ ∈ H̃ and H > 1

2 , then∥∥∥∥∫ T

0
ϕdβ

∥∥∥∥2

=
∫ T

0

∫ T

0
〈ϕ(u), ϕ(v)〉φ(u − v) du dv. (11.8)
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If H ∈ (
0, 1

2

)
, then the space of integrable functions is smaller than

for H ∈ (
1
2 , 1

)
. It is known that H ⊃ H1([0, T ], V ) (e.g. [Hu05] Lemma

5.20) and H ⊃ Cβ([0, T ], V ) for each β > 1
2 − H (a more specific result

is given in the next section). If H ∈ (
0, 1

2

)
, then the linear operator K∗

H
can be described by a fractional derivative

K∗
Hϕ(t) = cHt

1
2
−HD

1
2
−H

T−
(
uH− 1

2
ϕ
)

(11.9)

and its domain is H = I
1
2
−H

T−
(
L2([0, T ], V

)
([AMN01] Proposition 6).

Definition 11.1 Let (Ω,F , ) be a complete probability space. A cylin-
drical process 〈B, ·〉 : Ω× + × V → on (Ω,F , ) is called a standard
cylindrical fractional Brownian motion with Hurst parameter H ∈ (0, 1)
if

1 For each x ∈ V \ {0}, 1
‖x‖〈B(·), x〉 is a standard scalar fractional

Brownian motion with Hurst parameter H.

2 For α, β ∈ and x, y ∈ V ,

〈B(t), αx + βy〉 = α〈B(t), x〉 + β〈B(t), y〉 a.s. .

Note that 〈B(t), x〉 has the interpretation of the evaluation of the
functional B(t) at x though the process B(·) does not take values in V .

For H = 1
2 , this is the usual definition of a standard cylindrical Wiener

process in V . By condition 2 in Definition 11.1, the sequence of scalar
processes (βn(t), t ≥ 0, n ∈ ) are independent.

Associated with (B(t), t ≥ 0) is a standard cylindrical Wiener process
(W (t), t ≥ 0) in V such that formally B(t) = KH

(
Ẇ (t)

)
. For x ∈

V \ {0}, let βx(t) = 〈B(t), x〉. It is elementary to verify from (11.4) that
there is a scalar Wiener process (wx(t), t ≥ 0) such that

βx(t) =
∫ t

0
KH(t, s) dwx(s) (11.10)

for t ∈ +. Furthermore, wx(t) = βx

(
(K∗

H)−1
[0,t)

)
where K∗

H is given
by (11.3). Thus there is the formal series

W (t) =
∞∑

n=1

wn(t)en. (11.11)

Now the stochastic integral
∫ T
0 Gdβ is defined for an operator-valued

function G : [0, T ] → L(V ) is a V -valued random variable.
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Definition 11.2 Let G : [0, T ] → L(V ), (en, n ∈ ) be a complete
orthonormal basis in V , gen(t) := G(t)en, gen ∈ H for n ∈ , and B be
a standard cylindrical fractional Brownian motion. Define∫ T

0
GdB :=

∞∑
n=1

∫
0
Gen dβn (11.12)

provided the infinite series converges in L2(Ω).

The next proposition describes some L(V )-valued functions G that
satisfy Definition 11.2.

Proposition 11.3 Let G : [0, T ] → L(V ) and G(·)x ∈ H for each x ∈
V . Let ΓT : V → L2([0, T ], V ) be given as

(ΓT x) (t) = (K∗
HGx) (t) (11.13)

for t ∈ [0, T ] and x ∈ V . If ΓT ∈ L2(V,L2([0, T ], V ))—that is, ΓT

is a Hilbert-Schmidt operator—then the stochastic integral (11.12) is a
well-defined centered Gaussian V -valued random variable with covari-
ance operator Q̃T given by

Q̃T x =
∫ T

0

∞∑
n=1

〈(ΓT en) (s), x〉 (ΓT en) (s) ds.

This integral does not depend on the choice of the complete orthonormal
basis (en, n ∈ ).

Proof The terms of the sum on the right-hand side of (11.12) are well-
defined V -valued Gaussian random variables by the construction of the
integral

∫ t
0 gen dβn and these terms for n ∈ are independent random

variables. Furthermore,∥∥∥∥∥
∞∑

k=m

∫ T

0
G(s)ek dβk(s)

∥∥∥∥∥
2

=
∞∑

k=m

∥∥∥∥∫ T

0
G(s)ek dβk(s)

∥∥∥∥2

=
∞∑

k=m

∫ T

0
‖(K∗

HG(s)ek)
∗ (s)‖2

ds

=
∞∑

k=m

∫ T

0
‖(ΓT ek) (s)‖2 ds.

This last sum converges to zero as m → ∞ because ΓT is Hilbert-
Schmidt.
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To verify that (11.12) is a Gaussian random variable with covariance
Q̃T note that for ϕ ∈ H and x ∈ V it follows that∫ t

0
ϕ(s) dβy(s) =

∫ t

0
(K∗

Hϕ) (s) dwx(s) (11.14)

where (wx(t), t ≥ 0) is the Wiener process given by (11.10). Thus the
terms on the right-hand side of (11.12) are V -valued, zero mean inde-
pendent Gaussian random variables with the covariance operator

Q̃
(n)
T x =

∫ T

0
〈(K∗

HGen) (s), x〉 (K∗
HGen) (s) ds (11.15)

where n ∈ and x ∈ V . It follows from (11.12) that

Q̃T (x) =
∞∑

n=1

∫ T

0
〈K∗

HGen, x〉 (K∗
HGen) (s) ds

=
∫ T

0

∞∑
n=1

〈(ΓT en) (s), x〉 (ΓT en) (s) ds. (11.16)

The latter infinite series converges because ΓT is Hilbert-Schmidt. The
integral does not depend on the orthonormal basis that is chosen from
(11.14) and the analogous result for stochastic integrals with respect to
a cylindrical Wiener process. �

Remark 11.4 Since ΓT ∈ L2

(
V, L2([0, T ], V )

)
, it follows that the map

x �→ (ΓT x) (t) is Hilbert-Schmidt on V for almost all t ∈ [0, T ]. Let Γ∗
T

be the adjoint of ΓT . Then Γ∗
T is also Hilbert-Schmidt, and QT can be

expressed as

QT x =
∫ T

0
(ΓT (Γ∗

T x)) (t) dt (11.17)

for x ∈ V . In fact, for x, y ∈ V , it follows by (11.16) that〈
Q̃T x, y

〉
=

∫ T

0

∞∑
n=1

〈(ΓT en) (s), x〉 〈(ΓT en) (s), y〉 ds

=
∫ T

0

∞∑
n=1

〈en, (Γ∗
T x) (s)〉 〈en, (Γ∗

T y) (s)〉 ds

=
∫ T

0
〈(Γ∗

T x) (s), (Γ∗
T y) (s)〉 ds

=
∫ T

0
〈(ΓT (Γ∗

T x)) (s), y〉 ds (11.18)
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If H ∈ (
1
2 , 1

)
and G satisfies∫ T

0

∫ T

0
|G(u)|L2(V )|G(v)|L2(V )φ(u − v) du dv < ∞

then

QT =
∫ T

0

∫ T

0
G(u)G∗(v)φ(u − v) du dv

where φ is given by (11.7) ([DPDM02], Proposition 2.2).

Now a result is given for the action of a closed (unbounded) linear
operator on the stochastic integral.

Proposition 11.5 If Ã : Dom
(
Ã
)

→ V is a closed linear operator,

G : [0, T ] → L(V ) satisfies G([0, T ]) ⊂ Dom
(
Ã
)

and both G and ÃG

satisfy the conditions for G in Proposition 11.3, then∫ T

0
GdB ⊂ Dom

(
Ã
)

a.s.

and

Ã

∫ T

0
GdB =

∫ T

0
ÃGdB a.s. . (11.19)

Proof By the assumptions, it follows that Gen ∈ H and ÃGen ∈ H
for each n ∈ . So, by an approximation of the integrands by step
functions, it easily follows that

Ã

∫ T

0
Gen dβn =

∫ T

0
ÃGen dβn.

Since the integrals are Gaussian random variables, it follows that

lim
m→∞

m∑
n=1

∫ T

0
Gen dβn =

∫ T

0
GdB (11.20)

in L2(Ω) and almost surely. Similarly,

lim
m→∞ Ã

m∑
n=1

∫ T

0
Gen dβn =

∫ T

0
ÃGdβ.

Since Ã is a closed linear operator, it follows that∫ T

0
GdB ∈ Dom

(
Ã
)

a.s.

and (11.16) is satisfied. �
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3. Fractional Ornstein-Uhlenbeck Processes
In this section, some properties of a fractional Ornstein-Uhlenbeck

(O-U) process are investigated. This process is a mild solution of the
linear stochastic equation

dZ(t) = AZ(t) dt + Φ dB(t)
Z(0) = x (11.21)

where Z(t), x ∈ V , (B(t), t ≥ 0) is a cylindrical fractional Brown-
ian motion (FBM) with the Hurst parameter H ∈ (0, 1), Φ ∈ L(V ),
A : Dom(A) → V , Dom(A) ⊂ V and A is the infinitesimal generator of
a strongly continuous semigroup (S(t), t ≥ 0) on V . A mild solution of
(11.21) is given by

Z(t) = S(t)x +
∫ t

0
S(t − s)Φ dB(s) (11.22)

where the stochastic integral on the right-hand side is given by Definition
11.2. Thus it is necessary to consider the existence and some other
properties of the following stochastic convolution integral

Z̃(t) :=
∫ t

0
S(t − s)Φ dB(s) (11.23)

In a significant portion of this section, it is assumed that (S(t), t ≥ 0)
is an analytic semigroup. In this case, there is a β̂ ∈ such that the
operator β̂I − A is uniformly positive on V . For each δ ≥ 0, (Vδ, ‖ · ‖δ)

is a Hilbert space where Vδ = Dom
((

β̂I − A
)δ

)
with the graph norm

topology so that

‖x‖δ = ‖
(
β̂I − A

)δ
x‖.

The shift β̂ is fixed. The space Vδ does not depend on β̂ because the
norms are equivalent for different values of β̂ satisfying the above con-
dition.

The case H ∈ (
0, 1

2

)
is primarily considered because the case H ∈(

1
2 , 1

)
has been treated in [DPDM02]. Only the main result in [DPDM02]

is described.

Proposition 11.6 If H ∈ (
1
2 , 1

)
, S(t)Φ ∈ L2(V ) for each t > 0 and∫ T

0

∫ T

0
u−αv−α|S(u)Φ|L2(V )|S(v)Φ|L2(V )φ(u − v) du dv < ∞ (11.24)
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for some T0 and α > 0 where φ(u) = H(2H − 1)|u|2H−2, then there is
a Hölder continuous V -valued version of the process (Z̃(t), t ≥ 0) with
Hölder exponent β < α. If (S(t), t ≥ 0) is analytic then there is a version
of (Z̃(t), t ≥ 0) in Cβ([0, T ], Vδ) for each T > 0 and β + δ < α.

Proof This verification basically follows from the proofs of Propositions
3.2 and 3.3 of [DPDM02] with β = 0. It only remains to note that
the same proofs yield the Hölder continuity for the sample paths of Z̃.
Specifically, in Proposition 3.2 of [DPDM02], it is verified that

Z̃(t) = Rα(Y )(t)

for t ∈ [0, T ] where

Y (t) :=
∫ t

s
(t − s)−αS(t − s)Φ dB(s)

Y ∈ Lp([0, T ], V ) for each p ≥ 1 and

(Rαϕ) (t) :=
∫ t

0
(t − s)α−1S(t − s)ϕ(s) ds

It is well-known (e.g. Proposition A.1.1 [DPZ96]) that Rα : Lp[([0, T ], V ) →
Cβ([0, T ], V ) for α > 1

p and β ∈
(
0, α − 1

p

)
and Rα : Lp([0, T ], V ) →

C
α−δ− 1

p ([0, T ], Vδ) for δ > 0 and δ < α − 1
p . Since p is arbitrarily large,

the proof is complete. �

In the remainder of this section, the case H ∈ (
0, 1

2

)
is considered.

Lemma 11.7 Let H ∈ (
0, 1

2

)
. If (S(t), t ≥ 0) is an analytic semigroup,

then for each x ∈ V , S(T − ·)Φx ∈ H and

|K∗
H (S(T − ·)Φx)|2L2([0,T ],V )

≤ c

∫ T

0

(‖S(T − s)Φx‖2

(T − s)1−2H
+

‖S(T − s)Φx‖2

s1−2H

+

∣∣S (
1
2(T − s)

)
Φx

∣∣2
(T − s)2β

)
ds (11.25)

for each β ∈ (
1
2 − H, 1

2

)
and a constant c = cβ.

Proof By (11.9) there is the equality

K∗
H (S(T − ·)Φx) (s) = cHs

1
2
−HD

1
2
−H

T−
(
uH− 1

2
S(T − ·)Φx

)
(s) (11.26)
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|K∗
H (S(T − ·)Φx)|2L2([0,T ],V )

≤ c

∫ T

0

(‖S(T − s)Φx‖2

(T − s)1−2H

+ s1−2H

∫ T

s

∥∥∥rH− 1
2 S(T − r)Φx − sH− 1

2 S(T − s)Φx
∥∥∥

(r − s)
3
2
−H

dr

⎞⎠2

ds

≤ c

(∫ T

0

(‖S(T − s)Φx‖2

(T − s)1−2H

+ s1−2H‖S(T − s)Φx‖2

∫ T

s

∣∣∣rH− 1
2 − sH− 1

2

∣∣∣
(r − s)

3
2
−H

dr

⎞⎠2

+s1−2H

(∫ T

s

‖S(t − r)Φx − S(t − s)Φx‖2rH− 1
2

(r − s)
3
2
−H

dr

)2

ds

⎞⎠
≤ c

(∫ T

0

(‖S(T − s)Φx‖2

(T − s)1−2H
+

‖S(T − s)Φx‖2

s1−2H

+

(∫ T

s

‖S(T − r)Φx − S(T − s)Φx‖2

(r − s)
3
2
−H

dr

)2
⎞⎠ ds

⎞⎠

where c represents a generic constant that may differ at each use. To
obtain the inequality above, the inequality

⎛⎝∫ T

s

∣∣∣rH− 1
2 − sH− 1

2

∣∣∣
(r − s)

3
2
−H

dr

⎞⎠2

≤ cs−2+4H

is used as well as rH− 1
2 ≤ sH− 1

2 because r ≥ s. The first two integrands
on the right-hand side of (11.26) correspond to those in (11.25) so it only
remains to estimate the last term. By the analyticity of (S(t), t ≥ 0), it
follows that
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∫ T

0

(∫ T

s

‖S(t − r)Φx − S(T − s)Φx‖2

(r − s)
3
2
−H

dr

)2

ds

≤
∫ T

0

(∫ T

s

|S(r − s) − I|L(Vβ ,V )

∣∣S (
T−r

2

)∣∣
L(V,Vβ)

∥∥S
(

T−r
2

)
Φx

∥∥
(r − s)

3
2
−H

dr

)2

ds

≤ c

∫ T

0

(∫ T

s

(r − s)β
∥∥S

(
T−r

2

)
Φx

∥∥
(T − r)β(r − s)

3
2
−H

dr

)2

ds

= c

∫ T

0

(∫ T−s

0

∥∥S
(

T−s−r
2

)
Φx

∥∥
(T − s − r)β

1

r
3
2
−H−β

dr

)2

ds

≤ c

(∫ T

0

dr

r
3
2
−H−β

)2 ∫ T

0

‖S(t − r)Φx‖2

(T − r)2β
dr (11.27)

where the last inequality follows from the Young inequality. This final
inequality gives the estimate for the last term on the right-hand side of
(11.25) and completes the proof. �

The next result ensures that the stochastic convolution is a well-
defined process.

Theorem 11.8 Let S(t), t ≥ 0) be an analytic semigroup and H ∈(
0, 1

2

)
. If for each t ∈ (0, T ) the operator S(t)Φ is Hilbert-Schmidt on V

and ∫ T

0

( |S(s)Φ|2L2(V )

(T − s)1−2H
+

|S(s)Φ|2L2(V )

s2β

)
ds < ∞ (11.28)

for some β ∈ (
1
2 − H, 1

2

)
, then the stochastic integral process (Z̃(t), t ≥ 0)

given by (11.23) is well-defined and admits a measurable version.

Proof To verify that the stochastic integral with the integrand given
by the operator-valued function t �→ S(T − t)Φ is well-defined using
Proposition 11.3, it is necessary to show that

∞∑
n=1

∫ T

0
‖K∗

HS(T − s)Φen‖2 ds < ∞ (11.29)
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where (en, n ∈ ) is a complete orthonormal basis in V . By Lemma
11.7, it follows that

∞∑
n=1

∫ T

0
‖K∗

H (S(T − ·)Φen) (s)‖2 ds

≤ c
∞∑

n=1

∫ T

0

(‖S(T − s)Φx‖2

(T − s)1−2H
+

‖S(T − s)Φen‖2

s1−2H

+

∥∥S
(

T−s
2

)
Φen

∥∥2

(T − s)2β

)
ds

= c

∫ T

0

( |S(T − s)Φ|2L2(V )

(T − s)1−2H
+

|S(T − s)Φ|2L2(V )

s1−2H

+

∣∣S (
T−s

2

)
Φ
∣∣2
L2(V )

(T − s)2β

⎞⎠ ds

≤ c

∫ T

0

( |S(s)Φ|2L2(V )

s2β
+

|S(s)Φ|2L2(V )

(T − s)1−2H

)
ds (11.30)

for some generic constant c where 2β > 1 − 2H. The right-hand side
of the inequality (11.30) is finite by (11.28) so (Z̃(t), t ∈ [0, T ]) is a
well-defined process for T > 0. To verify the existence of a measurable
version, the approach in Proposition 3.6 of [DPZ92] is used by showing
the mean square continuity of (Z̃(t), t ∈ [0, T ]) from the right. For
0 ≤ T2 ≤ T1 < T it follows that[

‖Z̃(T1) − Z̃(T2)‖2
]
≤ I1 + I2 (11.31)

where

I1 = 2

[∥∥∥∥∫ T1

T2

S(T1 − t)Φ dB(t)
∥∥∥∥2

]
and

I2 = 2

[∥∥∥∥(S(T1 − T2) − I)
∫ T2

0
S(T2 − r)Φ dB(r)

∥∥∥∥2
]

.

Proceeding as in (11.30) where the interval [0, T ] is replaced by [T2, T1]
it follows that

I1 ≤ c

∫ T1

T2

( |S(T1 − r)Φ|2L2(V )

(T1 − r)2β
+

|S(T1 − r)Φ|L2(V )

(r − T2)1−2H

)
dr (11.32)
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which tends to zero as T1 ↓ T2 by (11.28).
Furthermore, it follows that∥∥∥∥(S(T1 − T2) − I)

∫ T2

0
S(T2 − r)Φ dB(r)

∥∥∥∥ → 0 a.s. (11.33)

as T1 ↓ T2 by the strong continuity of the semigroup (S(t), t ≥ 0) and it
easily follows that∥∥∥∥(S(T1 − T2) − I)

∫ T2

0
S(T2 − r)Φ dB(r)

∥∥∥∥2

≤ c

∥∥∥∥∫ T2

0
S(T2 − r)Φ dB(r)

∥∥∥∥2

for a constant c that does not depend on T1. Thus I2 → 0 as T1 ↓ T2 by
the Dominated Convergence Theorem. �

Corollary 11.9 Let (S(t), t ≥ 0) be an analytic semigroup and H ∈(
0, 1

2

)
. If

|S(t)Φ|L2(V ) ≤ ct−γ (11.34)

for t ∈ [0, T ], c ≥ 0 and γ ∈ [0, H), then the integrability condition
(11.28) is satisfied and thus (Z̃(t), t ∈ [0, T ]) is a well-defined V -valued
process with a measurable version.

Proof The condition (11.28) is∫ T

0

(
1

(T − s)1−2Hs2γ
+

1
s2β+2γ

)
ds < ∞ (11.35)

which is satisfied if 2β + 2γ < 1. On the other hand, it is necessary that
β > 1

2 − H so a suitable β can be chosen if 2
(

1
2 − H

)
+ 2γ < 1, that is,

γ < H. �

The condition (11.34) is one that can be verified in many specific
examples. The results in the remainder of this section are formulated
using (11.34).

Lemma 11.10 Let (S(t), t ≥ 0) be an analytic semigroup and H ∈(
0, 1

2

)
. If (11.34) is satisfied with γ ∈ [0, H − δ) for some δ ≥ 0, then

the stochastic convolution integral takes values in Vδ (a.s. ).

Proof Since the linear operator Ã = (β̂I−A)δ is closed, by Proposition
11.5, it is only necessary to verify that the operator-valued function
t �→ ÃS(T − t)Φ is integrable on [0, T ]. It follows directly that

|ÃS(t)Φ|L2(V ) ≤
∣∣∣∣ÃS

(
t

2

)∣∣∣∣
L(V )

∣∣∣∣S (
t

2

)
Φ
∣∣∣∣
L2(V )

≤ ctγ−δ (11.36)
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for some c > 0 and all t ∈ (0, T ]. Thus the proofs of Theorem 11.8 and
Corollary 11.9 can be repeated replacing γ by γ + δ. �

Now a sample path property of the stochastic convolution can be
established.

Theorem 11.11 Let (S(t), t ≥ 0) be an analytic semigroup, H ∈ (
0, 1

2

)
and (11.34) be satisfied. Let α ≥ 0 and δ ≥ 0 satisfy

α + β + γ < H. (11.37)

Then there is a version of the process (Z̃(t), t ∈ [0, T ]) with Cα([0, T ], Vδ)
sample paths.

Proof For T1 > T2 it follows that

‖Z̃(T1) − Z̃(T2)‖2
δ ≤ I1 + I2 (11.38)

where

I1 = 2
∥∥∥∥∫ T1

T2

S(T − r)Φ dB(r)
∥∥∥∥2

δ

and

I2 = 2
∥∥∥∥(S(T1 − T2) − I)

∫ T2

0
S(T2 − r)Φ dB(r)

∥∥∥∥2

δ

.

Proceeding as in (11.30) or (11.32) with S(T1 − r)Φ replaced by
ÃS(T2 − r)Φ and using (11.36) it follows that

I1 ≤ c

∫ T1

T2

( |ÃS(T1 − r)Φ|2L2(V )

(T1 − r)2β
+

|ÃS(T1 − r)Φ|2L2(V )

(r − T2)1−2H

)
dr

≤ c

∫ T1

T2

(
1

(T1 − r)2β+2γ+2δ
+

1
(r − T2)1−2H(T1 − r)2γ+2δ

)
dr

≤ c
(
|T1 − T2|1−2β−2γ−2δ + |T1 − T2|1−2δ−2γ+H

)
(11.39)

where β > 1
2 − H so

I1 ≤ c|T1 − T2|2α1 (11.40)

where 2α1 < 2H − 2γ − 2δ.
Now an upper bound is given for I2. Since (S(t), t ∈ [0, T ]) is analytic,

it follows that for any α2 > 0,

I2 ≤ 2 |S(T1 − T2) − I|2α2

L(Vα2+δ ,Vδ)

·
∥∥∥∥∫ T2

0
S(T2 − r)Φ dB(r)

∥∥∥∥2

α2+δ

(11.41)
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Since Z̃(T2) is a Gaussian random variable the expectation on the
right-hand side of (11.41) is finite if Z̃(T2) is a Vα2+δ-valued random
variable which is the case by Lemma 11.10 if α2 +δ+γ < H. Combining
this fact with (11.40) yields

‖Z̃(T1) − Z̃(T2)‖2
δ ≤ c|T1 − T2|2α (11.42)

for α < H−γ−δ and T1, T2 ∈ [0, T ]. Since the increment Z̃(T1)− Z̃(T2)
is a Vδ-valued Gaussian random variable

‖Z̃(T1) − Z̃(T2)‖2p
δ ≤ c|T1 − T2|2αp (11.43)

for each p ≥ 1. By the Kolmogorov criterion for sample path continuity
(e.g. [DPZ92] Theorem 3.3) there is a Cλ ([0, T ], Vδ) version of the pro-
cess

(
Z̃(t), t ∈ [0, T ]

)
for λ < 2αp−1

2p if p > 1
2α . Letting p → ∞ shows that

there is a Cα ([0, T ], Vδ) version of
(
Z̃(t), t ∈ [0, T ]

)
for α < H − γ − δ.

�

An important special case arises when the operator Φ in (11.21) is a
Hilbert-Schmidt operator on V . This condition implies that the frac-
tional Brownian motion (B(t), t ∈ [0, T ]) in (11.21) is a “genuine” V -
valued process. In this case (11.34) is satisfied with γ = 0 which is
described in the following corollary.

Corollary 11.12 Let (S(t), t ≥ 0) be an analytic semigroup. If Φ ∈
L2(V ) then the process (Z̃(t), t ∈ [0, T ]) has a Cα([0, T ], Vδ) version for
all α ≥ 0, δ ≥ 0 satisfying α+δ < H. In particular, there is Cα([0, T ], V )
version for α < H.

Note that Corollary 11.12 is satisfied for each H ∈ (0, 1). The result
for H ∈ (

1
2 , 1

)
is a consequence of Proposition 2.1 in [DPDM02]. In the

special case where V = n, Vδ = V for all δ ≥ 0, Φ ∈ L2(V ) trivially
so (Z̃(t), t ∈ [0, T ]) has a Cα([0, T ], V ) version for each α < H. The
trivial case where Z̃(t) = B(t) demonstrates that for the present level of
generality, the condition here is sharp.

The following result provides conditions for the existence of a limiting
distribution.

Proposition 11.13 Let (S(t), t ≥ 0) be an analytic semigroup that is
exponentially stable. Specifically,

|S(t)|L(V ) ≤ Me−ωt (11.44)

for t ≥ 0 and some M > 0 and ω > 0 so (11.34) is satisfied with
γ ∈ [0, H) where H ∈ (0, 1). Then for each x ∈ V the family of Gaussian
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probability measures (µZ(t), t ≥ 0) converges in the weak*-topology to a
unique limiting measure µ∞ = N(0, Q∞) where µZ(t) is the measure for
Z(t),

Qt =
∫ t

0
L(t, s)L∗(t, s) ds, (11.45)

Q∞ = lim
t→∞Qt,

L(t, s) ∈ L(V ), and

L(t, s)x = K∗
H(S(t − ·)Φx)(s)

for x ∈ V and 0 ≤ s ≤ t.

Proof For H ∈ (
1
2 , 1

)
, the result is given in Proposition 3.4 of [DPDM02].

For H ∈ (
0, 1

2

)
, the methods in [DPZ92] for a Wiener process are suit-

ably modified. Let

Ẑ(t) =
∫ t

0
S(r)Φ dB(r)

and note that µẐ(t) = µZ̃(t) for t ≥ 0 because the covariance operators
have the same form after a time reversal. Since S(t)x → 0 in the norm
topology as t → ∞ by (11.44) it suffices to show that (Ẑ(t), t ≥ 0) is
convergent in L2(Ω, V ). It is shown that the family of random variables
(Ẑ(t), t ≥ 0) is Cauchy in L2(Ω, V ), that is,

lim
T2→∞,T1≥T2

‖Ẑ(T1) − Ẑ(T2)‖2 = 0 (11.46)

To verify (11.46), it is sufficient to modify the proofs of Lemma
11.7 and Theorem 11.8 with the (local) time reversal of the semigroup
(S(t), t ≥ 0) and use the fact that (11.34) and (11.44) imply that

|S(t)Φ|L2(V ) ≤ ce−ωtt−γ (11.47)

for t ≥ 0 and c > 0. Thus

‖Ẑ(T1) − Ẑ(T2)‖2 =
∫ T1

T2

∞∑
n=1

‖K∗
H(S(·)Φen)(s)‖2 ds
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and use inequalities that are analogous to (11.26), (11.27), and (11.30),
together with (11.42) to obtain for T1 − T2 ≥ 1, T2 ≥ 1,

‖Ẑ(T1) − Ẑ(T2)‖2

≤ c

(
e−2ωT2

T 2γ
2

∫ T1−T2

0

e−2ωr

(T1 − T2 − r)1−2H
dr

+ e−2ωT2

∫ T1−T2

0

e−2ωr

r1−2H
dr

+
e−2ω̃T2

T 2β
2

∣∣∣∣S (
T2

2

)
Φ
∣∣∣∣2
L2(V )

∫ ∞

0
e−2ω̃s ds

)
(11.48)

where the three terms on the right-hand side of (11.48) correspond to
the three terms on the right-hand side of (11.25), so (11.46) follows. �

4. An Example
Consider a 2mth order stochastic parabolic equation

∂u

∂t
(t, ξ) = [L2mu](t, ξ) + η(t, ξ) (11.49)

for (t, ξ) ∈ [0, T ] ×O with the initial condition

u(0, ξ) = x(ξ) (11.50)

for ξ ∈ O and the Dirichlet boundary condition

∂ku

∂vk
(t, ξ) = 0 (11.51)

for (t, ξ) ∈ [0, T ] × ∂O, k ∈ {0, . . . , m − 1}, ∂
∂v denotes the conormal

derivative, O is a bounded domain in d with a smooth boundary and
L2m is a 2mth order uniformly elliptic operator

L2m =
∑

|α|≤2m

aα(ξ)Dα (11.52)

and aα ∈ C∞
b (O). For example, if m = 1 then this equation is called the

stochastic heat equation. The process η denotes a space dependent noise
process that is fractional in time with the Hurst parameter H ∈ (0, 1)
and, possibly, in space. The system (11.49)–(11.51) is modeled as

dZ(t) = AZ(t) dt + Φ dB(t)
Z(0) = x (11.53)
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in the space V = L2(O) where A = L2m,

Dom(A) = {ϕ ∈ H2m(O) | ∂k

∂vk
ϕ = 0 on ∂D for k ∈ {0, . . . , m − 1}},

Φ ∈ L(V ) defines the space correlation of the noise process and (B(t), t ≥
0) is a cylindrical standard fractional Brownian motion in V . For Φ = I,
the noise process is uncorrelated in space. It is well known that A
generates an analytic semigroup (S(t), t ≥ 0). Furthermore

|S(t)Φ|L2(V ) ≤ |S(t)|L2(V )|Φ|L(V ) ≤ ct−
d

4m (11.54)

for t ∈ [0, T ]. It is assumed that there is a δ1 > 0 such that

Im(Φ) ⊂ Dom
(
(β̂I − A)δ1

)
(11.55)

then for r ≥ 0

|S(t)Φ|L2(V )

≤ |S(t)(β̂I − A)r|L(V )|(β̂I − A)−r−δ1 |L2(V )|(β̂I − A)δ1Φ|L(V )

≤ ct−r (11.56)

for t ∈ (0, T ] if the operator (β̂I−A)−r−δ1 is a Hilbert-Schmidt operator
on V , which occurs if

r + δ1 >
d

4m
. (11.57)

Thus, the condition (11.36) is satisfied with γ = d
4m for arbitrary

bounded operator Φ and if (11.55) is satisfied, then (11.36) is satisfied
with γ > d

4m − δ1.
Summarizing the results of this section applied to the example (cf.

Theorem 11.11 and Proposition 11.6) if

H >
d

2m
(11.58)

then for any Φ ∈ L(V ), the stochastic convolution process (Z̃(t), t ∈
[0, T ]) is well-defined and has a version with Cα([0, T ], Vδ) paths for
α ≥ 0, δ ≥ 0 satisfying

α + δ < H − d

4m
. (11.59)

If moreover (11.55) is satisfied, then the previous conclusion is satisfied
if

α + δ < H − d

4m
+ δ1. (11.60)

Note that these results are analogous to the case of a standard Wiener
process

(
H = 1

2

)
.
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HEDGING OPTIONS WITH TRANSACTION
COSTS∗

Wulin Suo
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Abstract
This paper studies the optimal investment problem for an investor

with a HARA type utility function. We assume the investor already has
an option in her portfolio, and she will setup her invesment/hedging
strategy using bonds and the underlying stock to maximize her util-
ity. When there are transaction costs, the investor’s optimal invest-
ment/hedging strategy can be described by three regions: the buying
region, the selling region, and the no transaction region. When her
portfolio falls in the buying (selling) region, she will buy (sell) enough
shares of the stock to make her portfolio lie in the no transaction region
(NT). When her portfolio falls in the NT region, it is optimal for the
investor to make no transaction. We introduce the concept of a viscosity
solution to describe the indirect utility function. A numerical scheme is
proposed to compute the indirect utility function. This in turn enables
the asking price for an option to be computed.

1. Introduction
In this paper we study the problem of an investor who wants to hedge

her liability arising from writing an option. Hedging is central to the op-
tion pricing theory. Arbitrage pricing arguments, such as those of Black
and Scholes (1973), depend on the idea that an option can be perfectly
hedged using the underlying asset, so making it possible to create a port-

∗The author is grateful for the comments from Professors J.-C. Duan, John Hull, Yisong
Tian and Alan White.
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folio that replicates the option payoff exactly. The standard approach
dealing with option hedging is through the Black-Scholes framework, i.e.,
assuming in a world of frictionless markets, the option holder can hedge
her position by continuously re-balancing a portfolio consisting of the
underlying asset and risk-free bonds (or money market account). The
number of underlying asset the investor needs to hold in order to per-
fectly hedge her position is computed through the Black-Scholes option
pricing formula, and is often referred to as the option’s delta. However,
this hedging strategy is infeasible in the real world since transaction
costs are incurred whenever the portfolio is re-balanced. Since frequent
trading of the underlying stock is assumed, transaction costs will make
an important impact on the hedging of options.

The problem of hedging options in the presence of proportional costs
have been studied by Leland (1985), Boyle and Vorst (1991), and Toft
(1996), among others. The hedging strategy considered in these studies
are based on the delta hedging strategy implied from the Black-Scholes
option pricing framework. They study the hedging costs when the in-
vestor tries to perfectly hedge the option under consideration. These
studies ignore the rationality of the investor in the sense that the costs
incurred when hedging an option in such a way may be greater than the
premium she receives for the option. Moreover, the investor may not
want to perfectly hedge her liability in the option position because she
may prefer to take on some of the risk in exchange for a higher return
for her portfolio. In other words, the hedging strategy is not based on
any optimality criteria. Since no-transaction cost is one of the crucial
assumptions underlying the Black-Scholes option pricing paradigm, it
should be reasonable to expect that the investor would realize that the
Black-Scholes option pricing formula no longer holds, and therefore the
delta hedging doctrine should be abandoned.

The optimality criterion for option hedging when the market has fric-
tions (including transaction costs) can be defined in terms of expected
utility. This approach seems more appropriate than exact replication
since it reflects the tradeoffs that must be made between transaction
costs and risk reduction. The approach is in a paradigm similar to that
of Davis and Norman (1990), and Dumas and Luciano (1991). These
papers describe optimal portfolio strategies to maximize expected utility
over infinite time horizon, where transaction costs are incurred whenever
trades are made on the stocks. They extend earlier works by Merton
(1971) and Constantinides (1986). However, while these papers are con-
cerned with optimal portfolio strategies, they are not focused on the
problem of replicating (or hedging) options by means of the underlying
asset.
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In this paper we study the hedging strategy for an investor who al-
ready has an option in her portfolio. The investor’s optimality criterion
is characterized by a HARA type utility function (the methodology can
also be applied to more general cases). The approach follows the work
of Davis et al (1993). However, in addition to assuming a more general
utility function, our attention is focused on the hedging behavior of the
investor based on her current wealth level and risk preference. Since an
option’s price has to be determined from an equilibrium framework when
the market has frictions, we will assume that the investor already has an
option in her portfolio. We will briefly discuss the minimum premium
the investor should charge in order to induce her to take the liability.

The rest of this paper is organized as follows. In Section 2, we will for-
mulate the option hedging problem, and derive the investor’s wealth pro-
cess. The optimal hedging strategy in absence of transaction costs is also
discussed. It turns out that when the investor has a positive net wealth,
she would always “over” hedge her liability in the option position in the
sense that her investment in the stock is always greater than the amount
of delta derived from the Black-Scholes option pricing framework, as long
as the growth rate of the stock is greater than the risk-free interest rate.
In Section 3, we will consider the optimal hedging/investment problem
when there are transaction costs. The Hamilton-Jacobi-Bellman equa-
tion for the indirect utility function of the invstment/hedging problem
will be derived heuristically. In order to characterize the indirect util-
ity function, we will introduce the concept of viscosity solution to the
Hamilton-Jacobi-Bellman (HJB) equation, and demonstrate that the in-
direct utility function is indeed the unique solution in this sense. The
optimal investment/hedging strategy is characterized in terms of the in-
direct utility function. In Section 4, we propose a numerical scheme
to compute the indirect utility function based on the form of the opti-
mal investment/hedging strategy we obtained in Section 3. Section 5
concludes.

2. An optimal hedging problem without
transaction costs

We assume that there are two assets available in the market: one is a
stock whose price follows a geometric Brownian motion:

dS

S
= αdt + σdz.(12.1)

The other asset is a risk-free bond or cash account where we assume that
the interest rate is constant. In other words, one can borrow/lend at a
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constant rate of r > 0. We write the cash account as

Bt = B exp(rt),(12.2)

where B is the initial amount in the cash account. The investor is
assumed to have a utility function u(c), where u(·) is assumed to be twice
continuously differentiable and concave. We assume that the investor’s
objective is to maximize her expected utility from the terminal wealth
at time T .

We will also assume that the investor has a short position in a Euro-
pean call with a strike price K and maturity time T . She balances her
portfolio in a way to maximize the expected utility at time T , at which
time she will liquidate her positions in the stock and fulfil her obligations
in the short position of the call if it ends in the money. In other words,
at time T , her final wealth is

WT = BT + y∗T − CT ,(12.3)

where WT is her total wealth, BT is the value of her investment in the
risk-free account, y∗t is the cash value of her investment in the stock,
i.e., the value of her stock holding minus the transaction cost (if there
is any) when she liquidates them, and CT is the liability from the short
position in the option. For an European call option, we have

CT = (ST − K)+.

We derive the investor’s wealth equation. Consider the following in-
vestment problem: the investor has an initial wealth of W0. She can
invest the wealth in either the stock or the money market account. Let
h0(t) and h1(t) be the amount she invests in the money market account
and the number of shares she holds for the stock at time t , respectively.
Her total wealth is thus

W (t) = h0(t) + h1(t)S(t).

Since there is no consumption before the maturity time T , we can assume
that the portfolio is self-financing:

dW (t) = dh0(t) + h1(t)dS(t)
= rh0(t)dt + h1(t) [αS(t)dt + σS(t)dzt]
= [rh0(t) + αh1(t)S(t)] dt + h1(t)σS(t)dzt.

Write π(t) as the proportion of her wealth invested in the stock, i.e.,

π(t)W (t) = h1(t)S(t),
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then
(1 − π(t))W (t) = h0(t),

and

dW (t) = r(1 − π(t))W (t)dt + απ(t)W (t)dt + σπ(t)W (t)dzt

= (α − r)πW (t)dt + rW (t)dt + σπW (t)dzt.(12.4)

The investor’s problem is to maximize her expected utility at the
maturity time:

max
π(·)

Eu(WT ),

and the investor’s indirect utility function is defined as follows: for an
initial wealth W at time t,

U(t, W ) = max
π(·)

Etu(WT ).

Let us introduce the following differential operator:

Lπ ≡ 1
2
π2W 2σ2 ∂2

∂W 2
+ [(α − r)πW + rW ]

∂

∂W
,

then the Hamilton-Jacobi-Bellman (HJB hereafter) equation for the in-
vestment problem is

∂U

∂t
+ max

π
LπU = 0(12.5)

with the boundary condition

U(T, W ) = u(W ), ∀ W ≥ 0.

Once the indirect utility function U is found, the optimal strategy π∗
is given by

πW 2σ2 ∂2U

∂W 2
+ (α − r)W

∂U

∂W
= 0,

or
π∗ = −(α − r)UW

Wσ2UWW
.(12.6)

In order to solve the HJB equation, let us assume that the utility
function is in the HARA class (hyperbolic absolute risk aversion):

u(W ) =
W γ

γ
, 0 < γ < 1.(12.7)

This type of utility function is widely used in the optimal investment/
consumption problems. Note that the relative risk aversion is given by

−W
u′′(W )
u′(W )

= 1 − γ.



228

Figure 12.1. The case with no transaction costs

2.1 Optimal investment problem without
options

In this case, the boundary condition of the HJB equation is thus

U(T, W ) =
W γ

γ
, ∀ W ≥ 0.

Under these assumptions, the indirect utility function can be found
as (see Appendix):

U(t, W ) = g(t)
W γ

γ
,

where
g(t) = eνr(T−t)(12.8)

and

ν =
1
2

(
α − r

σ

)2 1
1 − γ

+ r.

From (12.6), the optimal investment policy is given by

π∗ =
α − r

σ2(1 − γ)
.

In this case, the investor’s optimal investment strategy is to keep
a fixed proportion π∗ of her wealth in the stock. This means that,
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optimally, the investor acts in such a way that her portfolio holding is
always on the line

S =
π∗

1 − π∗B.

which is sometimes referred to as the Merton line.1 It is worth mention-
ing that when α > r, the investor always invests some portion of her
wealth in the stock. Moreover, for this choice of the utility function, the
proportion of the investor’s wealth invested in the stock is independent
of her wealth level.

This result is shown in Figure 12.1. When the portfolio falls in the
region B, the investor shall purchase enough shares of stock to keep her
portfolio on the Merton line. Similarly, when her portfolio is in the
region S, she should sell some shares of the stock she is holding to move
her portfolio on the Merton line. We will refer B and S as the buying
region and selling region respectively.

2.2 When there is a short position in option
We now consider the case when there is a short position of European

call already in her portfolio. We want to answer the following question:
based on her wealth level and preference, what is her best investment
strategy? Notice that the investor might not want to perfectly hedge
her position in the option since she might prefer to have some risk in her
portfolio in order to achieve a higher return. This is illustrated by the
previous case when there is no option in her portfolio.

The terminal wealth in this case is

W T = WT − (ST − K)+.(12.9)

The optimal investment/hedging strategy can be constructed in the
following way. It is easy to show that for any time t ≤ T and wealth
level W ≥ 0, the indirect utility function is given by

U(t, W ) = U(t, W − f(t, S))

= g(t)
[W − f(t, S)]γ

γ
,(12.10)

where g(t) is given by (12.8) and f(t, S) is the price of the call option
under the Black-Scholes framework, i.e.,

f(t, S) = SN(d1) − Ke−r(T−t)N(d2),

with

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√

T − t
, d2 = d1 − σ

√
T − t.
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For a proof of this conclusion, see the Appendix.
Equation (12.10) suggests that the optimal strategy for the investor

is to delta-hedge her short position in the European call, which needs
an amount f(0, S) initially, and then manage her remaining wealth op-
timally as before. While this is true, it is important to look at what
her overall investment/hedging strategy is based on her wealth and risk
preference.

In order to find the optimal investment/hedging strategy, recall that
the stock price and the wealth processes are given by (12.1) and (12.4),
respectively. The indirect utility is defined as

U(t, S, W ) ≡ max
π

Eu(W T ),

where W T is given by (12.9). Unlike the previous case, we now have to
include the current stock price as one of the variables for the indirect
utility function. Similarly, let

L̄π ≡ 1
2
π2W 2σ2 ∂2

∂W 2
+

1
2
σ2S2 ∂2

∂S2
+ πWSσ2 ∂2

∂S∂W

+ [(α − r)πW + rW ]
∂

∂W
+ αS

∂

∂S
,

then the HJB equation for this problem becomes

Ut + max
π

L̄πU = 0,

with the boundary condition given by

U(T, S, W ) =
(W − (S − K)+)γ

γ
.

The optimal strategy is given by

πW 2σ2UWW + WSσ2USW + (α − r)WUW = 0,

or
π∗ = −α − r

σ2W
· UW

UWW
− S

W
· USW

UWW
.(12.11)

Given the solution in (12.10), we have

UW = g(t)γ [W − f(t, S)]γ−1 ,

UWW = g(t)γ(γ − 1) [W − f ]γ−2 ,

US = −g(t)γ [W − f ]γ−1 · fS ,

USW = −γ(γ − 1)g(t) [W − f ]γ−2 · fS .
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The optimal investment/hedging strategy can be written as

π∗ =
α − r

σ2(1 − γ)
· W − f

W
+

S

W
· fS .(12.12)

It is interesting to notice that in this case, the proportion of the investor’s
wealth invested in the stock depends on her wealth level.

The wealth that is invested in the stock is given by

π∗W =
α − r

σ2(1 − γ)
· (W − f) + S · fS ,

which implies that she will perfectly hedge her liability in the option
only if her initial wealth equals the premium she receives from the short
position in the option. Assuming α > r and that the investor has more
wealth than just the option premium, the investor will always invest
more than the amount that is necessary for the delta hedging strategy
for the option derived from the Black-Scholes model.

3. The case when there are transaction costs
Now we consider the case when transaction costs are incurred when

one buys/sells stocks. We still assume that there are two assets available:
one is the risky asset, or a stock, whose price is described by a geometric
Brownian motion

dS

S
= αdt + σdz,

and the other asset is a money market account (or risk-free bond) with
a risk-free interest of r.

As before, the investor’s wealth is distributed among investments in
both the stock and the money market account. Moreover, we assume
that a proportional cost is incurred each time a transaction of buy-
ing/selling of the stock is made. More specifically, in order to purchase
(sell) one share of the stock, he will pay (receive)

(1 + λ)S ((1 − µ)S).

Her wealth can be described by

dWt = rWtdt − (1 + λ)StdLt + (1 − µ)StdMt,(12.13)

where Lt and Mt are the cumulative amount of shares of the stock the
investor has bought and sold up to time t, respectively. For technical
reasons, we assume

L and M are adapted to the information generated by the price
process S;
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L(·) and M(·) are right continuous and have left limits;

L(0−) = M(0−) = 0.

The total number of shares the investor holds at time t is given by

y(t) = L(t) − M(t).

An investment/hedging strategy is described by the pair (L, M).

3.1 The optimal investment problem without
options

As before, we assume that the investor has a utility function given
by (12.7) and she choose the investment/hedging strategy (L, M) to
maximize her expected utility at time T :2

max
(L,M)

Eu(WT ).

In order to derive the optimal investment strategy, we define the in-
direct utility function as

U(t, S, y, W ) ≡ max
(L,M)

Et(u(W (T )),

where

t is the current time;

S is the spot price of the stock at time t;

y is the net position of the investor’s position in the stock;

W is the investor’s net wealth (or cash value) at time t.

When the utility function is assumed to be in the form (12.7), it is
easy to show the following: for the special choice of the utility function
u, for any ρ > 0, we have

U(t, ρS, y, ρW ) = ργU(t, S, y, W ).

The HJB equation
For any positive constants C1 and C2, consider the subset SC1,C2 of

trading strategies in the following form

L(t) =
∫ t

0
l(s)ds, M(t) =

∫ t

0
m(s)ds
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such that
0 ≤ l(s) ≤ C1, 0 ≤ m(s) ≤ C2.

The wealth process can be written as

dW = [rW − (1 + λ)l(t)S + (1 − µ)m(t)S] dt,

dy = [l(t) − m(t)] dt,

dS

S
= αdt + σdz.

Define

UC1,C2(t, S, y, W ) ≡ max
(L,M)∈SC1,C2

Et(u(W (T )),

then the investment problem reduces to a case similar to the one consid-
ered in Section 2. As a result, the HJB equation for UC1,C2(t, S, y, W )
take the following form:

∂U

∂t
+ max

0≤l≤C1, 0≤m≤C2

Ll,mU = 0,(12.14)

where

Ll,m =
1
2
σ2S2 ∂2

∂S2
+ αS

∂

∂S

+ [rW − (1 + λ)lS + (1 − µ)Sm]
∂

∂W
+ (l − m)

∂

∂y

=
1
2
σ2S2 ∂2

∂S2
+ αS

∂

∂S
+ rW

∂

∂W

+
[

∂

∂y
− (1 + λ)S

∂

∂W

]
l +

[
− ∂

∂y
+ (1 − µ)S

∂

∂W

]
m.

From the HJB equation (12.14), we can see that the optimal investment
strategy is given by

l∗ =

⎧⎨
⎩ C1 if

∂UC1,C2

∂y
− (1 + λ)S

∂UC1,C2

∂W
> 0,

0 otherwise;

m∗ =

⎧⎨
⎩ C2 if −∂UC1,C2

∂y
+ (1 − µ)S

∂UC1,C2

∂y
> 0,

0 otherwise.

Letting C1, C2 → ∞, we can expect that

UC1,C2 → U,
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∂UC1,C2

∂W
→ ∂U

∂W
,

∂UC1,C2

∂y
→ ∂U

∂y
,

∂UC1,C2

∂S
→ ∂U

∂S
,

∂2UC1,C2

∂S2
→ ∂2U

∂S2
.

As a result, the HJB takes the form of the so called variational inequality:

max
{

∂U

∂y
− (1 + λ)S

∂U

∂W
,−∂U

∂y
+ (1 − µ)S

∂U

∂W
,

∂U

∂t
+

1
2
σ2S2 ∂2U

∂S2
+ αS

∂U

∂S
+ rW

∂U

∂W

}
= 0.(12.15)

From the derivation of this equation, we can see that the (S, y, W )
space can be divided into three regions:

NT: This region is defined by

∂U

∂y
− (1 + λ)S

∂U

∂W
≤ 0,

−∂U

∂y
+ (1 − µ)S

∂U

∂W
≤ 0,

∂U

∂t
+

1
2
σ2S2 ∂2U

∂S2
+ αS

∂U

∂S
+ rW

∂U

∂W
= 0.

S: This region is defined by

∂U

∂y
− (1 + λ)S

∂U

∂W
= 0,

−∂U

∂y
+ (1 − µ)S

∂U

∂W
< 0,

∂U

∂t
+

1
2
σ2S2 ∂2U

∂S2
+ αS

∂U

∂S
+ rW

∂U

∂W
≤ 0.

B: This region is defined by

∂U

∂y
− (1 + λ)S

∂U

∂W
< 0,

−∂U

∂y
+ (1 − µ)S

∂U

∂W
= 0,

∂U

∂t
+

1
2
σ2S2 ∂2U

∂S2
+ αS

∂U

∂S
+ rW

∂U

∂W
≤ 0.
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The region S is called the selling region. In order to see this, define a
function in the following form: for h > 0,

g(h) = U(t, S, y + h, W − (1 + λ)Sh),

which represents the utility change when h number of shares of the stock
are purchased at time t. If (S, y, W ) ∈ S, then

g′(h) =
∂U

∂y
− (1 + λ)S

∂U

∂W
= 0,

in other words, the investor will immediately sell enough shares of the
stock so that her portfolio will lie on ∂S.

Similarly, the region B is called the buying region because the investor
will immediately buy enough share of the underlying stock so that her
portfolio will lie on ∂B.

Moreover, from the derivation of the HJB equation (12.15), we can see
that if the investor’s portfolio lies in the region NT , she would make no
transaction, and for this reason, NT is called the no-transaction region.

Recall that for any constant ρ > 0, we have

U(t, S, ρy, ρW ) = ργU(t, S, y, W ),

and thus

∂U

∂y
(t, S, ρy, ρW ) = ργ−1 ∂U

∂y
(t, S, y, W ),

∂U

∂W
(t, S, ρy, ρW ) = ργ−1 ∂U

∂W
(t, S, y, W ).

As a consequence, we can conclude that if (S, y, W ) is in one of the
regions, say S, then (S, ρy, ρW ) is also in that region. In other words,
each of the regions takes the form of a wedge in the (y, W ) variables for
any fixed S. See Figure 12.2.

It is interesting to compare this result with the case when there are
no transaction costs, where it is optimal for the investor to continuously
rebalance her portfolio so it will always lie on the Merton line. When
transaction costs exist, it will be costly to re-balance her portfolio con-
stantly, and as a result, it is optimal for her to re-balance her portfolio
only if it drifts too far from the Merton line.

3.2 When there is a short position in option
Now we consider the case when there is a short position of a European

call in the investor’s portfolio at the beginning. Similar to Section 2, we
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Figure 12.2. The case with transaction costs

use Ū , W̄T to denote the investor’s indirect utility and terminal wealth
in this case. In other words,

W̄T = WT − (ST − K)+,

and
Ū(t, S, y,W ) = Et[u(W̄T )|St = S,Wt = W, yt = y].

The HJB equation for Ū is still the same as given in (12.15). However,
the boundary condition is now given by

Ū(T, S, y, W ) = u(W − (S − K)+).

When no option currently exist in the investor’s portfolio at time
0, she can either synthetically create the option she wants, or by pay-
ing/recieving a certain price at time 0 to acquire/sell it. Assume that
the investor is willing to hold a short position of a call option with ma-
turity T and strike K for receiving a premium C upfront. The utility
for the investor will be the following:

1 U(0, S, 0, W ) if she does not take the short position in call option;

2 Ū(0, S, 0, W +C) if she does take the short position in call option.

The price C for the investor to sell the call option should satisfy

Ū(0, S, 0, W + C) ≥ U(0, S, 0, W ).
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We define the asking price for this investor as

Ĉ ≡ min{C ≥ 0 : Ū(0, S, 0, W + C) ≥ U(0, S, 0, W )}.(12.16)

In other words, the asking price is the minimum premium required for
the investor to take the liability position in the call option.

We shall point out that Ĉ may not be the option price that the option
is actually traded at since the latter requires some equilibrium in the
market place.

3.3 The solution to the HJB equation
To show that the indirect utility function indeed satisfies the HJB

equation (12.15), let us first assume that the indirect utility function
U(t, S, y, W ) (for simplicity of notations, we write U instead of Ū) is a
smooth function with respect to the variables t, y, S and W . In other
words, U is continuously differentiable with respect to the variables t, y
and W , and twice continuously differentiable with respect to the variable
S.

Now we show that U satisfies (12.15). For any admissible invest-
ment/hedging strategy (L, U), we have

⎧⎨
⎩

dWt = rWtdt − (1 + λ)StdLt + (1 − µ)StdUt,
dSt = αStdt + σStdzt,
dyt = dLt − dUt.

Applying Ito’s formula (see Protter (1995), Theorem 33), we have, for
any s > t,

U(s, Ss, ys, Ws) = U(t, S, y, W )

+
∫ s

t

(
∂

∂t
+ L

)
U(θ, Sθ, yθ, Wθ)dθ(12.17)

+
∫ s

t

[
∂U

∂y
− (1 + λ)Sθ

∂U

∂W

]
dLθ(12.18)

+
∫ s

t

[
−∂U

∂y
+ (1 − µ)Sθ

∂U

∂W

]
dUθ(12.19)

+
∫ s

t

∂U

∂S
σSθdzθ(12.20)

+
∑

t≤θ<s

[U(θ, Sθ, yθ, Wθ) − U(θ, Sθ, yθ−, Wθ−)

−∇U(θ, Sθ, yθ−, Wθ−) · (∆yθ, ∆Wθ)] ,(12.21)
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where

L =
1
2
σ2S2 ∂2

∂S2
+ αS

∂

∂S
+ rW

∂

∂W
,

∆yθ = yθ − yθ−,

∆Wθ = Wθ − Wθ−,

∇U =
(

∂U

∂y
,

∂U

∂W

)
.

It is obvious that the investor will never buy and sell at the same
time when transaction costs are incurred. In other words, the processes
L and M do not have jumps at the same time. For this reason, we can
consider the following two cases separately:

When L has a jump h at time θ, i.e., the investor purchase h shares
of the stock at time θ, we have

∆Wθ = Wθ− − (1 + λ)Sθh,

∆yθ = yθ− + h.

In other words, when L has a jump, the processes (y, W ) move
along the direction of

(1,−(1 + λ)S),

which, as we have pointed earlier, implies that

U(θ, Sθ, yθ, Wθ) − U(θ, Sθ, yθ−, Wθ−)

≤ ∂U

∂y
(θ, Sθ, yθ−, Wθ−)h − (1 + λ)S

∂U

∂W
(θ, Sθ, yθ−, Wθ−)h

= ∇U(θ, Sθ, yθ−, Wθ−) · (∆yθ, ∆Wθ);

Similarly, we can show that the above inequality holds when M
has a jump.

As a result, the summation in (12.21) is non-positive.
Moreover, because the function U satisfies the equation (12.15), the

integrands in (12.17), (12.18) and (12.19) are all non-positive. Noticing
that the integral in (12.20) is a martingale, we have

EU(s, Ss, ys, Ws) ≤ U(t, S, y, W ).

Taking s = T , it follows that

U(t, S, y, w) ≥ EU(T, ST , yT , WT ) = Eu(WT ).(12.22)
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On the other hand, given the function U that satisfies the equation
(12.15), we can define the regions S and B as before. Introduce the
following processes

dWt = rWtdt − (1 + λ)StdLt + (1 − µ)StdMt,(12.23)
dyt = dLt − dMt,(12.24)

Lt =
∫ t

0
1{(ys,Ss,Ws)∈∂B}dLs,(12.25)

Mt =
∫ t

0
1{(ys,Ss,Ws)∈∂S}dMs.(12.26)

With similar arguments as before, we can show that with this strategy,
we have

U(t, S, y, W ) = Etu(WT ).

Therefore
U(t, S, y, W ) = max

(L,M)
Etu(WT ).

In other words, the function U is indeed the indirect utility function.

3.4 Viscosity solution to the HJB equation
We have assumed that the indirect utility function U is smooth in its

variables. However, this may not be the case when there are transaction
costs to the investment problem. For this reason, the concept of viscosity
solution is needed.

We first define a functional (or operator) F on the smooth functions
f :

F (f) = max
{

∂f

∂y
− (1 + λ)S

∂f

∂W
,−∂f

∂y
+ (1 − µ)S

∂f

∂W
,

∂f

∂t
+

1
2
σ2S2 ∂2f

∂S2
+ αS

∂f

∂S
+ rW

∂f

∂W

}
.

Note that F (f) is also a function of the variables (t, S, y, W ).
A continuous function U is a viscosity solution to the HJB equation

(12.15) if it satisfies the following conditions:

1 For any smooth function φ, if (t0, S0, y0, W0) is a local maximum
point of the function U − φ, then

F (φ)(t0, S0, y0, W0) ≥ 0.
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2 For any smooth function φ, if (t0, S0, y0, W0) is a local minimum
point of the function U − φ, then

F (φ)(t0, S0, y0, W0) ≤ 0.

The concept of viscosity solution is primarily used in optimal con-
trol problems because their value functions are usually not smooth. For
details on the concept of viscosity solutions, see Crandall, et all (1983).
For its applications to optimal control problems, especially to those prob-
lems similar to the one considered in this paper, see Haussmann and Suo
(1995).

It can be shown rigorously that the indirect utility function U is indeed
the unique viscosity solution to the HJB equation (12.15). See Hauss-
mann and Suo (1995) for the proof of this result under more general
conditions.

4. Numerical method for solving the HJB
equation

It is very difficult, if not impossible, to derive the analytical solution
to the equation (12.15). For this reason, we propose a numerical method
to compute the indirect utility function.

For any t > 0 and s > t, it can be shown that the following equation
holds (usually called the dynamic programming principle, see Hauss-
mann and Suo (1995) for a proof):

U(t, S, y, W ) = max
(L,M)

Et[U(s, Ss, ys, Ws)],(12.27)

where the expectation is taken conditional on (St = S, yt = y, Wt = W ).
Recall that the stock price follows a geometric Brownian motion. In

order to compute the indirect utility function numerically, we first divide
the time interval [0, T ] into N subintervals:

0 < ∆t < 2∆t < · · · < N∆t = T,

where ∆t = T/N . We can approximate the random factor, which is
represented by a Brownian motion, z by a binomial process z∗:

z∗(i + 1) =
{

z∗(i) · ku, with probability 1/2,
z∗(i) · kd, with probability 1/2,

where ku and kd are determined such that the expected value and vari-
ance of the Brownian motion z on [i∆t, (i+1)∆t] are matched. It follows
that

ku =
√

∆t, kd = −
√

∆t.
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The stock price S is approximated by the binomial process

S∗(i + 1) =
{

S∗(i) · exp(α∆t + σ
√

∆t), with probability 1/2,
S∗(i) · exp(α∆t − σ

√
∆t), with probability 1/2.

We will also assume that the minimum amount of stocks one can
buy/sell in each transaction is ∆y. The y-axis can then be divided into

−M∆y < · · · < −∆y < 0 < ∆y < · · · < M∆y,

where M is chosen to be large enough so that the regions outside the
interval [−M∆y, M∆y] are economically irrelevant.

From (12.27), and the form of the optimal investment/hedging strat-
egy described in (12.23)-(12.26), we can write,3 for any t,

U∆(t, S, y, W ) = max
(L,M)

Et(U∆(t + ∆t, St+∆t , yt+∆t , Wt+∆t))

= max
{

U∆(t, S, y + ∆y, W − (1 + λ)S∆y),

U∆(t, S, y − ∆y, W + (1 − µ)S∆y),

E(U∆(t + ∆t, St+δt , y, exp(r∆t)W )
}

.(12.28)

In other words, the optimal decision is described by three different ac-
tions:

1 sell minimum number of shares allowed;

2 buy minimum number of shares allowed; and

3 make no transactions.

As discussed earlier, when the portfolio falls in the sell region S, it
is optimal for the investor to sell enough (or the minimum number of)
shares so that the portfolio will fall on the boundary of the no-transaction
region. The opposite action should be taken when the portfolio falls in
the buy region B. When the portfolio falls in the region NT , it is optimal
for the investor to make no transactions.

To be more specific, no transaction will be made if (for clarity of
notations, we drop ∆ from the approximate indirect utility function
U∆)

∂U

∂y
− (1 + λ)S

∂U

∂W
< 0,

−∂U

∂y
+ (1 − µ)S

∂U

∂W
< 0.
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In this case,

U(t, S, y, W ) = Et[U(t + ∆t, St+∆t , yt+∆t , Wt+∆t)]

=
1
2
U(t + ∆t, S exp

(
(α − r)∆t + σ

√
∆t

)
,

yt+∆t , exp(r∆t)W )

+
1
2
U(t + ∆t, S exp

(
(α − r)∆t − σ

√
∆t

)
,

yt+∆t , exp(r∆t)W ).

The action to buy a minimum number of shares will be taken if

∂U

∂y
− (1 + λ)S

∂U

∂W
= 0,

in which case

U(t, S, y, W ) = U(t, S, y + ∆y, W − (1 + λ)S∆y).

The action to sell a minimum number of shares will be taken if

−∂U

∂y
+ (1 − µ)S

∂U

∂W
= 0,

in which case

U(t, S, y, W ) = U(t, S, y − ∆y, W + (1 − µ)S∆y).

Based on these results, we now propose a numerical scheme to com-
pute the indirect utility function U :

Divide the time interval [0, T ] and the y-axis as before. The W -axis
can also be divided into K-intervals:

0 < ∆W < · · · < K∆W .

Approximate the Brownian motion z by the binomial process z∗,
and define, for (i, j, k, l),

u(i, j, k, l) ≡ U(i∆t, Skj
uki−j

d , k∆y, l∆W ),

where 0 ≤ i ≤ N ,0 ≤ j ≤ i, −M ≤ k ≤ M , and 0 ≤ l ≤ K.

At the maturity time T ,

u(N, j, k, l) = l∆W − (Skj
ukN−j

d − K)+

for all (j, k, l), where S is the stock price at t = 0.
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Recursively, for i < N , define

u∗(i, j, k, l) =
1
2
[u(i + 1, j + 1, k, l+) + u(i + 1, j, k, l+)]

where l+ is the integer such that corresponding mesh point for W
is closest to the value exp(r∆t)l∆W .4

Check if the following relationships hold:

u∗(i, j, k, l) > u∗(i, j, k + 1, l+),
u∗(i, j, k, l) > u∗(i, j, k − 1, l−),

where l+ (l−) is the integer such that corresponding mesh point
for W is closest to the value l∆W −(1+λ)S∆y (l∆W +(1−µ)S∆y,
respectively). Such mesh points fall in the no-transaction region,
so we can let

u(i, j, k, l) = u∗(i, j, k, l).

Take such a point, say (j0, k0, l0). Notice that U is a non-decreasing
function in the variables y and W . Working recursively, we can
check if

u∗(i, j, k, l) ≤ u∗(i, j, k + 1, l+),

in which case, we can set

u(i, j, k, l) = u∗(i, j, k + 1, l+).

Similarly, if
u∗(i, j, k, l) ≤ u∗(i, j, k − 1, l−),

we can set
u(i, j, k, l) = u∗(i, j, k − 1, l−).

In other words, we will make sure that for all (j, k, l),

u(i, j, k, l) ≥ u(i, j, k + 1, l+),
u(i, j, k, l) ≥ u(i, j, k − 1, l−).

This scheme can be easily implemented, and the indirect utility func-
tion can thus be computed numerically. With the indirect utility, we
can study the optimal hedging strategy by studying the no-transaction
region.

Similarly, the indirect utility for the investment problem without op-
tion can be computed numerically by changing the value of the function
U at time T . The asking price of the option can thus be obtained through
(12.16).
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5. Summary
In this paper, we study the optimal investment problem for an in-

vestor with a HARA type utility function. We show that when there
are no transaction costs, and there is a short position in the investor’s
portfolio, she may prefer not to perfectly hedge the option, as in the
Black-Scholes option pricing framework. In fact, when the growth rate
of the stock is greater than the risk-free rate, the investor will always
“over” hedge the option. When there is transaction cost in the investor’s
portfolio, the investor’s optimal investment/hedging strategy can be de-
scribed by three regions: the buying region, the selling region and the
no transaction region. When her portfolio falls in the buying region,
she will buy enough shares of the stock to make her portfolio lie in the
no transaction region (NT). Similar results hold when her portfolio falls
in the selling region. When her portfolio falls in the NT region, it is
optimal for the investor to make no transaction, i.e., simply hold her
portfolio. Viscosity solution is introduced to describe the indirect utility
function. We also propose a numerical method to compute the indirect
utility function, and the asking price for an option for be computed as
a result.

The numerical scheme we proposed in this paper remains to be im-
plemented in order to show numerically the properties of the hedging
strategy.

6. Appendix

Solving the HJB equation with HARA utility func-
tion:

We guess that the indirect utility function, or the solution to (12.5)
is in the following form:

U(t, W ) = g(t)
W γ

γ
.

Then

Ut = g′(t)
W γ

γ
,

UW = g(t)W γ−1,

UW = g(t)(γ − 1)W γ−1,

and
π∗ = −α − r

σ2

UW

WUWW
=

α − r

σ2(1 − γ)
.
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Substitute these expressions into the HJB equation (12.5), we get

g′(t) + νγg(t) = 0,

where

ν ≡ 1
2

[(
α − r

σ

)2

+
1

1 − γ
+ r

]
.

The boundary condition reduces to

g(T ) = 1.

The indirect utility can now be obtained by solving this equation.

Proof of (12.10):
In the case when there is no transaction cost, it is well-known that

the call option can be replicated by a self-financing portfolio strategy
that requires an initial cash of

c = SN(d1) − e−r(T−t0)KN(d2).

We denote this strategy by πc. We will show that if we denote by
Ū(t, S, W ) as the indirect utility function for the investor at time t when
her wealth is W and the current (or spot) stock price is S,, then

Ū(0, S, W ) = U(0, W − c).

In fact, if this is not the case, say,

Ū(0, S, W ) < U(0, W − c),

then let πt be the optimal portfolio that requires an investment of W −c
at the beginning when there is no short position in call in her portfolio.
By definition,

U(0, W − c) = EU(T, W π
T ),

Consider the new trading

π̄ = π + π0,

which needs an initial investment of

(W − c) + c = W,

and has the terminal wealth of

W π
T + (ST − K)+.
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Thus we have

Ū(0, S, W ) ≥ EU(T, ST , W π̄
T )

= EU(T, ST , W π
T + (ST − K)+ − (ST − K)+)

= EU(T, ST , W π
T )

= E

(
(W π

T )γ

γ

)
≥ U(0, W − c),

which is a contradiction. In other words, we must have

Ū(0, S, W ) ≥ U(0, W − c).

The other side of the inequality can be shown similarly.
In general, we can show that

Ū(t, S, W ) = U(W − f(t, S)),

where S is the spot price of the sock at time t, and f(t, S) is the price
of the call option when the when the spot stock price is S.

Notes
1. It is obvious that this result does not hold for general utility functions.

2. In the optimal control terminology, this type of problems are called singular control
problems because the processes L and M may be singular functions, i.e., they may be con-
tinuous and yet non-differentiable.

3. It can be shown the function defined this way converges to the indirect utility function
as N → ∞, ∆t, ∆y → 0, see Barles and Souganidis (1991) for the proof of a similar result.

4. For better approximation, we can use interpolations at (i + 1)∆t for this value
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Abstract This paper considers a problem of multi-period supply portfolio selec-
tion and execution with demand information updates. A supply portfo-
lio specifies a buyer’s decision on selecting sourcing mix from among a
group of suppliers. We develop a framework for optimal supply portfo-
lio selection and execution. Further, we demonstrate that the optimal
portfolio selection follows a base-stock policy and the option execution
follows a modified base-stock policy. We also develop the structural
properties of the optimal policy with respect to option contracts and
inventories.

Keywords: Portfolio selection, option contract, base-stock policy, supply chain man-
agement

1. Introduction
It has been well demonstrated that imperfect demand information in-

fluences buyer’s decision about order quantities and a supplier’s decision
about production plans, especially when supply lead-time is significantly
large. To facilitate the tradeoff between the supply lead-time and im-
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perfect demand information, various forms of supply contracts exist. A
supply contract provides flexibility to the buyer and early demand infor-
mation to the supplier. However, the management of supply contracts
is a challenging task to buyers, especially when the buyer has a number
of supply contracts from which to choose. A supplier mix, i.e., purchase
levels from different suppliers, is a supply portfolio to a buyer.

In this paper, we study option contracts. An option contract requires
the early reservation of capacities, thus allowing the buyer to decide
the exact purchase amount at a later time when an up to date demand
information becomes available. We assume that the buyer has multi-
ple suppliers from which to choose. At the same time, suppliers who
are more flexible provide contracts with lower reservation prices and
higher execution prices. In contrast, suppliers who are less flexible of-
fer contracts with higher reservation prices and lower execution prices.
Therefore, the buyer needs to reserve capacities from individual suppli-
ers, known as the supply portfolio selection, and needs to decide the
exact amounts to purchase from individual suppliers, which is known as
supply portfolio execution.

Martinez-de-Albeniz and Simchi-Levi (2003) study the problem of
supply portfolio selection and execution, where selection is made once at
the beginning of the planning horizon. The same portfolio applies to the
entire planning horizon, and the option execution happens at the end of
each period when the demand becomes known. In this paper, we allow
the buyer to select a unique portfolio for each period, and the option
execution occurs before the demand becomes known.

There is a large body of literature on supply contracts. Eppen and Iyer
(1997) study the “Backup Agreement” in fashion buying. Brown and
Lee (2003) model the “Take-or-Pay” capacity reservation contract that
is used in the semiconductor industry. Li and Kouvelis (1999) study a
time-flexible contract that allows the firm to specify the purchase amount
over a given period of time to meet deterministic demand. Tsay (1999)
considers a quantity-flexible contract that couples the customer’s com-
mitment to purchase no less than a certain percentage. Cachon and
Lariviere (2001) focus on the issue of information sharing in a supply
chain using an option contract. For supply contract management, Ca-
chon (2003) provides an excellent survey: we refer interested readers to
this survey article and the references therein.

Another line of research is supply chain decisions with demand in-
formation updates. Iyer and Bergen (1997) study how a manufacturer-
retailer channel affects the choice of production and marketing variables
under a Quick-Response program. They analyze how the demand vari-
ance influences the total profit of the retailer. Donohue (2000) develops
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an information update model with two production modes: the more
expensive production mode requires less production lead-time. Barnes-
Schuster, Bassok and Anupindi (2002) develop a general model that
involves two production modes together with one option contract and
two-period demand. Sethi, Yan and Zhang (2004) study models with
quantity flexible contracts which involves information updates and spot
markets. Zhu and Thonemann (2004) study the benefits of sharing fu-
ture demand information in a model with one retailer and multiple cus-
tomers. A recent book by Sethi, Yan and Zhang (2005) provides an up
to date review of models in inventory decisions with multiple delivery
modes and demand information updates.

In this paper, we study a model of multi-period supply portfolio selec-
tion and execution with demand information updates. We characterize
the portfolio selection and execution policies at the beginning and near
the end of each period, respectively. We demonstrate that the portfolio
selection follows a base-stock policy and the portfolio execution follows
a modified base-stock policy.

In the next section, we introduce the notation and problem formula-
tion. We develop the optimal policies of portfolio selection and option
execution in Section 3. Concluding remarks are provided and future
research directions are summarized in Section 4.

2. The Problem Formulation and Notations
In this section, we consider the problem of optimal supply portfolio

selection and execution, where a buyer makes reservation and execu-
tion decisions with the initial and updated demand information. The
sequence of this supplier portfolio selection and execution can be de-
scribed as follows. At the beginning of each period, each supplier first
presents the buyer with an option menu that indicates a unit reservation
and execution price. Based on the demand information available at that
time, the buyer makes a decision on how many units of the product to
reserve from each supplier, which is known as the portfolio selection.
Before the customer demand is realized, the buyer revisits the reserva-
tion plan with the updated demand information, and decides the exact
amount to be purchased from each supplier, which is known as the op-
tion execution. Finally, the customer demand is realized, the unsatisfied
customer demand is lost, and extra products are inventoried. The se-
quence of events and decisions are graphically illustrated in Figure 1.1.
We first list the notation that is used in this paper.

T : length of the planning horizon

t: period index
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n: number of available contracts for period t

xt: reserved capacities for period t, xt = (x1(t), · · · , xn(t))

qt: amount of option exercised, qt = (q1(t), · · · , qn(t))

It: demand information with a cumulative distribution function F (·),
and density distribution function f(·)

Dt: customer demand in period t, with unconditional and conditional
distributions H(z) and H(z|I), respectively

β(t): inventory level at the beginning of period t

vt: vt = (v1(t), v2(t), · · · , vn(t)), where vi(t) represents the unit reser-
vation price for option i in period t

wt: wt = (w1(t), w2(t), · · · , wn(t)), where wi(t) represents the unit exe-
cution price for option i in period t

ht: unit inventory holding cost in period t

rt: unit revenue in period t, where rt > vt + wt

s: unit salvage value at the end of the horizon

α: discount factor (0 ≤ α ≤ 1)

π∗
1(t, β(t)): value function from the beginning of the 1st stage of period

t with initial inventory level β(t)

π1(xt; t, β(t)|It): profit function from the beginning of the 1st stage of
period t when the initial inventory level is β(t) and the selected
supply portfolio is xt

π∗
2(t,xt|i): value function from the beginning of the 2nd stage of period

t when the option capacity portfolio is xt and the observed demand
information is i

π2(qt; t,xt|i): profit function from the beginning of the 2nd stage of
period t when option execution is qt the option capacity portfolio
is xt and the demand information is i

To avoid trivial cases, we assume:

Assumption 2.1 The contracts are listed in the order of the execution
cost, i.e. w1(t) < w2(t) < · · · < wn(t).

With this assumption, it is clear that we have v1(t) > v2(t) > · · · >
vn(t). Otherwise, if there are two contracts such that i < j, and vi(t) ≤
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Period t Period t+1Period t − 1

Review inventory level β(t)

Portfolio selection xt

Demand information It

Option execution qt ≤ xt

Demand information iDt−1 realized Dt realized
Review inventory level β(t + 1)
Demand information It+1
Portfolio selection xt+1

The first stage The second stage

Figure 13.1. The sequence of events and decisions

vj(t), we conclude that contract i dominates contract j, because wi(t) <
wj(t).

With the above notation and preliminary analysis, we start to write
the dynamic programming equations. Note that the inventory dynamics
can be written as β(t + 1) = (β(t) + q1(t) + · · · + qn(t) − Dt)+ for
t = 1, · · · , T , where x+ = min{0, x}. The profit function for t is

π∗
1(t, β(t)) = max

xt≥0
{π1(xt; t, β(t)|It)}

= max
xt≥0

{−v1(t)x1(t) − · · · − vn(t)xn(t)

+EIt

[
max

0≤qt≤xt

π2(qt; t,xt|i)
]
} , (13.1)

where

π2(qt; t,xt|i) = EDt [rt(Dt ∧ (β(t) + · · · + qn(t))) − w1(t)q1(t) − · · ·
−wn(t)qn(t) − ht(β(t) + · · · + qn(t) − Dt)+

+απ∗
1

(
t + 1, (β(t) + · · · + qn(t) − Dt)+

)
] . (13.2)

The remaining inventory of last period is salvaged as:

π1
T+1((β(T ) + q1(T ) + · · · + qn(T ) − DT )+)

= s(β(T ) + q1(T ) + · · · + qn(T ) − DT )+.

3. The Optimal Portfolio Selection and
Execution

To optimize the objective function of Equation (13.1), it is necessary
to choose decision variables xt and qt for each t. Let us sketch the plan
for the optimal portfolio selection and execution. We first assume that
π∗

1(t + 1, β(t + 1)) is concave in β(t + 1), and
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dπ∗
1(t + 1, β(t + 1))

dβ(t + 1)
|β(t+1)=0= v1(t + 1) + w1(t + 1)

and
dπ∗

1(t + 1, β(t + 1))
dβ(t + 1)

|β(t+1)=+∞< 0.

With these assumptions, we prove that π2(qt; t,xt|i) is concave in qk(t),
for qj(t), j �= k. For any given xt and the demand information i, we
choose q∗

t(xt, i) to maximize π2(qt; t,xt|i). We then substitute q∗
t(xt, i)

into π1(xt; t, β(t)|It) of Equation (13.1) and demonstrate that
π1(xt; t, β(t)|It)) is concave in xt for any initial inventory β(t). The next
step is to determine portfolio x∗

t(β(t)) that maximizes π1(xt; t, β(t)|It).
Finally, we substitute x∗

t(β(t)) into π∗
1(t, β(t)) in Equation (13.1) and

prove that π∗
1(t, β(t)) is indeed concave in β(t) and π∗

1(t,β(t))
dβ(t) |β(t)=0=

v1(t) + w1(t).

Assumption 3.1 rt > wk(t)+vk(t), k = 1, · · · , n and rt ≥ −ht+α(v1(t+
1) + w1(t + 1)).

We start by presenting our first result in the following lemma: its
proof is included in Appendix.

Lemma 3.1 With Assumption 3.1, for any qj(t), j �= k, π2(qt; t,xt|i) is
concave in qk(t).

We now develop the optimal option execution policy q∗
t for the given

reserved capacity xt with the updated demand information i. First, we
present the following lemma.

Lemma 3.2 q∗j (t) > 0 ⇒ q∗k(t) = xk(t),∀k < j.

Proof of this lemma can be found in Appendix.
Remark 3.1 Lemma 3.2 indicates that we can rank option contracts

based on the execution cost. For such a list, a contract becomes active
only if its preceding contract has been exhausted. In other words, if
q∗i (t) < xi(t), then qi+1(t) = qi+2(t) = · · · = qn(t) = 0.

With Lemma 3.2, it is also possible for us to construct an algorithm
to find the optimal option execution policy. We start from the contract
with cheapest execution price to determine q1(t). Then, it follows by
determining q2(t). After figuring out q∗1(t), · · · , q∗k−1(t), we determine
q∗k(t) between the following two cases. (1) If q∗k(t) < xk(t), then let
q∗j (t) = 0, ∀j > k; (2) otherwise, q∗k(t) = xk(t) and execute option con-
tract K + 1 for q∗k+1(t), if k + 1 ≤ n.
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To facilitate this procedure of finding q∗
t , let us define a base-stock

level for contract k,

Definition 3.1 Qk(i), k = 1, 2, · · · , n satisfies

(rt − wk(t)) − (rt + ht)H(Qk(i) | i) + α
d

dqk(t)
EDtπ

∗
1(t + 1,

(β(t) + q1(t) + · · · + qk(t) − Dt)+) |β(t)+q1(t)+···+qk(t)=Qk(i) = 0.
(13.3)

Let Qk(i) be the smallest one if there are multiple solutions of equation
(13.3). To make sure that Qk(i) is well defined, we need the following
lemma, the proof of which appears in Appendix.

Lemma 3.3 There exists a unique Qk(i), k = 1, 2, · · · , n. Moreover,
Q1(i) > Q2(i) · · · > Qn(i).

We now demonstrate how q∗1(t) can be determined. Let q2(t) = q3(t) =
· · · = qn(t) = 0. Lemma 3.1, π2(q1(t), 0, · · · , 0; t,xt, i) is concave in q1(t).
Therefore, we choose q∗1(t) with the constraint of q1

t ≤ x1(t). To simplify
the exposition, we use π2(qt; t) for π2(qt; t,xt, i) whenever there is no
confusion. Rewrite Equation (13.2) as

π2(qt; t) = −(rt + ht)
∫ β(t)+q1(t)

0
(β(t) + q1(t) − Dt)h(D | i)dD

+rt(q1(t) + β(t)) − w1(t)q1(t)
+αEDtπ

∗
1

(
t + 1, (β(t) + q1(t) − Dt)+

)
. (13.4)

Then

dπ2(q1(t), 0, · · · , 0; t)
dq1(t)

= (rt − w1(t)) − (rt + ht)H(q1(t) + β(t) | i)

+α
d

dq1(t)
EDtπ

∗
1(t + 1, (q1(t) + β(t) − Dt)+). (13.5)

With this expression and Lemma 3.1, we obtain the following lemma,
which is required for proving Lemma 3.3. Proof of this lemma can be
found in Appendix.

Lemma 3.4 −(rt + ht)H(β(t) | i) + α d
dβ(t)EDtπ

∗
1(t + 1, (β(t) − Dt)+) is

non-increasing in β(t), i.e.

−(rt + ht)h(β(t) | i) + α
d2

(dβ(t))2
EDtπ

∗
1(t + 1, (β(t)−Dt)+) ≤ 0. (13.6)
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With Definition 3.1, and Equation (13.5), the optimal execution of
the supply contract 1 is

q∗1(t) =

⎧⎨⎩ 0, if β(t) ≥ Q1(i);
Q1(i), if Q1(i) − x1(t) < β(t) < Q1(i);
x1(t), if β(t) < Q1(i) − x1(t).

We now move to determine q∗2(t). If q∗1(t) = x1(t), then let q2(t) be the
next decision variable. By Lemma 3.1, we know that π2(x1(t), q2(t), · · · , 0; t)
is concave in q2(t). Similarly we obtain

dπ2(x1(t), q2(t), · · · , 0; t)
dq2(t)

= (rt − w2(t)) − (rt + ht)H(q2(t) + β(t) + x1(t) | i)

+α
d

dq2(t)
EDtπ

∗
1(t + 1, (q2(t) + β(t) + x1(t) − Dt)+).

(13.7)

By Definition 3.1, Q2(i) satisfies

(rt − w2(t)) − (rt + ht)H(Q2(i)) + α
d

dq2(t)
EDtπ

∗
1(t + 1,

(β(t) + x1(t) + q2(t) − Dt)+) |β(t)+x1(t)+q2(t)=Q2(i) = 0.
(13.8)

The optimal option execution of supply contract 2 is

q∗2(t) =

⎧⎪⎪⎨⎪⎪⎩
0, if Q2(i) − x1(t) ≤ β(t) < Q1(i) − x1(t);
Q2(i) − β(t) − x1(t), if Q2(i) − x1(t) − x2(t) ≤ β(t)

< Q2(i) − x1(t);
x2(t), if β(t) < Q2(i) − x1(t) − x2(t).

Following the same procedure, we can obtain the optimal option exe-
cution for other supply contracts. We summarize the optimal option
execution process in the following Lemma.

Lemma 3.5 The optimal option execution (l = 1, · · · , n) is:

case 1 when Qj(i)− xj−1(t)− · · · − x1(t) ≤ β(t) < Qj−1(i)− xj−1(t)−
· · · − x1(t); q∗l (t) = 0, ∀l ≥ j and q∗l (t) = x∗

l (t),∀l < j;

case 2 when Qj(i)−xj
t−· · ·−x1(t) ≤ β(t) < Qj(i)−xj−1(t)−· · ·−x1(t);

q∗l (t) = 0,∀l > j, q∗j (t) = Qj(i) − β(t) − · · · − xj−1(t) and q∗l (t) =
x∗

l (t),∀l < j.
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Qj−1(i) − xj−1 − · · · − x1

Qj(i) − xj − ... − x1

Q1(i)
Q1(i) − x1

Q2(i) − x1

Q2(i) − x2 − x1

Qn(i) − xn
t

− · · · − x1

β(t) in case 1

β(t) in case 2Qj(i) − xj−1 − x1

Figure 13.2. Replenishment policy illustration

The process of determining the optimal option execution is illustrated
in Fig. 13.2.

To this end, we have solved the problem of option execution, and we
are ready to deal with the problem of portfolio selection. Note that the
portfolio selection problem involves an expectation over the demand in-
formation signal I. It would simplify the optimization process if we could
connect the optimal option execution with the demand information sig-
nal. In what follows, we explore the relationship of the option execution
and the demand information. We demonstrate that there is a one-to-one
mapping between the order quantity on individual contracts and infor-
mation intervals. To do that, we need to connect the option execution
to the demand process. We assume that the demand is stochastically
increasing, i.e. ∀i1 < i2, H

−1(z|i1) < H−1(z|i2).
Hence, H(Qk | i) is decreasing in i. By Lemma 3.4, the left-hand side

of Equation (13.3) is non-increasing in Qk(i). Hence, Qk(i) is increasing
in i, i.e.

Qk(i1) < Qk(i2),∀i1 < i2. (13.9)

Now, we define the critical demand information signals.
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Definition 3.2 Define the critical information values (ik, îk, k = 0, · · · , n)
as follows, for xj(t) > 0,∀j = 1, · · · , n,

i0 = î0 is s.t. Q1(i0) = β(t)

i1 is s.t. Q1(i1) = β(t) + x1(t)

î1 is s.t. Q2(î1) = β(t) + x1(t)

i2 is s.t. Q2(i2) = β(t) + x1(t) + x2(t)

...

ˆin−1 is s.t. Qn( ˆin−1) = β(t) + x1(t) + · · · + xn−1(t)

in is s.t. Qn( ˆin−1) = β(t) + x1(t) + · · · + xn(t)

în is +∞

,

where Qk(i) is defined in Definition 3.1.
For some k, k = 1, · · · , n, s.t. xk

t = 0, then ˆik−1 = ˆik−2 and ik = ik−1.
If β(t) = 0, then i0 = −∞.

The option execution policy q∗
t of period t is as follows.

Theorem 3.1 Given the initial inventory β(t) and reserved capacity x∗
t,

the option execution depends on the updated demand information It = i.
Specifically, it follows the modified base-stock policy that is illustrated in
Table 1.1.

Proof. From Equation (13.9), we know that as the information i in-
creases, the thresholds become larger and move to the righthand side of
Fig. 13.2. Hence, the result is straightforward from the Definition 3.2
and Lemma 3.5. �

With Theorem 3.1, we are ready to deal with proving the concavity
of π1(xt; t, β(t)|It) with respect to xt. We summarize our result in the
following lemma, the proof of which appears in Appendix.

Lemma 3.6 Given initial inventory β(t), π1(xt; t, β(t)|It) is concave in
xt.

To this end, we have demonstrated that for a given β(t) with respect
to xt, π1(xt; t, β(t)|It) is concave in the feasible region of the polyhedral
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Table 13.1. Option execution: modified base-stock policy

Case Information Revised i option execution q∗t

(0) (−∞, i0) q∗1(t) = q∗2(t) = · · · = 0

(1) [i0, i1) q∗1(t) = Q1(i) − β, q∗2(t) = · · · = q∗n(t) = 0

(2) [i1, î1) q∗1(t) = x1(t), q∗2(t) = · · · = q∗n(t) = 0

...
...

...

(2n-2) [in−1, ˆin−1) q∗1(t) = x1(t), · · · , qn−1,∗
t = xn−1(t), q∗n(t) = 0

(2n-1) ˆ[in−1, in) q∗1(t)=x1(t), · · ·, q∗n(t)=Qn(i)−β−x1(t)−· · ·−xn−1(t)

(2n) [in, +∞) q∗1(t) = x1(t), q
∗
2(t) = x2(t), · · · , q∗n(t) = xn(t)

cone of nonempty interiors. This fact implies that K-K-T conditions
are necessary and sufficient at optimality (Dimitri P. Bertsekas, (1995)).
The portfolio selection x∗

t can be found by using K-K-T conditions.
Define the associate Lagrangian multiplier µj for each constraint xj(t) ≥

0, j = 1, · · · , n. Then, the K-K-T conditions are⎧⎪⎨⎪⎩
−∂π1(x∗

1(t),···,x∗
n(t);t)

∂xj(t)
− µ∗

j = 0,
µ∗

j ≥ 0,

µ∗
j = 0, ∀xj(t) > 0,

i.e.

⎧⎪⎨⎪⎩
∂π1(x∗

1(t),···,x∗
n(t);t)

∂xj(t)
= 0, ∀x∗

j (t) > 0,

∂π1(x∗
1(t),···,x∗

n(t);t)
∂xj(t)

≤ 0, ∀x∗
j (t) = 0,

j = 1, 2, · · · , n.

Definition 3.3 Define yn(t), · · · , y2(t), y1(t), such that

∂π1(t)
∂xn(t)

|β(t)+···+xn(t)=yn(t)= 0,

...

...
∂π1(t)
∂x2(t)

|β(t)+x1(t)+x2(t)=y2(t),···,β(t)+···+xn(t)=yn(t)= 0,

∂π1(t)
∂x1(t)

|β(t)+x1(t)=y1(t),···,β(t)+···+xn(t)=yn(t)= 0. (13.10)
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If there are multiple values for yj(t), j = 1, · · · , n, then choose the small-
est one.

To obtain x∗
t , the following lemmas provide us with an algorithmic pro-

cedure. Proofs of Lemmas 3.7, 3.8, and 3.9 can be found in Appendix.

Lemma 3.7 There exist unique yn(t), · · · , y2(t), y1(t). Moreover, yi(t)
can be found one by one in the order of yn(t), · · · , y2(t), y1(t).

Lemma 3.8 If yk(t) = β(t)+x∗
1(t)+ · · ·+x∗

k(t), k = j, · · · , n and yj(t) ≤
yj−1(t), then x∗

j−1(t) = 0, where j = 2, · · · , n.

Lemma 3.9 If yk(t) = β(t) + x∗
1(t) + · · · + x∗

k(t), k = j + 1, · · · , n and
yj(t) ≤ β(t), then x∗

j (t) = · · · = x∗
1(t) = 0, j = 1, · · · , n.

With the above lemmas, we now develop an algorithm in determining
the optimal x∗

t .

If yn(t) ≤ β(t), then by Lemma 3.9, x∗
t = 0. Else go to the next

step.

If yn−1(t) ≤ β(t), then by Lemma 3.9, x∗
n−1(t) = x∗

n−2(t) = · · · =
x∗

1(t) = 0, and then x∗
n(t) = yn(t) − β(t).

Else if yn−1(t) > β(t) and yn−1(t) ≥ yn(t), then by Lemma 3.8,
x∗

n−1(t) = 0, contract n − 1 is inferior and go to the next step.

Else if yn−1(t) > β(t) and yn−1(t) < yn(t), then yn−1(t) = β(t) +
x∗

1(t) + · · · + x∗
n−1(t), x∗

n(t) = yn(t) − yn−1(t) and go to the next
step.

...

If y1(t) ≤ β(t), x∗
1(t) = 0, x∗

t = (0, y2(t)−β(t), y3(t)−y2(t), · · · , yn(t)−
yn−1(t)).

Else if y1(t) > β(t) and y1(t) ≥ y2(t), then by Lemma 3.8, x∗
1(t) =

0, contract 1 is inferior.

Else if y1(t) > β(t) and y1(t) < y2(t), then x∗
1(t) = y1(t) − β(t),

x∗
2(t) = y2(t) − y1(t).

It can be seen from the above procedure that if yj(t) ≤ yj−1(t), then
x∗

j−1(t) = 0, which is indifferent to the inventory level β(t). Note that
such a contract is known as an inferior contract. To simplify our pro-
cedure for finding x∗

t , we remove all inferior contracts from further con-
sideration. Hence, without loss of generality, we have the following as-
sumption.
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ym−2(t)

ym−1(t)

ym(t)

xm(t)

xm−1(t)

Initial inventory β(t)

y2(t)

y1(t)

0

Inventory level

ym−3(t)

Other contracts

Not in use

xm−2(t)

Figure 13.3. A demonstration of the optimal supply portfolio selection

Assumption 3.2 y1(t) < y2(t) < · · · < ym(t), m ≤ n.

Theorem 3.2 (i)After eliminating all inferior contracts, for an initial
inventory β(t) the portfolio selection follows a base-stock policy. Specif-
ically, if β(t) > ym(t), then x∗

t = 0. Otherwise, we can find 1 ≤ k ≤ n
such that yk−1(t) ≤ β(t) < yk(t), (y0(t) = 0).

x∗
j (t) =

⎧⎨⎩ yj(t) − yj−1(t), j = k + 1, · · · , m;
yk(t) − β(t), j = k;
0, j = 1, · · · , k − 1.

(ii)The base-stock levels y1(t), · · · , ym(t) are defined by Definition 3.3.
Further, yk(t), k = 1, · · · , m is decreasing in vk(t) or wk(t).

Proof. From the above procedure for finding x∗
t , we know that the

optimal portfolio selection x∗
t follows the base-stock policy as illustrated

in the first part of the theorem.
It is easy to see that the left-hand side of Equation (13.A.12) decreases

as vn(t) or wn(t) increases. By Definition 3.3 and Lemma 3.6, the left-
hand side of Equation (13.A.12) decreases as yn(t) is increasing. Hence,
yn(t) is decreasing in vn(t) or wn(t). Proof for yj(t), j = n−1, · · · , 1 can
be developed similarly. �

We now use Fig 13.3 to illustrate the procedure of the optimal supply
portfolio selection. Based on Definition 3.3 and Lemma 3.7, it is possible
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for us to calculate yi(t), i = 0, · · · , m. Note that yi(t) is independent of
β(t). As yi(t) > yi−1(t), Figure 13.3 depicts yi(t) as different levels or
known as base-stock levels on the left side, and the inventory level β(t)
as a dashed line. If there is a yi(t), such that yi(t) ≥ β(t), all contracts
i, i + 1, · · · , m are active. For j > i the distance between yj+1(t) and
yj(t) represents the capacity selected for contract j + 1. The distance
between yi(t) and β(t) is the capacity selected for contract i.

This result demonstrates that the selection process starts from the
most flexible contracts. The less flexible suppliers are used only when
the initial inventory is very low.

The follow lemmas show the concavity of π∗
1(t, β(t)) in β(t), and their

proofs appear in Appendix.

Lemma 3.10 π∗
1(t, β(t)) is concave in β(t),∀β(t) ≥ 0.

Lemma 3.11

dπ∗
1(t, β(t))
dβ(t)

|β(t)=0= v1
t + w1(t), and

dπ∗
1(t, β(t))
dβ(t)

|β(t)=+∞< 0.

To this end, we complete the mathematical backward induction proof
except for the last period.

When t = T , we use +s instead of −ht and remove the last term of
απ∗

1(t+1, (β(t)+ · · ·+qn(t)−Dt)+) in the Equation (13.2). Then, in the
same manner, it is straightforward to prove that π∗

1(t, β(t)) is concave
in β(T ),∀β(T ) ≥ 0 and dπ∗

1(T,0)
dβ(T ) = v1

T + w1
T .

4. Conclusions and Research Directions
In this paper, we develop a model for supply portfolio selection and

execution. We demonstrate the existence of an optimal selection and
execution policy, and show that the selection process starts with the
most flexible suppliers, and the execution process starts from the most
less flexible suppliers.

It is worth noting that we only consider the decision process of the
option contract selection and execution. The problem of designing the
contract, which is the task on the supplier side, remains unsolved. In
particular, the reservation and execution prices are treated as input pa-
rameters. How a supplier determines these prices remains an open ques-
tion. These areas may be fruitful research directions in the future.
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Appendix
Proof of Lemma 3.1. First, fixing other qj(t), j �= k, let

gt(qk(t)) = rt(Dt ∧ (β(t) + · · · + qn(t))) − w1(t)q1(t) − · · · − wn(t)qn(t)

−ht(β(t) + · · · + qn(t) − Dt)
+ + απ1,∗

t+1 (β(t) + · · · + qn(t) − Dt)
+ .(13.A.1)

Hence by Equation (13.2), π2(qt; t,xt|i) = EDt(gt(qk(t))). As Dt is independent of
qk(t), the concavity in qk(t) can be preserved after the expectation in Dt. Then we
only need to show that gt(qk(t)) is concave in qk(t), given qj(t), j �= k.

Case 1 If β(t)+ · · ·+ qn(t)−Dt ≤ 0, gt(qk(t)) = rt(β(t)+ · · ·+ qn(t))−w1(t)q1(t)−
· · · − wn(t)qn(t) + απ1,∗

t+1 (0), and dgt(qk(t))
dqk(t)

= rt − wk(t) > 0;

Case 2 Otherwise, β(t) + · · · + qn(t) − Dt ≥ 0, gt(qk(t)) = rtDt − w1(t)q1(t) −
· · · −wn(t)qn(t)− ht(β(t) + · · ·+ qn(t)−Dt) + απ1,∗

t+1 (β(t) + · · · + qn(t) − Dt)

and dgt(qk(t))
dqk(t)

= −wk(t) − ht + α
dπ∗

1 (t+1,β(t)+···+qn(t)−Dt)

dqk(t)
. Recalling the sup-

position we know that
dπ∗

1 (t+1,β(t)+···+qn(t)−Dt)

dqk(t)
is non-increasing in qk(t) and

consequently dgt(qk(t))
dqk(t)

is non-increasing in qk(t). Additionally, when β(t) +

· · · + qn(t) − Dt = 0, dgt(qk(t))
dqk(t)

|qk(t)=Dt−
∑

j �=k qj(t)= −wk(t) − ht + α(v1(t +

1) + w1(t + 1)).

Recall Assumption 3.1, which guarantees that rt −wk(t) ≥ −wk(t)−ht +α(v1(t+
1)+w1(t+1)), i.e. at the joint point of two cases, i.e. when qk(t) = Dt −∑

j �=k qk(t),
the left-hand derivative is no less than the right-hand derivative. Hence, gt(qk(t)) is
concave in qk(t). The lemma is proved to be true.

Proof of Lemma 3.2 Given q∗j (t) > 0, suppose that there is k < j, s.t. q∗k(t) <

xk(t). We can find q
′
k(t) = q∗k(t) + ε, ε > 0 and q

′
j(t) = q∗j (t)− ε. Then −wk(t)q

′
k(t)−

wj(t)q
′
j(t) = −wk(t)q∗k(t)−wj(t)q

∗
j (t)+(−wk(t)+wj(t))ε > −wk(t)q∗k(t)−wj(t)q

∗
j (t),

since wk(t) < wj(t) (Assumption 2.1). Hence we obtain

⎧⎨
⎩

−wk(t)q
′
k(t) − wj(t)q

′
j(t) > −wk(t)q∗k(t) − wj(t)q

∗
j (t)

q
′
k(t) + q

′
j(t) = q∗k(t) + q∗j (t)

.

Recall that (qk(t), qj(t)) appears in Equation (13.2) in terms of −wk(t)qk(t)−wj(t)qj(t)
and qk(t)+qj(t), and Dt is independently distributed from qk(t) and qj(t) so that the
expectation preserves the order of preference. Hence, to maximize Equation (13.2),

it is better to choose (q
′
k(t), q

′
j(t)) than (q∗k(t), q∗j (t)), contradicting (q∗k(t), q∗j (t)) to be

optimal.
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Proof of Lemma 3.3. Let Qk(i), k = 1, 2, · · · , n be the least solution to the
following equation of u:

(rt − wk(t)) − (rt + ht)H(u | i) + α
d

dqk(t)
EDtπ

∗
1(t + 1, (β(t) + q1(t)

+ · · · + qk(t) − Dt)
+) |β(t)+q1(t)+···+qk(t)=u = 0.

(13.A.2)

Let us show that Equation (13.A.2) always has solutions so that Qk(i) is well defined
for all k. First of all, by Lemma 3.4 the left-hand side of this equation is non-
increasing in u. Secondly, when u = 0, the demand cumulative distribution function
H(u | i) = 0. Then, the left-hand side is

rt − wk(t)

+α
d

dβ(t)
EDtπ

∗
1(t + 1, (β(t) + q1(t) + · · · + qk(t) − Dt)

+) |β(t)+q1(t)+···+qk(t)=0

> rt − wk(t) > 0 (13.A.3)

Thirdly, when u → +∞, the demand cumulative distribution function H(u | i) = 1.
Then, the left-hand side of the above equation is

−wk(t) − ht + α
d

dβ(t)
EDtπ

∗
1(t + 1, (β(t)

+q1(t) + · · · + qk(t) − Dt)
+) |β(t)+q1(t)+···+qk(t)=+∞

= −wk(t) − ht + α

∫ +∞

0

d

dβ(t)
π∗

1(t + 1, β(t)

+q1(t) + · · · + qk(t) − z) |β(t)+q1(t)+···+qk(t)=+∞ dH(z | i)

< −wk(t) − ht < 0.

The first inequality is by
dπ∗

1 (t+1,β(t+1))

dβ(t+1)
|β(t+1)=+∞< 0, which is assumed at the

beginning of Section 3. Hence, there is at least one real number u that satisfies
Equation (13.A.2). By the last sentence of Definition 3.1, Qk(i) is unique.

As wk(t) < wk+1
t (Assumption 2.1) and by Lemma 3.4 the left-hand side of Equa-

tion (13.3) is non-increasing in Qk(i), it is straightforward that Qk(i) > Qk+1(i).
Hence,

Q1(i) > Q2(i) · · · > Qn(i). (13.A.4)

Proof of Lemma 3.4. By Lemma 3.1, i.e. the concavity of π2(q1(t), 0, · · · , 0; t) in

q1(t),
dπ2(q1(t),0,···,0;t)

dq1(t)
is non-increasing in q1(t). Comparing the positions of q1(t) and

β(t) appearing in Equation (13.5), we know that given a specific q1(t), (rt −w1(t))−
(rt +ht)H(q1(t)+β(t) | i)+ d

dq1(t)
EDtπ

∗
1(t+1, (q1(t)+β(t)−Dt)

+) is non-increasing

in β(t). Hence, letting q1(t) = 0, we obtain that (rt − w1(t)) − (rt + ht)H(β(t) |
i) + d

dβ(t)1
EDtπ

∗
1(t + 1, (β(t) − Dt)

+) is non-increasing in β(t).

Proof of Lemma 3.6. According to Theorem 3.1, rewrite Equation (13.1) as
follows.

π1(xt; t, β(t)|It)

= −v1(t)x1(t) − v2(t)x2(t) − · · · − vn(t)xn(t) +

∫ i0

−∞
[π2(0, · · · , 0; t, i)] dFI(i)
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+

∫ i1

i0

[π2(Q1(i) − β(t), 0, · · · , 0; t, i)] dFI(i)

+

∫ î1

i1

[π2(x1(t), 0, · · · , 0; t, i)] dFI(i) (13.A.5)

...

+

∫ ∞

in

[π2(x1(t), · · · , xn(t); t, i)] dFI(i) (13.A.6)

s.t.

xi ≥ 0, i = 1, 2, · · · , n. (13.A.7)

Rewriting Equation (13.2) as

π2(qt; t, i) = −(rt + ht)

∫ β(t)+q1(t)+···+qn(t)

0

H(D | i)dD

+rt(q1(t) + · · · + qn(t) + β(t))

−w1(t) − · · · − wn(t)qn(t) + αEDtπ
1,∗
t+1 (β(t) + · · · + qn(t))+ .

(13.A.8)

we then obtain

π1(xt; t, β(t)|It)

= −v1(t)x1(t) − v2(t)x2(t) − · · · − vn(t)xn(t)

+

∫ i0

−∞

[
−(rt + ht)

∫ β(t)

0

H(D | i)dD + rtβ(t)

+αEDtπ
∗
1(t + 1, (β(t) − Dt)

+) dFI(i)

+

∫ i1

i0

[
−(rt + ht)

∫ Q1(i)

0

H(D | i)dD + rtQ1(i)

−w1(t)(Q1(i) − β(t)) + αEDtπ
∗
1(t + 1, (Q1(i) − Dt)

+) dFI(i)

+

∫ î1

i1

[
−(rt + ht)

∫ x1(t)+β(t)

0

H(D | i)dD + rt(x1(t) + β(t))

−w1(t)x1(t) + αEDtπ
∗
1(t + 1, (β(t) + x1(t) − Dt)

+) dFI(i)

...

...

+

∫ in

ˆin−1

[
−(rt + ht)

∫ Qn(i)

0

H(D | i)dD + rtQn(i)

−w1(t)x1(t) − · · · − wn−1
t xn−1(t)

−wn(t)Qn(i) + wn(t)(β(t) + · · · + xn−1(t))

+αEDtπ
∗
1(t + 1, (Qn(i) − Dt)

+) dFI(i)

+

∫ ∞

in

[
−(rt + ht)

∫ β(t)+x1(t)+···+xn(t)

0

H(D | i)dD
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+rt(β(t) + x1(t) + · · · + xn(t)) − w1(t)x1(t) − · · · − wn(t)xn(t)

+αEDtπ
∗
1(t + 1, (β(t) + · · · + xn(t) − Dt)

+) dFI(i). (13.A.9)
Take the partial derivatives with respect to x1(t), x2(t), · · · , xn(t).

∂π1(t)

∂x1(t)

= −v1(t) − w1(t)F̄I(i1) +

∫ î1

i1

[−(rt + ht)H(β(t) + x1(t) | i) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) − Dt)

+) dFI(i) +

∫ i2

î1

[w2(t)] dFI(i)

+

∫ î2

i2

[−(rt + ht)H(β(t) + x1 + x2 | i) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) + x2(t) − Dt)

+) ] dFI(i)

+ · · · · · ·

+

∫ ˆin−1

in−1

[
−(rt + ht)H(β(t) +

n−1∑
j=1

xj(t) | i) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) +

n−1∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

+

∫ in

ˆin−1

[wn(t)] dFI(i)

+

∫ +∞

in

[
−(rt + ht)H(β(t) +

n∑
j=1

xj(t) | i) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

+
di1

dx1(t)
π2(Q1(i1) − β(t), 0, · · · , 0; t, i1)fI(i1)

− di1
dx1(t)

π2(x1(t), 0, · · · , 0; t, i1)fI(i1)

+
dî1

dx1(t)
π2(x1(t), 0, · · · , 0; t, î1)fI(î1)

− dî1
dx1(t)

π2(x1(t), Q2(î1) − x1(t) − β(t), · · · , 0; t, î1)fI(î1)

+ · · · · · ·

+
din

dx1(t)
π2(x1(t), · · · , xn−1(t), Qn( ˆin−1) − β(t) −

n−1∑
j=1

xj(t); t, î1)fI(in)

− din
dx1(t)

π2(x1(t), · · · , xn−1(t), xn(t); t, î1)fI(in)

= −v1(t) − w1(t)F̄I(i1) +

∫ î1

i1

[−(rt + ht)H(β(t) + x1(t) | i) + rt
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+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) − Dt)

+) dFI(i)

+

∫ i2

î1

[w2(t)] dFI(i)

+

∫ î2

i2

[−(rt + ht)H(β(t) + x1 + x2 | i) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) + x2(t) − Dt)

+) dFI(i)

+ · · · · · ·

+

∫ ˆin−1

in−1

[
−(rt + ht)H(β(t) +

n−1∑
j=1

xj(t) | i) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) +

n−1∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

+

∫ in

ˆin−1

[wn(t)] dFI(i)

+

∫ +∞

in

[
−(rt + ht)H(β(t) +

n∑
j=1

xj(t) | i)+

rt + α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i). (13.A.10)

The last equality holds by the definitions (see Definition 3.2) of Qk(i) when the
information i = ˆik−1, ik respectively. Similarly,

∂π1(t)

∂x2(t)

= −v2(t) − w2(t)F̄I(i2)

+

∫ î2

i2

[−(rt + ht)H(β(t) + x1 + x2 | i) + rt

+α
d

dx2(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) + x2(t) − Dt)

+) dFI(i)

+ · · · · · ·

+

∫ ˆin−1

in−1

[
−(rt + ht)H(β(t) +

n−1∑
j=1

xj(t) | i) + rt

+α
d

dx2(t)
EDtπ

∗
1(t + 1, (β(t) +

n−1∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

+

∫ in

ˆin−1

[wn(t)] dFI(i)

+

∫ +∞

in

[
−(rt + ht)H(β(t) +

n∑
j=1

xj(t) | i) + rt
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+α
d

dx2(t)
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i), (13.A.11)

...

...

∂π1

∂xn
= −vn(t) − wn(t)F̄I(in)

+

∫ +∞

in

[
−(rt + ht)H(β(t) +

n∑
j=1

xj(t) | i) + rt

+α
d

dxn(t)
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i).

(13.A.12)

To ascertain whether it is concave in the xt, a vector, we need to obtain the second-
order derivatives as follows:

∂2π1(t)

(∂x1(t))2

=

∫ î1

i1

[−(rt + ht)h(β(t) + x1(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) + x1(t) − Dt)

+) dFI(i)

+

∫ î2

i2

[−(rt + ht)h(β(t) + x1 + x2 | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) + x1(t) + x2(t) − Dt)

+) dFI(i)

+ · · · · · ·

+

∫ ˆin−1

in−1

[
−(rt + ht)h(β(t) +

n−1∑
j=1

xj(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

n−1∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

+

∫ +∞

in

[
−(rt + ht)h(β(t) +

n∑
j=1

xj(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

− di1
dx1(t)

[−(rt + ht)H(β(t) + x1(t) | i1) + rt
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+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) − Dt)

+) − w1(t)]fI(i1)

+
dî1

dx1(t)
[−(rt + ht)H(β(t) + x1(t) | î1) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) − Dt)

+) − w1(t)]fI(î1)

− dî1
dx1(t)

[w2(t) − w1(t)]fI(î1)

+ · · · · · ·
+

din
dx1(t)

[wn(t) − w1(t)]fI(in)

− din
dx1(t)

[−(rt + ht)H(β(t) +

n∑
j=1

xj(t) | in) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+) − w1(t)]fI(in)

=

∫ î1

i1

[−(rt + ht)h(β(t) + x1(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) + x1(t) − Dt)

+) dFI(i)

+

∫ î2

i2

[−(rt + ht)h(β(t) + x1 + x2 | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) + x1(t) + x2(t) − Dt)

+) dFI(i)

+ · · · · · ·

+

∫ ˆin−1

in−1

[
−(rt + ht)h(β(t) +

n−1∑
j=1

xj(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

n−1∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

+

∫ +∞

in

[
−(rt + ht)h(β(t) +

n∑
j=1

xj(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i).

(13.A.13)

The last equality holds by recalling the definition of Qk
t (ik) and Qk

t ( ˆik−1). Specifically,
by Definition 3.1 and 3.2,

−(rt+ht)H(β(t)+x1(t) | i1)+rt+α
d

dx1(t)
EDtπ

∗
1(t+1, (β(t)+x1(t)−D1

t )+)−w1(t) = 0,

(13.A.14)
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−(rt + ht)H(β(t) + x1(t) | î1) + rt + α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) + x1(t) − D1

t )+)

−w1(t) = w2(t) − w1(t), (13.A.15)

...

−(rt + ht)H(β(t) +

n∑
j=1

xj(t) | in) + rt

+α
d

dx1(t)
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − D1
t )+) − w1(t)

= wn(t) − w1(t). (13.A.16)

Moreover, by Equation (13.5)and Lemma 3.1, dπ2(q1(t),0,···,0;t)
dq1(t)

is non-increasing in

q1(t). That is
d2π2(q1(t), 0, · · · , 0; t)

(dq1(t))2
≤ 0; (13.A.17)

i.e.

−(rt + ht)h(q1(t) + β(t) | i) + α
d2

(dq1(t))2
EDtπ

∗
1(t + 1, (q1(t) + β(t) − D1

t )+) ≤ 0.

(13.A.18)
Similarly, we can obtain d2π2(x1(t),q2(t),···,0;t)

(dq2(t))2
≤ 0, · · · , d2π2(x1(t),x2(t),···,qn(t);t)

(dqn(t))2
≤ 0,

and strictly less than 0. Substitute these inequalities into Equation (13.A.13) and we
can obtain

∂2π1(t)

(∂x1(t))2
= a1 ≤ 0.

Further, where k = 2, · · · , n

d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

k∑
j=1

xj(t) − Dt)
+)

=
d2

(dx1(t))(dx2(t))
EDtπ

∗
1(t + 1, (β(t) +

k∑
j=1

xj(t) − Dt)
+)

=
d2

(dx2(t))2
EDtπ

∗
1(t + 1, (β(t) +

k∑
j=1

xj(t) − Dt)
+). (13.A.19)

Similarly,

∂2π1(t)

(∂x2(t))2

= +

∫ î2

i2

[−(rt + ht)h(β(t) + x1 + x2 | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) + x1(t) + x2(t) − Dt)

+) dFI(i)

+ · · · · · ·
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+

∫ ˆin−1

in−1

[
−(rt + ht)h(β(t) +

n−1∑
j=1

xj(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

n−1∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

+

∫ +∞

in

[
−(rt + ht)h(β(t) +

n∑
j=1

xj(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

=
∂2π1(t)

(∂x1(t))(∂x2(t))
= a2 ≤ 0. (13.A.20)

and

a1 ≤ a2

...

∂2π1(t)

(∂xn(t))2

= +

∫ +∞

in

[
−(rt + ht)h(β(t) +

n∑
j=1

xj(t) | i)

+α
d2

(dx1(t))2
EDtπ

∗
1(t + 1, (β(t) +

n∑
j=1

xj(t) − Dt)
+)

]
dFI(i)

=
∂2π1(t)

(∂xn(t))(∂xn−1(t))
= · · · =

∂2π1(t)

(∂xn(t))(∂x1(t))
= an ≤ 0, (13.A.21)

and

an−1 ≤ an.

Hence, the Hessian Matrix

An =

⎛
⎜⎜⎜⎝

a1 a2 · · · an

a2 a2 · · · an

...
...

. . .
...

an an · · · an

⎞
⎟⎟⎟⎠ .

where a1 ≤ a2 ≤ · · · ≤ an ≤ 0.
Let, k = 1, 2, · · · , n,

Bk = Ak

⎛
⎜⎜⎜⎜⎜⎝

1 −1
1 −1

. . .
. . .

1 −1
1

⎞
⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 −a1 + a2 −a2 + a3 · · · −ak−1 + ak

a2 0 −a2 + a3 · · · −ak−1 + ak

a3 0 0 · · ·
...

...
...

...
. . . −ak−1 + ak

ak 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13.A.22)

Hence, principal minors of An

|Ak| = |Bk| = (−1)k(−ak)(−a1 + a2)(−a2 + a3) · · · (−ak−1 + ak); (13.A.23)

i.e.
|Ak| ≥ 0, if k is even;
|Ak| ≤ 0, if k is odd.

(13.A.24)

which means An is negative semi-definite.
Hence, given β(t), π1(xt; t, β(t)|It) is concave in the options portfolio vector xt.
Proof of Lemma 3.7. First we develop the following algorithm to find out the

values of yn(t), · · · , y2(t), y1(t), if they exist. We start with finding out the value of

yn(t) by its definition ∂π1(t)
∂xn(t)

|β(t)+···+xn(t)=yn(t)= 0, where ∂π1(t)
∂xn(t)

can be found in

Equation (13.A.12). After finding out yn(t), · · · , yj+1(t), we can find out yj(t) by

the definition of ∂π1(t)
∂xj(t)

|β(t)+···+xj(t)=yj(t),···,β(t)+···+xn(t)=yn(t)= 0 similarly. After

determining yn(t), · · · , y2(t), the last step is to use equation

∂π1(t)

∂x1(t)
|β(t)+x1(t)=y1(t),···,β(t)+···+xn(t)=yn(t)= 0

to find out the value of y1(t), where ∂π1(t)
∂x1(t)

can be found in Equation (13.A.10). To

finish the proof of existence, we only need to show the existence of yj(t), j = 1, · · · , n
solved by the algorithm mentioned above. Taking yn(t) as an example, the right-hand
side of Equation (13.A.12) can be considered as a function of β(t)+· · ·+xn(t) = yn(t).
It is non-increasing in yn(t) by its concavity in xn(t). It is easy to check that the
right-hand side of Equation (13.A.12) is positive when yn(t) = 0 and negative when
yn(t) = +∞. Hence, there is a yn(t), which ensures that expression (13.A.12) equals
0.

The uniqueness of this is proved by the last sentence of Definition 3.3.
Proof. of Lemma 3.8 We have two choices of x∗

j−1(t). The first case is x∗
j−1(t) >

0 and
∂π1(x∗

t ;t)

∂xj−1(t)
= 0. Then, yj−1(t) ≥ yj(t) = β(t)+x∗

1(t)+ · · ·+x∗
j (t) > β(t)+x∗

1(t)+

· · · + x∗
j−1(t). Hence, recalling Lemma 3.6 and Definition 3.3 for yj−1(t), we can

obtain
∂π1(x∗

t ;t)

∂xj−1(t)
> ∂π1(t)

∂xj−1(t)
|β(t)+x1(t)+···+xj−1(t)=yj−1(t)= 0, which contradicts the

K-K-T conditions. The second case is x∗
j−1(t) = 0 and

∂π1(x∗
t ;t)

∂xj−1
≤ 0, where there is

no contradiction.
Proof of Lemma 3.9. If yj(t) ≤ β(t), as x∗

1(t), · · · , x∗
j (t) ≥ 0, then β(t)+x∗

1(t)+

· · · + x∗
j (t) ≥ yj(t). Hence, by Lemma 3.6 and Definition 3.3,

∂π1(x∗
t ;t)

∂xj(t)
≤ 0, which

results in x∗
j (t) = 0. As we have y1(t), · · · , yj−1(t) ≤ yj(t) ≤ β(t), we can obtain

x∗
1(t), · · · , x∗

j−1(t) = 0 similarly.
Proof of Lemma 3.10. According to Theorem 3.2, the feasible interval of

β(t) is divided into n + 1 subintervals, i.e. [0, y1(t)], [y1(t), y2(t)], · · · , [yn−1(t), yn(t)],
[yn(t), +∞). We will show that π∗

1(t, β(t)) is concave in β(t) in each subintervals and
the right-hand and left-hand derivatives are equal at the joint points.
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Case 1: β(t) ∈ [yn(t), +∞) In this case, according to Theorem 3.2, x∗
t = 0. Then,

by Definition 3.2 i0 = · · · = in and by Theorem 3.1 q∗
t = 0. Hence, by Equation (13.1)

π∗
1(t, β(t)) = π1(0; t, β(t)) =

∫ +∞

−∞
[π2(0; t, i)]dFI(i), (13.A.25)

where, by Equation (13.2),

π2(0; t, i) = EDt [rt(Dt∧β(t))−ht(β(t)−Dt)
++απ∗

1(t+1, (β(t)−Dt)
+)]. (13.A.26)

From Equation (13.A.8), we have

dπ∗
1(t, β(t))

dβ(t)
= wn(t) +

∫ +∞

−∞
{(rt − wn(t))

−(rt + ht)H(β(t) | i) + α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i).

(13.A.27)

By Lemma 3.4, we know that Equation (13.A.27) is non-increasing in β(t). Hence,
π∗

1(t, β(t)) is concave in β(t) for Case 1.
When β(t) = yn(t), i0 = in, then we have

dπ∗
1(t, β(t))

dβ(t)
|β(t)=yn(t)

= wn(t) +

∫ +i0

−∞
{(rt − wn(t)) − (rt + ht)H(yn(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (yn(t) − Dt)
+) dFI(i)

+

∫ +∞

in

{(rt − wn(t)) − (rt + ht)H(yn(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (yn(t) − Dt)
+) } dFI(i). (13.A.28)

By Definition 3.3 for yn(t) , the last term equals vn(t) and we have

dπ∗
1(t, β(t))

dβ(t)
|β(t)=yn(t)

= vn(t) + wn(t) +

∫ +i0

−∞
{(rt − wn(t)) − (rt + ht)H(yn(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (yn(t) − Dt)
+) } dFI(i). (13.A.29)

Case 2: β(t) ∈ [yn−1(t), yn(t)] In this case, according to Theorem 3.2, x∗
t =

(0, · · · , 0, yn(t)−β(t)) and π∗
1(t, β(t)) = π1(0, · · · , 0, yn(t)−β(t); t, β(t)). By Definition

3.2, i0 = · · · = ˆin−1. Hence,

π∗
1(t, β(t)) = π1(0, · · · , 0, yn(t) − β(t); t, β(t))

= −vn(t)(yn(t) − β(t)) +

∫ i0

−∞
π2(0, · · · , 0; t, i)dFI(i)
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+

∫ in

i0

π2(0, · · · , Qn
t − β(t); t, i)dFI(i)

+

∫ +∞

in

π2(0, · · · , yn(t) − β(t); t, i)dFI(i)

= −vn(t)(yn(t) − β(t)) +

∫ i0

−∞
[−(rt + ht)

∫ β(t)

0

H(D | i)dD + rtβ(t) +

αEDtπ
∗
1(t + 1, (β(t) − Dt)

+)]dFI(i)

+

∫ in

i0

[−(rt + ht)

∫ Qn
t

0

H(D | i)dD + rtQ
n
t − wn(t)(Qn

t − β(t))

+αEDtπ
∗
1(t + 1, (Qn

t − Dt)
+)]dFI(i)

+

∫ +∞

in

[−(rt + ht)

∫ yn(t)

0

H(D | i)dD + rtyn(t) − wn(t)(yn(t) − β(t))

+αEDtπ
∗
1(t + 1, (yn(t) − Dt)

+)]dFI(i). (13.A.30)

The first equality holds with Equation (13.A.7) and the second equality holds with
Equation (13.A.8). Moreover,

dπ∗
1(t, β(t))

dβ(t)

= vn(t) + wn(t) +

∫ +i0

−∞
{(rt − wn(t)) − (rt + ht)H(β(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i)

+
di0

dβ(t)
[−(rt + ht)

∫ β(t)

0

H(D | i0)dD + rtβ(t)

+αEDtπ
∗
1(t + 1, (β(t) − Dt)

+)]fI(i0)

− di0
dβ(t)

[−(rt + ht)

∫ Qn
t (i0)

0

H(D | i0)dD + rtQ
n
t (i0)

−wn(t)(Qn
t (i0) − β(t))

+αEDtπ
∗
1(t + 1, (Qn

t (i0) − Dt)
+)]fI(i0). (13.A.31)

Note that, in this case, Qn
t (i0) = Qn( ˆin−1) = β(t)+· · ·+xn−1(t) = β(t) (see Definition

3.2), hence

dπ∗
1(t, β(t))

dβ(t)

= vn(t) + wn(t) +

∫ +i0

−∞
{(rt − wn(t)) − (rt + ht)H(β(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i). (13.A.32)

Take the second-order derivative and we can obtain,

d2π∗
1(t, β(t))

(dβ(t))2
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=

∫ +i0

−∞
{−(rt + ht)h(β(t) | i)

+α
d2

(dβ(t))2
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i)

+
di0

dβ(t)
[(rt − wn(t)) − (rt + ht)H(β(t) | i0)

+α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) ]fI(i0)

=

∫ +i0

−∞
{−(rt + ht)h(β(t) | i)

+α
d2

(dβ(t))2
EDt π∗

1(t + 1, (β(t) − Dt)
+) }dFI(i)

≤ 0. (13.A.33)

Because i0 = ˆin−1, β(t) = β(t) + · · · + xn−1(t) = Qn
t (în) in this case. Hence, by

Definition 3.1 (k = n), the second equality holds. The last inequality is by Lemma
3.4. Hence, π∗

1(t, β(t)) is proved to be concave in β(t) in case 2.
When β(t) = yn(t),

dπ∗
1(t, β(t))

dβ(t)
|β(t)=yn(t)

= vn(t) + wn(t) +

∫ +i0

−∞
{(rt − wn(t)) − (rt + ht)H(yn(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (yn(t) − Dt)
+) } dFI(i). (13.A.34)

We can see that equations (13.A.29) and (13.A.34) are equal, i.e. the joint point of
case 1 and 2 has the equivalent left-hand and right-hand derivatives. Hence, π∗

1(t, β(t))
is concave in β(t) in [yn−1(t), +∞).

When β(t) = yn−1(t),

dπ∗
1(t, β(t))

dβ(t)
|β(t)=yn−1(t)

= vn(t) + wn(t) +

∫ +i0

−∞
{(rt − wn(t)) − (rt + ht)H(yn−1(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (yn−1(t) − Dt)
+) } dFI(i). (13.A.35)

Case 3: β(t) ∈ [yn−2(t), yn−1(t)] In this case, according to Theorem 3.2, x∗
t =

(0, · · · , 0, yn−1(t)−β(t), yn(t)−yn−1(t)) and π∗
1(t, β(t)) = π1(0, · · · , 0, yn−1(t)−β(t), yn(t)−

yn−1(t); t, β(t)). Then, by Definition 3.2 i0 = · · · = în−2.
Similarly, we have

dπ∗
1(t, β(t))

dβ(t)

= vn−1
t + wn−1

t +

∫ +i0

−∞
(rt − wn−1

t ) − (rt + ht)H(β(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i), (13.A.36)
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which is similar to Equation (13.A.32). Take the second-order derivative and we
obtain,

d2π∗
1(t, β(t))

(dβ(t))2

=

∫ +i0

−∞
{−(rt + ht)h(β(t) | i)+

α
d2

(dβ(t))2
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i)

+
di0

dβ(t)
[(rt − wn−1

t ) − (rt + ht)H(β(t) | i0)

+α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) ]fI(i0)

=

∫ +i0

−∞
{−(rt + ht)h(β(t) | i)

+α
d2

(dβ(t))2
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i)

≤ 0. (13.A.37)

Note that i0 = în−2, β(t) = β(t) + · · · + xn−2
t = Qn−1

t (̂in−2) in this case. Hence,
by Definition 3.1 (k = n − 1), the second equality holds. The last inequality holds
by Lemma 3.4. Hence, π∗

1(t, β(t)) is proved to be concave in β(t) in Case 3. When
β(t) = yn−1(t),

dπ∗
1(t, β(t))

dβ(t)
|β(t)=yn−1(t)

= vn−1
t + wn−1

t

+

∫ +i0

−∞
(rt − wn−1

t ) − (rt + ht)H(yn−1(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (yn−1(t) − Dt)
+) } dFI(i). (13.A.38)

By Definition 3.3 for yn(t) and yn−1(t), after some algebraic calculation it is easy
to obtain

−vn−1
t +

∫ ˆin−1

in−1

[ − (rt + ht)H(β(t) + · · · + xn−1(t) | i)

+rt − wn−1
t + α

d

dxn−1(t)
π∗

1(t, (β(t) + · · · + xn−1(t) − Dt)
+) ] dFI(i)

+

∫ +∞

ˆin−1

(wn(t) − wn−1
t )dFI(i) + vn(t) = 0.(13.A.39)

When β(t) = yn−1(t), x∗
t = (0, · · · , 0, 0, yn(t) − yn−1(t)). Then, by Definition 3.2, we

have i0 = · · · = în−1. Then, it can be reduced to be

−vn−1
t +

∫ +∞

i0

[wn(t) − wn−1
t ]dFI(i) + vn(t) = 0. (13.A.40)
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Substitute Equation (13.A.40) into Equation (13.A.38), and we obtain that Equa-
tion (13.A.38) and Equation (13.A.35) are equal, i.e. the joint point of case 2 and 3
has equivalent left-hand and right-hand derivatives. Hence, π∗

1(t, β(t)) is concave in
β(t) in [yn−2(t), +∞).

Similarly, we can obtain that π∗
1(t, β(t)) is concave in the remaining subintervals

and the right-hand and left-hand derivatives are equal at joint points.
Proof of Lemma 3.11. In Case 1, when β(t) = +∞ such that H(β(t) | i) = 1,

by Equation (13.A.27), it becomes

dπ∗
1(t, β(t))

dβ(t)
|β(t)=+∞

= wn(t) +

∫ +∞

−∞
{(rt − wn(t)) − (rt + ht)

+α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) |β(t)=+∞ } dFI(i)

= −ht +

∫ +∞

−∞
α

d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) |β(t)=+∞ dFI(i)

= −ht +

∫ +∞

−∞
α

∫ +∞

0

d

dβ(t)
[π∗

1(t + 1, β(t) − z)] |β(t)=+∞ dH(z | i) dFI(i)

< 0. (13.A.41)

The last inequality holds by our early assumption of
dπ∗

1 (t+1,β(t+1))

dβ(t+1)
|β(t+1)=+∞< 0.

In case n+1 : β(t) ∈ [0, y1(t)], according to Theorem 3.2, x∗
t = (y1(t)−β(t), y2(t)−

y1(t), · · · , yn(t) − yn−1(t)) and π∗
1(t, β(t)) = π1(y1(t) − β(t), y2(t) − y1(t), · · · , yn(t) −

yn−1(t); t, β(t)). Hence, by equations (13.A.7) and (13.A.8),

π∗
1(t, β(t))

= −v1(t)(y1(t) − β(t)) − v2(t)(y2(t) − y1(t)) − · · · − vn(t)(yn(t) − yn−1(t))

+

∫ i0

−∞

[
−(rt + ht)

∫ β(t)

0

H(D | i)dD + rtβ(t)

+αEDtπ
∗
1(t + 1, (β(t) − Dt)

+) ] dFI(i)

+

∫ i1

i0

[
−(rt + ht)

∫ Q1(i)

0

H(D | i)dD + rtQ1(i)

−w1(t)(Q1(i) − β(t)) + αEDtπ
∗
1(t + 1, (Q1(i) − Dt)

+) dFI(i)

+

∫ î1

i1

[
−(rt + ht)

∫ y1(t)

0

H(D | i)dD + rt(y1(t)) − w1(t)(y1(t) − β(t))

+αEDtπ
∗
1(t + 1, (y1(t) − Dt)

+) ] dFI(i)

...

...

+

∫ in

ˆin−1

[
−(rt + ht)

∫ Qn(i)

0

H(D | i)dD + rtQn(i)

−w1(t)(y1(t) − β(t)) − · · · − wn−1
t (yn−1(t) − yn−2(t))
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−wn(t)Qn(i) + wn(t)yn−1(t) + αEDtπ
∗
1(t + 1, (Qn(i) − Dt)

+) dFI(i)

+

∫ ∞

in

[
−(rt + ht)

∫ yn(t)

0

H(D | i)dD + rtyn(t)

−w1(t)(y1(t) − β(t)) − · · · − wn(t)(yn(t) − yn−1(t))

+αEDtπ
∗
1(t + 1, (yn(t) − Dt)

+) ] dFI(i). (13.A.42)

Hence, similarly, we obtain

dπ∗
1(t, β(t))

dβ(t)

= v1
t + w1(t) +

∫ +i0

−∞
{(rt − w1(t)) − (rt + ht)H(β(t) | i)

+α
d

dβ(t)
EDt π∗

1(t + 1, (β(t) − Dt)
+) } dFI(i). (13.A.43)

When β(t) = 0, by Definition 3.2, i0 = −∞ and

dπ∗
1(t, 0)

dβ(t)
= v1(t) + w1(t). (13.A.44)
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models, we are able to demonstrate the presence of the volatility smile
and volatility term structure.

Keywords: Regime switching, option pricing, successive approximations, volatility
smile and term structure.

1. Introduction
The classical Black-Scholes formula for option pricing uses a geometric

Brownian motion model to capture the price dynamics of the underly-
ing security. The model involves two parameters, the expected rate of
return and the volatility, both assumed to be deterministic constants.
It is well known, however, that the stochastic variability in the mar-
ket parameters is not reflected in the Black-Scholes model. Another
widely acknowledged shortfall of the model is its failure to capture what
is known as “volatility smile.” That is, the implied volatility of the
underlying security (implied by the market price of the option on the
underlying via the Black-Scholes formula), rather than being a constant,
should change with respect to the maturity and the exercise price of the
option.

Emerging interests in this area have focused on the so-called regime-
switching model, which stems from the need of more realistic models
that better reflect random market environment. Since a major factor
that governs the movement of an individual stock is the trend of the
general market, it is necessary to allow the key parameters of the stock
to respond to the general market movements. The regime-switching
model is one of such formulations, where the stock parameters depend
on the market mode (or, “regime”) that switches among a finite number
of states. The market regime could reflect the state of the underly-
ing economy, the general mood of investors in the market, and other
economic factors. The regime-switching model was first introduced by
Hamilton (1989) to describe a regime-switching time series. Di Masi
et al. (1994) discuss mean-variance hedging for regime-switching Euro-
pean option pricing. To price regime-switching American and European
options, Bollen (1998) employs lattice method and simulation, whereas
Buffington and Elliott (2002) use risk-neutral pricing and derive a set
of partial differential equations for option price. Guo (1999) and Shepp
(2002) use regime-switching to model option pricing with inside infor-
mation. Duan et al. (2002) establish a class of GARCH option models
under regime switching. For the important issue of fitting the regime-
switching model parameters, Hardy (2001) develops maximum likelihood
estimation using real data from the S&P 500 and TSE 300 indices. In
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addition to option pricing, regime-switching models have also been for-
mulated and investigated for other problems; see Zhang (2001) for the
development of an optimal stock selling rule, Zhang and Yin (2004) for
applications in portfolio management, and Zhou and Yin (2003) for a
dynamic Markowitz problem.

In the regime-switching model, one typically “modulates” the rate of
return and the volatility by a finite-state Markov chain α(·) = {α(t) :
t ≥ 0}, which represents the market regime. For example, α(t) ∈ {−1, 1}
with 1 representing the bullish (up-trend) market and -1 the bearish
(down-trend) one. In general, we can take M = {1, 2, . . . , m}. More
specifically, let X(t), the price of a stock at time t, be governed by the
following equation:

dX(t) = X(t)[µ(α(t))dt + σ(α(t))dw(t)], 0 ≤ t ≤ T ;(14.1)

where X(0) = X0 is the stock price at t = 0; µ(i) and σ(i), for each
i ∈ M, represent the expected rate of return and the volatility of the
stock price at regime i; and w(·) denotes the standard (one-dimensional)
Brownian motion. Equation (14.1) is also called a hybrid model, where
randomness is characterized by the pair (α(t), w(t)), with w(·) corre-
sponding to the usual noise involved in the classical geometric Brown-
ian motion model while α(t) capturing the higher-level noise associated
with infrequent yet extremal events. For example, it is known that the
up-trend volatility of a stock tends to be smaller than its down-trend
volatility. When the market trends up, investors are often cautious and
move slowly, which leads to a smaller volatility. On the other hand,
during a sharp market downturn when investors get panic, the volatility
tends to be much higher. (This observation is supported by an initial
numerical study reported in Zhang (2001) in which the average historical
volatility of the NASDAQ Composite is substantially greater when its
price trends down than when it moves up.) Furthermore, when a market
moves sideways the corresponding volatility appears to be even smaller.
As an example, suppose we take the value of α(t) to be

−2 = severe downtrend (‘crash’), −1 = downtrend,
0 = sideways, 1 = rally, 2 = strong rally.

Then, the sample paths of α(·) and X(·) are given in Fig. 14.1. The
‘crash’ state is reached between sessions 70-80, which simulates a steep
downward movement in price (namely the daily high is lower than last
session’s low).

Our main objective in this paper is to price regime-switching Euro-
pean options. We develop a successive approximation procedure, based

A Regime-Switching Model for European Options
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Figure 14.1. Sample Paths of α(·) and X(·).

on the fixed-point of a certain integral operator with a Gaussian kernel.
The procedure is easy to implement without having to solve the differ-
ential equations; moreover, it has a geometric rate of convergence. Us-
ing this numerical procedure, we demonstrate that our regime-switching
model does generate the desired volatility smile and term structure.

We now briefly review other related literature. For derivative pricing
in general, we refer the reader to the books by Duffie (1996) and Karatzas
and Shreve (1998). In recent years there has been extensive research ef-
fort in enhancing the classical geometric Brownian motion model. Mer-
ton (1976) introduces additive Poisson jumps into the geometric Brow-
nian motion, aiming to capture discontinuities in the price trajectory.
The drawback, however, is the difficulty in handling the associated dy-
namic programming equations, which take the form of quasi-variational
inequalities. Hull and White (1987) develop stochastic volatility models,
which price the European options as the expected value of the Black-
Scholes price with respect to the distribution of the stochastic volatility.
These models are revisited by Fouque et al. (2000) using a singular per-
turbation approach. Albanese et al. (preprint) study a model that is a
composition of a Brownian motion and a gamma process, with the lat-
ter used to rescale the time. In addition, the parameters of the gamma
process are allowed to evolve according to a two-state Markov chain.
While the model does capture the volatility smile, the resulting pricing
formula appears to be quite involved and difficult to implement. Renault
and Touzi (1996) demonstrate volatility smile using a model with pure
diffusion, which is on one hand more complex in structure than regime
switching models, and on the other hand does not in any case specialize
to the latter.



A Regime-Switching Model for European Options 285

Compared with diffusion type volatility models, regime-switching mod-
els have two more advantages. First, the discrete jump Markov process
captures more directly the dynamics of events that are less frequent
(occasional) but nevertheless more significant to longer-term system be-
havior. For example, the Markov chain can represent discrete events
such as market trends and other economic factors that are difficult to be
incorporated into a diffusion model. Second, regime-switching models
require very limited data input, essentially, the parameters µ(i), σ(i) for
each state i, and the Q matrix. For a two-state Markov chain, a simple
procedure to estimate these parameters is given in Zhang (2001). For
more general Markov chains, refer to the approach in Yin et al. (2003)
based on stochastic approximation.

The rest of the paper is organized as follows. Our starting point
is the hybrid model in (14.1) for the price dynamics of the underlying
security, detailed in §2. We establish a Girsanov-like theorem (Lemma
1), which leads to an equivalent martingale measure, and therefore a risk-
neutral pricing scheme. Based on this pricing scheme, we develop in §3
a numerical approach to compute the option price, which is a successive
approximation procedure with a geometric rate of convergence. In §4,
we demonstrate via numerical examples that with a simple, two- or
three-state Markov chain modulating the volatility we can produce the
anticipated volatility smile and volatility term structure.

2. Risk-Neutral Pricing
A standard approach in derivative pricing is risk-neutral valuation.

The idea is to derive a suitable probability space upon which the ex-
pected rate of return of all securities is equal to the risk-free interest
rate. Mathematically, this requires that the discounted asset price be
a martingale; and the associated probability space is referred to as the
risk-neutral world. The price of the option on the asset is then the ex-
pected value, with respect to this martingale measure, of the discounted
option payoff. In a nutshell, this is also the route we are taking here,
with the martingale measure identified in Lemma 1 below, and related
computational issues deferred to §3.

Let (Ω,F , P) denote the probability space, upon which all the pro-
cesses below are defined. Let {α(t)} denote a continuous-time Markov
chain with state space M = {1, 2, . . . , m}. Note that for simplicity, we
use each element in M as an index, which can be associated with a more
elaborate state description, for instance, a vector. Let Q = (qij)m×m be
the generator of α with qij ≥ 0 for i �= j and

∑m
j=1 qij = 0 for each i ∈ M.

Moreover, for any function f on M we denote Qf(·)(i) :=
∑m

j=1 qijf(j).
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Let X(t) denote the price of a stock at time t which satisfies (14.1). We
assume that X0, α(·), and w(·) are mutually independent; and σ2(i) > 0,
for all i ∈ M.

Let Ft denote the sigma field generated by {(α(u), w(u)) : 0 ≤ u ≤ t}.
Throughout, all (local) martingales concerned are with respect to the
filtration Ft. Therefore, in the sequel we shall omit reference to the
filtration when a (local) martingale is mentioned. Clearly, {w(t)} and
{w2(t) − t} are both martingales (since α(·) and w(·) are independent).

Let r > 0 denote the risk-free rate. For 0 ≤ t ≤ T , let

Zt := exp
(∫ t

0
β(u)dw(u) − 1

2

∫ t

0
β2(u)du

)
,

where

β(u) :=
r − µ(α(u))

σ(α(u))
.(14.2)

Then, applying Itô’s rule, we have

dZt

Zt
= β(t)dw(t);

and Zt is a local martingale, with EZt = 1, 0 ≤ t ≤ T . Define an
equivalent measure P̃ via the following:

dP̃

dP
= ZT .(14.3)

The lemma below is essentially a generalized Girsanov’s theorem for
Markov-modulated processes. (While results of this type are generally
known, a proof is included since a specific reference is not readily avail-
able.)

Lemma 1 (1) Let w̃(t) := w(t)−
∫ t
0 β(u)du. Then, w̃(·) is a P̃-Brownian

motion.
(2) X(0), α(·) and w̃(·) are mutually independent under P̃;
(3) (Dynkin’s formula) For any smooth function F (t, x, i), we have

F (t, X(t), α(t))=F (s, X(s), α(s))+
∫ t

s
AF (u, X(u), α(u))du+M(t)−M(s),

where M(·) is a P̃-martingale and A is an generator given by

AF =
∂

∂t
F (t, x, i)+

1
2
x2σ2(i)

∂2

∂x2
F (t, x, i)+rx

∂

∂x
F (t, x, i)+QF (t, x, ·)(i).
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This implies that (X(t), α(t)) is a Markov process with generator A.

Proof. Define a row vector Ψ(t) =
(
I{α(t)=1}, . . . , I{α(t)=m}

)
, where IA

is the indicator function of a set A. Let

z(t) = Ψ(t) − Ψ(0) −
∫ t

0
Ψ(u)Qdu.

Note that both {(z(u), w(u)) : u ≤ t} and {(α(u), w(u)) : u ≤ t}
generate the same sigma field Ft. Thus, (z(t), w(t)) is a P-martingale.
Let Θ denote a column vector and θ a scaler. Define V (t) = z(t)Θ +
w(t)θ. Then, V (t) is a P-martingale. Let

η(t) =
∫ t

0
β(u)dw(u) − 1

2

∫ t

0
β(u)2du.

Then, for each θ and Θ, Ṽ (t) = V (t) − 〈V, η〉t is a P̃-martingale, where
〈V, η〉t = θ

∫ t
0 β(u)du. Thus, Ṽ (t) = z(t)Θ + w̃(t)θ. Hence, in view of

Elliott (1982) Thm. 13.19 (z(t), w̃(t)) is a P̃-martingale. Moreover, since
w̃(·) and (w̃2(t)−t) are both P̃-martingales, w̃(·) is a P̃-Brownian motion
(see Elliott (1982) Cor 13.25).

We next show the mutual independence of X0, α(·) and w̃(·) under P̃.
Note that ZT is FT measurable, and EZT = 1. Let ζ1 denote a random
variable, measurable with respect to X0. Then, making use of (14.3),
we have

Ẽζ1 = E(ZT ζ1) = (EZT )(Eζ1) = Eζ1.

Furthermore, for any FT measurable random variable ζ2, we have

Ẽ(ζ1ζ2) = E(ZT ζ1ζ2) = (Eζ1)E(ZT ζ2) = (Ẽζ1)(Ẽζ2).

This implies the independence between X0 and (α(·), w̃(·)) up to time
T . To show the independence between α(·) and w̃(·), for a given f(x, i),
let

A0f(x, i) =
1
2

∂2

∂x2
f(x, i) + Qf(x, ·)(i).

Then, the associated martingale problem has a unique solution (see,
e.g., Yin and Zhang (1998) p. 199). Using Itô’s rule, we can show
that (α(·), w̃(·)) is a solution to the martingale problem under P̃. Since
(α(·), w(·)) is also a solution to the same martingale problem under P, it
must be equal in distribution to (α(·), w̃(·)). The independence between
α(·) and w̃(·) then follows from the independence between α(·) and w(·).

Under P̃, (14.1) becomes

dX(t) = X(t)[rdt + σ(α(t))dw̃(t)], 0 ≤ t ≤ T ; X(0) = X0.

A Regime-Switching Model for European Options
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We now prove the Dynkin’s formula. First, write

F (X(t), α(t)) = Ψ(t)F (X(t)),

where F (X(t)) = (F (X(t), 1), . . . , F (X(t), m))′. Applying Elliott (1982)
Cor. 12.22, we have

dF (X(t), α(t)) = Ψ(t)d(F (X(t)) + (dΨ(t))F (X(t)) + d[Ψ, F ]t.

Since Ψ is a pure jump process, we have [Ψ, F ]t = 0. In addition, we
have

Ψ(t)Q(F (X(t), 1), . . . , F (X(t), m))′ = QF (X(t), ·)(α(t)).

Hence, Dynkin’s formula follows.
Finally, the Markov property of (X(t), α(t)) under P̃ can be estab-

lished following the same argument as in Ghosh et al. (1993). �
Therefore, following the above lemma and in view of Hull (2000) and

Fouque et al. (2000), (Ω,F , {Ft}, P̃) defines a risk-neutral world. More-
over, e−rtX(t) is a P̃-martingale. Note that the risk-neutral martingale
measure may not be unique. The market model under consideration
has two types of random sources, w(·) and α(·). The inclusion of α(·)
makes the underlying market incomplete. Nevertheless, the market can
be made complete by introducing switching-cost securities such as those
of the Arrow-Debreu type; refer to Guo (1999) for related discussions.

Consider a European-style call option with strike price K and matu-
rity T . Let

h(x) = (x − K)+ := max{x − K, 0}.
The call option premium at time s, given the stock price X(s) = x and
the state of the Markov chain α(s) = i, can be expressed as follows:

c(s, x, i) = Ẽ[e−r(T−s)h(X(T ))|X(s) = x, α(s) = i].(14.4)

Throughout, we shall focus on call options only. For European put
options, the analysis is similar, with the h function changed to h(x) =
(K − x)+.

3. Successive Approximations
We develop a numerical technique that is directly based on the risk-

neutral valuation in §2. Let

H(s, t) :=
∫ t

s
[r − 1

2
σ2(α(u))]du +

∫ t

s
σ(α(u))dw̃(u)
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and
Y (t) := y + H(s, t), with y = log x.

Itô’s rule implies
X(t) = exp[Y (t)].

Let
ψ(s, y, i) = e−yc(s, ey, i).

Then, combining the above with (14.4) and taking into account h(x) ≤
|x|, we have

ψ(s, y, i) ≤ e−y−r(T−s)Ẽ[ey+H(s,T )|Y (s) = y, α(s) = i] ≤ C,

for some constant C. Let

ψ0(s, y, i) = e−yẼ[e−r(T−s)h(ey+H(s,T ))|Y (s) = y, α(u) = i, s ≤ u ≤ T ],

which corresponds to the case when α(·) has no jump in [s, T ]. Then,

ψ0(s, y, i) = e−y−r(T−s)∫ ∞

−∞
h(ey+u)N(u, m(T − s, i), Σ2(T − s, i))du,

(14.5)

where N is the Gaussian density function with mean

m(t, i) = [r − 1
2
σ2(i)]t,

and variance Σ2(t, i) = σ2(i)t. Note that, for each i, eyψ0(s, y, i) gives
the standard Black-Scholes price, as expected.

If qii = 0, then ψ(s, y, i) = ψ0(s, y, i). For qii �= 0, let

τ = inf{t ≥ s : α(t) �= α(s)},

i.e., τ is the first jump epoch of α(·). Then,

P(τ > u|α(s) = i) = eqii(u−s).

For any bounded measurable function f on [0, T ]× IR×M, define its
norm as follow:

||f || = sup
s,y,i

|f(s, y, i)|.

This induces a Banach space S of all the bounded measurable functions
on [0, T ] × IR ×M. Also, define a mapping on S:

(T f)(s, y, i) =
∫ T

s

∑
j 
=i

e−r(t−s)

×
(∫ ∞

−∞
euf(t, y + u, j)N(u, m(t − s, i), Σ2(t − s, i))du

)
qije

qii(t−s)dt.

A Regime-Switching Model for European Options
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Theorem 1. (1) ψ is a unique solution to the equation

ψ(s, y, i) = T ψ(s, y, i) + eqii(T−s)ψ0(s, y, i).(14.6)

(2) Let ψ0 = ψ0; and define {ψn}, for n = 1, 2, . . ., recursively as
follows:

ψn+1(s, y, i) = T ψn(s, y, i) + eqii(T−s)ψ0(s, y, i).(14.7)

Then, the sequence {ψn} converges to the solution ψ.

Proof. First, we note that

e−yẼs,y,i[e−r(T−s)h(eY (T ))I{τ>T}] = eqii(T−s)ψ0(s, y, i),

where Ẽs,y,i[·] := Ẽ[·|Y (s) = y, α(s) = i]. Therefore,

ψ(s, y, i) = e−yẼs,y,i[e−r(T−s)h(eY (T ))I{τ≤T}]
+eqii(T−s)ψ0(s, y, i).

(14.8)

By conditioning on τ = t, we write its first term as follows:∫ T

s
e−y−r(T−s)Ẽs,y,i[h(eY (T ))|τ = t](−qiie

qii(t−s))dt.

Recall that τ is the first jump time of α(·). Therefore, given {τ = t}, the
post-jump distribution of α(t) is equal to qij/|qii|, j ∈ M. Moreover,

Y (t) = y + [r − 1
2
σ2(i)](t − s) + σ(i)[w̃(t) − w̃(s)],(14.9)

which has a Gaussian distribution and is independent of α(·). In view
of these, it follows that, for s ≤ t ≤ T ,

Ẽs,y,i[h(eY (T ))|τ = t]

= Ẽs,y,i[Ẽs,y,i[h(eY (T ))|Y (t), α(t)]|τ = t]

= Ẽs,y,i[eY (t)er(T−t)ψ(t, Y (t), α(t))|τ = t]

=
∑
j 
=i

qij

−qii

∫ ∞

−∞
ey+uer(T−t)ψ(t, y + u, j)N(u, m(t−s, i), Σ2(t−s, i))du.

Thus, the first term in (14.8) is equal to∫ T

s

(∑
j 
=i

e−r(t−s)

×
∫ ∞

−∞
euψ(t, y + u, j)N(u, m(t − s, i), Σ2(t − s, i))du

)
qije

qii(t−s)dt.
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Let

ρ(i) =
∫ T

s

∑
j 
=i

e−r(t−s)

×
(∫ ∞

−∞
euN(u, m(t − s, i), Σ2(t − s, i))du

)
qije

qii(t−s)dt.

We want to show that 0 ≤ ρ(i) < 1, for i = 1, 2, . . . , m. In fact, let

A(u, i) =
∫ ∞

−∞
euN(u, m(t − s, i), Σ2(t − s, i))du.

Then it is readily verified that

A(u, i) = exp[m(u, i) + Σ2(u, i)] = exp (ru) .

Thus,

ρ(i) =
∫ T

s

∑
j 
=i

e−r(t−s)A(t − s, i)qije
qii(t−s)dt

= 1 − eqii(T−s) < 1,

(14.10)

when qii �= 0. Let ρ = max{ρ(i) : i ∈ M}. Then, 0 ≤ ρ < 1 and

||T f || ≤ ρ||f ||,

i.e., T is a contraction mapping on S. Therefore, in view of the con-
traction mapping fixed point theorem, we know equation (14.6) has a
unique solution. This implies also the convergence of the sequence {ψn}
to ψ. �

Note that the convergence of ψn to ψ is geometric. In fact, it is easy to
see that ψn+1−ψ = T (ψn−ψ), which implies ||ψn+1−ψ|| ≤ ρ||ψn−ψ||.
Therefore,

||ψn − ψ|| ≤ Cρn,

for some constant C. In addition, the convergence rate ρ depends on the
jump rates of α(·). By and large, the less frequent the jumps, the faster
is the convergence. This can be seen from (14.10).

Therefore, to evaluate ψ, we solve equation (14.6) via the successive
approximations in (14.7). Finally, the call option price is as follows.
(Recall y = log x.)

c(s, x, i) = xψ(s, log x, i).(14.11)

A Regime-Switching Model for European Options
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4. Volatility Smile and Term Structure
We now illustrate the volatility smile and volatility term structure

implied in our model. We first consider a case in which the volatility
(as well as the return rate) is modulated by a two-state Markov chain,

i.e., M = {1, 2} and Q =
(

−λ λ
0 0

)
. That is, state 2 is an absorbing

state. As it will be demonstrated the volatility smile presents in even
such a simple case. If we take α(s) = 1, then there exists a stopping
time τ such that (τ − s) is exponentially distributed with parameter λ
and

α(t) =
{

1 if t < τ
2 if t ≥ τ.

(14.12)

Therefore, the volatility process σ(α(t)) jumps at most once at time
t = τ . Its jump size is given by σ(2) − σ(1), and the average sojourn
time in state 1 (before jumping to state 2) is 1/λ. For instance, if the
time unit is one year and λ = 6, then it means that the expected time
for the volatility to jump from σ(1) to σ(2) is two months. In this case,
the volatility is characterized by a vector (σ(1), σ(2), λ).

Applying the successive approximation in §3, we have

ψ(s, y, 1) =
∫ T

s
e−r(t−s)

(∫ ∞

−∞
euψ(t, y + u, 2)

×N(u, m(t − s, 1), Σ2(t − s, 1))du

)
λe−λ(t−s)dt

+e−λ(T−s)ψ0(s, y, 1),

(14.13)

and

ψ(s, y, 2) = ψ0(s, y, 2),(14.14)

where ψ0(s, y, i), i = 1, 2, are defined in (14.5).
Let s = 0. Given the risk-free rate r, the current stock price x, the

maturity T , the strike price K, and the volatility vector (σ(1), σ(2), λ),
in view of (14.11), (14.13) and (14.14), the call option can be priced as
follows:

c(0, x, 1) = x

∫ T

0
e−rt

(∫ ∞

−∞
euψ0(t, u + log x, 2)

×N(u, m(t, 1), Σ2(t, 1))du

)
λe−λtdt+xe−λT ψ0(0, log x, 1).

(14.15)

This pricing formula consists of two parts: the classical Black-Scholes
part (with no jump) and a correction part. In addition, it is a natural
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extension to the classical Black-Scholes formula by incorporating a pos-
sible volatility jump, which is usually adequate for near-term options.
Moreover, both of these two parts are given in analytic form which is
very helpful for evaluating option Greeks and making various numerical
comparisons.

Given the option price c(0, x, 1), we can derive the so-called implied
volatility using the standard Black-Scholes formula as in Hull (2000).

The following numerical cases illustrate the volatility smile and volatil-
ity term structure implied in our model. In all cases, we fix r = 0.04
and x = 50, while varying the other parameters. First we consider the
cases with σ(1) ≤ σ(2). Let

Γλ = {1, 2, . . . , 20},
ΓK = {30, 35, . . . , 70},
ΓT = {20/252, 40/252, . . . , 240/252},
Γσ = {0, 0.1, . . . , 2}.

Case (1a): Here, we fix T = 60/252 (three months to maturity), σ(1) =
0.3, σ(2) = 0.8, λ ∈ Γλ, and K ∈ ΓK . We plot the implied volatility
against the strike price (K) and the jump rate (λ) in Fig. 14.2 (a).

As can be observed from Fig. 14.2 (a), for each fixed λ ∈ Γλ, the
implied volatility reaches its minimum at K = 50 (at money) and in-
creases as K moves away from K = 50. This is the well-known volatility
smile phenomenon in stock options Hull (2000). In addition, for fixed
K ∈ ΓK , the implied volatility is increasing in λ, corresponding to a
sooner jump from σ(1) to σ(2).
Case (1b): In this case, we take σ(1) = 0.3 and fix λ = 1, and replace the
λ-axis in Fig. 14.2 (a) by the volatility jump size σ(2) − σ(1) ∈ Γσ. As
can be observed from Fig. 14.2 (b), the smile increases in the jump size.
In addition, the implied volatility is an increasing function of σ(2)−σ(1),
for each fixed K ∈ ΓK .
Case (1c): In this case, we take σ(1) = 0.3, σ(2) = 0.8 and K = 50,
and replace the strike price in Fig. 14.2 (a) by the maturity (T ). Then,
Fig. 14.2 (c) shows that for fixed λ, the implied volatility increases in
T . Similarly, for fixed T , the implied volatility also increases in λ.
Case (1d): Here, we fix σ(1) = 0.3, λ = 1, K = 50, and continue with
Case (1c), but replace λ by the increase in volatility. Then, the implied
volatility is also increasing in σ(2) − σ(1) ∈ Γσ.

To get a better view of the volatility smile, we plotted in Fig. 14.3 the
two dimensional truncation of Case (1a) with fixed λ = 1 and λ = 5. It

A Regime-Switching Model for European Options
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Figure 14.2. Volatility Smile and Term Structure (σ(1) ≤ σ(2))

is clear from this picture that the volatility smile reached the minimum
at x = 50 and it is asymmetric with respect to strike prices.

Whereas in the above cases we have σ(1) < σ(2), in the next set of
cases we consider σ(1) ≥ σ(2). In these cases, the market anticipates a
decline in volatility.
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Figure 14.3. Volatility Smile in Case (1a) with λ = 1 and λ = 5, resp.

A Regime-Switching Model for European Options



296

Case (2a): We take σ(1) = 0.8 and σ(2) = 0.3, with T = 60/252, λ ∈ Γλ,
and K ∈ ΓK . The implied volatility against the strike price (K) and the
jump rate (λ) is plotted in Fig. 14.4 (a). This case is similar to Case
(a).
Case (2b): Here, we let σ(1) = 2.3, fix λ = 1, and replace the λ-axis
in Fig. 14.4 (a) by σ(2) − σ(1) ∈ Γ1

σ, where Γ1
σ = {0,−0.1, . . . ,−2}.

As can be seen from Fig. 14.4 (b), the smile increases in the jump size
|σ(2) − σ(1)|.
Case (2c): In this case, we take σ(1) = 0.8, σ(2) = 0.3 and K = 50. In
contrast to the earlier Case (c), Fig. 14.4 (c) shows that for fixed λ, the
implied volatility decreases in (T ) (and also in (λ) with fixed T ).
Case (2d): In this last case, we fix σ(1) = 2.3, λ = 1, and K = 50. The
implied volatility decreases in (T ) and also in |σ(2) − σ(1)|.

Next we consider a three-state model without any absorbing state.
Let T = 0.5, X0 = 50, r = 0.04, σ(1) = 0.2, σ(2) = 0.5, σ(3) = 0.3, and
let the generator be

Q =

⎛
⎝ −1.0 1.0 0.0

0.5 −1.0 0.5
0.0 1.0 −1.0

⎞
⎠ .

Let c(0, x, i), i = 1, 2, 3, denote the call prices. The corresponding
implied volatilities are plotted in Fig. 14.5, which depicts a “grimace”
curve typical in equity markets (e.g. SP500); see Hull (2000). In addi-
tion, note that in this case σ(2) > σ(3) > σ(1), and the implied volatility
exhibits a similar order: IV (α = 2) > IV (α = 3) > IV (α = 1).

The above examples clearly illustrate the advantage of the Markov-
chain modulated volatility model, in particular, its striking simplicity —
it requires fewer parameters than most stochastic volatility models.

Finally, we compare our model with the diffusion-type volatility model
of Hull-White (1987) (also refer to Hull (2000) pp. 458-459). These are
two very different models as explained in the Introduction. The com-
parison below aims to investigate whether the Hull-White model can be
adapted, via taking expectation with respect to the probability law of
the switching mechanism, to price regime-switching options. For sim-
plicity, consider the two-state Markov chain introduced at the beginning
of this section. Recall τ is the switchover time (from state 1 to state 2).
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Figure 14.4. Volatility Smile and Term Structure (σ(1) ≥ σ(2))
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Figure 14.5. Volatility Grimace.

Given τ , we first characterize the average volatility rate needed in the
Hull-White model as follows:

σ =
{ √

(τ/T )σ2(1) + (1 − τ/T )σ2(2), if τ < T
σ(1), if τ ≥ T.

(14.16)

Let cBS(σ) denote the Black-Scholes call price with constant volatility σ;
let c(τ) = cBS(σ(τ)). Then, based on the Hull-White model, the option
is priced as cHW = E[c(τ)].

Consider a set of parameters with K = 50, X0 = 50, r = 0.04,
σ(1) = 0.2, σ(2) = 1, λ = 0.5, and the maturity T varies from 0.1 to 1.
From the results summarized in Table 1, it is evident that the adapted
H-W model fails to match the exact prices (computed using our formula
(14.15)), especially for options with a short maturity.

T 0.10 0.12 0.14 0.20 0.25 0.33 0.50 1.00

H-W 1.0108 1.3040 1.5086 2.1295 2.6316 3.4037 4.8165 8.7926

Exact 1.5114 1.7438 1.9041 2.3975 2.8157 3.4976 4.8389 8.7929

Table 1. Comparison against Conditional H-W.
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We have also tried alternative ways to characterize the average volatil-
ity rate, such as

σ =
√

(τ/2)σ2(1) + (1 − τ/2)σ2(2),

with τ following an exponential distribution confined to [0, 2], i.e., with
the density λ exp(−λt)/(1−exp(−2λ)), t ∈ [0, 2]. (Truncating the distri-
bution at t = 2 is based on the fact that the longest maturity considered
here is T = 1.) These alternatives all seem to perform worse than the
one in (14.16). It is clear that while the adapted H-W model can be
used as an approximation to price regime-switching options, it is not a
substitute for our exact model in general.
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Abstract This work develops a class of stochastic optimization algorithms for
pricing American put options. The stock model is a regime-switching
geometric Brownian motion. The switching process represents macro
market states such as market trends, interest rates, etc. The solutions
of pricing American options may be characterized by certain threshold
values. Here, we show how one can use a stochastic approximation (SA)
method to determine the optimal threshold levels. For option pricing
in a finite horizon, a SA procedure is carried for a fixed time T . As T
varies, the optimal threshold values obtained using stochastic approx-
imation trace out a curve, called the threshold frontier. Convergence
and rates of convergence are obtained using weak convergence methods
and martingale averaging techniques. The proposed approach provides
us with a viable computational approach, and has advantage in terms
of the reduced computational complexity compared with the variational
or quasi-variational inequality approach for optimal stopping.

Keywords: Stochastic approximation, stochastic optimization, weak convergence,
geometric Brownian motion, regime switching, American put option.

1. Introduction
This paper complements Yin, Wang, Zhang and Liu (2005), in which

we proposed a class of recursive stochastic approximation algorithms for
pricing American put options. Asymptotic properties of the algorithms
such as convergence and rates of convergence were stated together with
simulation results. Due to page limitation, the proofs of the results were
omitted in the aforementioned paper, however. Here, we provide the
detailed proofs and developments of the results. The stock model is a
hybrid switching diffusion process, in which a number of diffusions are
modulated by a finite-state Markov chain. The premise of this model
is that the financial markets are sometimes quite calm and at other
times much more volatile. To describe the volatility changes over time,
we use a Markov chain to capture discrete shifts such as market trends
and interest rates etc. For example, a two-state Markov chain can be
used to characterize the up and down trends of a market. It has been
well recognized that the market volatility has a close correlation with
market trends (e.g., volatility associated with a bear market is much
greater than that of a bull market). In the finance literature, the coex-
istence of continuous dynamics and discrete events is also referred to as
regime switching. There is a substantial research devoted to such mod-
els. For example, regime-switching time series was treated in Hamilton
(1989); American options were considered in Barone-Adesi and Whaley
(1987); mean-variance hedging of European options was studied in Di
Masi, Kabanov and Runggaldier (1994). A successive approximation
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scheme for pricing European options was developed in Yao, Zhang and
Zhou (2006), in which the analytic solution was derived and moreover,
a regime-switching model was shown to generate the desired volatility
smile and term structure. In addition to option pricing, regime-switching
models have also been used for such problems as optimal stock selling
rules (Zhang (2001), Yin, Liu and Zhang (2002)), portfolio management
(Zhang and Yin (2004)), and dynamic Markowitz’s problems (Zhou and
Yin (2003)).

We remark that there has been extensive effort for extending classical
geometric Brownian motion models. Additive Poisson jumps were intro-
duced in Merton (1969) together with the geometric Brownian motion
for capturing discontinuities in the price trajectories. Stochastic volatil-
ity models were introduced in Hull and White (1987), in which it was
proven that the European option can be priced as the expected value of
the Black-Scholes price with respect to the distribution of the stochastic
volatility when the volatility is uncorrelated with the asset price. These
models were revisited in Fouque, Papanicolaou, and Sircar (2000) using
a singular perturbation approach.

For Monte Carlo methods used in financial engineering, see Glasser-
man (2003) and the references therein. Recently, perpetual American
options were treated in Guo and Zhang (2004), where it was shown that
in many cases the optimal solutions can be represented by threshold lev-
els (see also Buffington and Elliott (2002)), each of which corresponds
to a given system mode. Although the solution provides insight and
eases difficulty, the computational effort for solving the associated sys-
tem of equations proved to be extensive, especially for Markov chains
with many states, in which closed-form solution may be virtually impos-
sible to obtain. Thus it is of practical value to seek alternatives.

Our work is motivated by the results in Guo and Zhang (2004). Here
we consider a more challenging problem–pricing American options with
finite expiration time in which the modulating Markov chain has possibly
more than two states. We reformulate the optimal stopping problem as
a stochastic optimization problem (in the sense of Kiefer and Wolfowitz;
see Kushner and Yin (2003)) with the objective of finding the optimum
within the class of threshold-value-dependent stopping rules. Using gra-
dient estimates and stochastic approximation methods, we carry out de-
cision making task, construct recursive algorithms, and establish their
convergence and rates of convergence. For recent work on using stochas-
tic optimization type algorithms without Markovian switching, see Fu,
Wu, Gürkan and Demir (2000) and Fu, Laprise, Madan, Su and Wu
(2001) and references therein.
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The premise of our approach is to concentrate on the class of stop-
ping rules depending on some threshold values. We make no attempt
to solve the corresponding variational inequalities or partial differential
equations, but rather treat the underlying problem perimetrically. For
option pricing in a finite horizon, we develop procedures with a fixed
expiration time T and obtain recursive estimates for the optimal thresh-
old value associated with this fixed T . By varying T within a certain
range, we obtain a curve of the threshold points as a function of T . We
call this curve a threshold frontier. For demonstration purpose, we pro-
vide a simple example for illustration in the numerical section. However,
as far as the development of the stochastic approximation algorithm is
concerned, it suffices to work with a fixed T , so we focus on such a case.

Owing to the appearance of the Markov chain, the stochastic ap-
proximation algorithm is not of the usual form. It may be viewed as a
Markov modulated stochastic function optimization problem, for which
care must be taken. We demonstrate that the stochastic approxima-
tion/optimization approach provides an efficient and systematic compu-
tation scheme. In the proposed algorithm, since the noise varies much
faster than that of the parameter, certain averaging takes place and the
noise is averaged out resulting in a projected ordinary differential equa-
tion whose stationary point is the optimum we are searching for. After
establishing the convergence of the algorithm, we reveal how a suitably
scaled and centered estimation error sequence evolve dynamically. It is
shown that a stochastic differential equation is obtained via martingale
averaging techniques under proper normalization. The scaling factor
together with the stationary covariance of this diffusion process gives
us the rates of convergence. For recent development and up-to-dated
account on stochastic approximation methods, we refer the reader to
Kushner and Yin (2003) and the references therein.

The rest of the paper is arranged as follows. Section 2 begins with the
precise formulation of the problem. Focusing on the class of stopping
times depending on threshold values, we use stochastic approximation
methods to resolve the decision making problem by searching for the
optimal threshold values. Finite-difference type gradient estimates are
designed in conjunction with stochastic approximation algorithms. Pro-
jections are used to ensure the iterates to remain in a bounded domain
together with the constraints required by the threshold values. Although
the recursive formula is in discrete time, it depends on the values of a
continuous-time Markov chain describing the regime changes. Thus it
may be considered as a “mixed-time” formulation. Section 3 proceeds
with the convergence and rate of convergence analysis, in which weak
convergence methods are used. Further remarks are made in Section 4.
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Finally, the proofs of results are relegated to Section 5 for preserving the
flow of presentation.

2. Formulation

Hybrid Geometric Brownian Motion Model
Suppose that α(t) is a finite-state, continuous-time Markov chain with

state space M = {1, . . . , m}, which represents market trends and other
economic factors. As a simple example, when m = 2, α(t) = 1 de-
notes a bullish market, whereas α(t) = 2 represents a bearish market.
We adopt the risk-neutral valuation setup. In fact, beginning with a
regime-switching model, one may derive a suitable probability space
upon which the expected rate of return of all securities is equal to the
risk-free interest rate; see Yao, Zhang and Zhou (2006).

Let S(t) be the stock price at time t. We consider a hybrid geometric
Brownian motion model (or geometric Brownian motion with regime
switching). Given a finite horizon T > 0, suppose that S(t) satisfies the
stochastic differential equation

dS(t)
S(t)

= µdt + σ(α(t))dw(t), 0 ≤ t ≤ T, S(0) = S0,(1)

where µ is the risk-free interest rate under a risk-neutral setup, σ(i) is
the volatility when the Markov chain α(t) takes the value i, and w(·)
is a real-valued standard Brownian motion that is independent of α(·).
Note that in (1), the volatility depends on the Markov chain α(t). Define
another process

X(t) =
∫ t

0
r(α(s))ds +

∫ t

0
σ(α(s))dw(s),(2)

where

r(i) = µ − σ2(i)
2

for each i = 1, . . . , m.(3)

Using X(t), we can write the solution of (1) as

S(t) = S0 exp(X(t)).(4)

Let Ft be the σ-algebra generated by {w(s), α(s) : s ≤ t} and AT be
the class of Ft-stopping times that are bounded by T , i.e., AT = {τ : τ
is an Ft-stopping time and τ ≤ T w.p.1}. Consider the American put
option with strike price K and a fixed expiration time T . The objective
is to find the maximum value of a discounted payoff over a class of
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stopping times. The value (optimal payoff) function takes the form: for
each i ∈ M,

v(S0, i) = sup
τ∈AT

E[exp(−µτ)(K − S(τ))+|S(0) = S0, α(0) = i].(5)

In Guo and Zhang (2004), assuming that the modulating Markov
chain has only two states, perpetual American put options are consid-
ered. It is shown that the optimal stopping rule is given in terms of two
threshold levels (θ1, θ2) such that the optimal exit time is

τ∗ = inf{t ≥ 0 : (S(t), α(t)) �∈ D∗}(6)

with D∗ = {(θ1,∗,∞)× {1}} ∪ {(θ2,∗,∞)× {2}}, and that the threshold
pair (θ1,∗, θ2,∗) can be obtained by solving a set of algebraic equations.

In general, the situation is much more involved and difficult when we
treat American put options with a finite expiration date and allow the
state space M to have more than two elements. It is shown in Buffing-
ton and Elliott (2002) that the continuation regions under the optimal
stopping setting can be written in terms of threshold pairs (θ1,∗, θ2,∗).
In this paper, we consider the case when the optimal stopping rule is
of the threshold form (6). We propose an alternative approach using
stochastic approximation method aiming to provide a systematic treat-
ment for more general situation for a finite T . At any finite time T , we
obtain an approximation to the optimal threshold value. For different
T , we obtain a collection of associated optimal threshold estimates. The
trajectory of threshold points, as a function of T , will be defined as a
threshold frontier in what follows.

A Stochastic Approximation Approach
Owing to the dependence of optimal solution on the threshold values

in connection with option pricing, we focus on a class of stopping times,
which depend on a vector-valued parameter θ. The problem is converted
to a stochastic approximation problem. The basic premise stems from a
twist of the optimal stopping rules. The rational is to concentrate on the
class of stopping times depending on threshold values in lieu of finding
the optimal stopping time among all stopping rules. It will be seen that
such an approach provides us with a viable computational approach, and
has distinct advantage in terms of the reduced computational complex-
ity compared with the optimal stopping approach. Within the class of
threshold-type solutions, let τ be a stopping time depending on θ defined
by

τ = τ(θ) = inf{t > 0 : (X(t), α(t)) �∈ D(θ)} ∧ T,(7)
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where θ = (θ1, . . . , θm)′ ∈ R
m×1 with

D(θ) = {(θ1,∞) × {1}} ∪ · · · ∪ {(θm,∞) × {m}}.(8)

We aim at finding the optimal threshold level θ∗ = (θ1∗, . . . , θm∗ )′ so that
the expected return is maximized. The problem can be rewritten as:

Problem P :
{

Find argmax ϕ(θ),
ϕ(θ) = E

{
exp(−µτ(θ))(K − S(τ(θ)))+

}
.

Note that the expectation above depends on the initial Markov state α,
so does the objective function. For notational simplicity, we suppress
the α dependence in what follows.

SA for Fixed T . Consider the problem of pricing a finite horizon
American put option. For each fixed T > 0, we develop a stochastic
recursive procedure to resolve the problem by constructing a sequence
of estimates of the optimal threshold value θ∗ using

θn+1 = θn + εn{noisy gradient estimate of ϕ(θn)},
where {εn}, representing the step size of the algorithm, is a sequence of
real numbers satisfying εn > 0, εn → 0, and

∑
n εn = ∞.

Threshold Trajectory. For different T , we obtain a collection of asso-
ciated optimal threshold estimates. The trajectory of threshold points is
a function of T , which we call it a threshold frontier or threshold trajec-
tory. As far as the stochastic recursions are concerned, the algorithms
are the same for each T . Thus, in what follows, we will concentrate on
a fixed T . Nevertheless, in the numerical demonstration, we will depict
the threshold evolution with respect to the time T .

Recursive Algorithms
We use a simple noisy finite-difference scheme for the gradient esti-

mates of ϕ(θ). Note (1) and use X(t) given by (2). The algorithm can
be outlined as follows:

1 Initialization: Choose an arbitrary θ0.

2 Computer θ1

Determine τ(θ0).
Construct gradient estimate.
Carry out one step SA to get θ1.

3 Iteration: Assuming θn has been constructed, repeat Step 2 above
with θ1 replaced by θn+1 and θ0 replaced by θn.
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Now, we provide more detailed description of the algorithm as follows.
Initially, choose an arbitrary estimate θ0 = (θ1

0, . . . , θ
m
0 )′ ∈ R

m×1. Deter-
mine τ(θ0), the first time that (X(t), α(t)) escapes from D(θ0) defined
in (8). That is,

τ(θ0) = inf{t > 0 : (X(t), α(t)) �∈ D(θ0)} ∧ T.

Depending on if we use simulation (or observe the market data),
exp(−µτ(θ0))(K − S(τ(θ0)))+ can be simulated (or observed) through

Ô(θ0, ξ̃0) = ϕ̃(θ0) + χ(θ0, ξ̃0), with

ϕ̃(θ0) = exp(−µτ(θ0))(K − S(τ(θ0)))+,

where χ(θ0, ξ̃0) is the simulation error (or observation noise). Here ξ0

(and in what follows, ξn) is a combined process that includes the random
effects from X(t) and the stopping time at designated stopping time.
[In what follows, we call {ξn} the sequence of collective noise or simply
refer to it as the noise throughout the rest of the paper.] Construct the
difference quotient

(Dϕ̂0)i

=
Ô(θ1

0, . . . , θ
i
0 + δ0, . . . , θ

m
0 , ξ+

0,i) − Ô(θ1
0, . . . , θ

i
0 − δ0, . . . , θ

m
0 , ξ−0,i)

2δ0
,

where ξ±0,i are two different noise vectors used, and {δn} is a sequence
of real numbers satisfying δn ≥ 0 and δn → 0 in a suitable way (e.g., if
we choose εn = 1/(n + 1), we can use δn = 1/(n + 1)1/6; see Kushner
and Yin (2003)). Now, (Dϕ̂0)iI{α(τ(θ0))=i} denotes the ith component of
the gradient estimate. With the θ0 and the above gradient estimate, we
compute θ1 = (θ1

1, θ
2
1, . . . , θ

m
1 )′ ∈ R

m×1 according to

θi
1 = θi

0 + ε0(Dϕ̂0)iI{α(τ(θ0))=i},

where IA is the indicator of the set A.
Suppose that θn has been computed. Choose

τ(θn) = inf{t ≥ 0 : (X(t), α(t)) �∈ D(θn)} ∧ T,

and observe

Ô(θn, ξ̃n) = ϕ̃(θn) + χ(θn, ξ̃n), where

ϕ̃(θn) = exp(−µτ(θn))(K − S(τ(θn)))+,



Pricing American Put Options Using Stochastic Optimization Methods 309

and χ(θn, ξ̃n) is the simulation error or observation noise. Construct

(Dϕ̂n)i

=
Ô(θ1

n, . . . , θi
n + δn, . . . , θm

n , ξ+
n,i) − Ô(θ1

n, . . . , θi
n − δn, . . . , θm

n , ξ−n,i)
2δn

.

Then the stochastic approximation algorithm takes the form

θi
n+1 = θi

n + εn(Dϕ̂n)iI{α(τ(θn))=i}, for i = 1, . . . , m.(9)

Before proceeding further, we would like to comment on the above
algorithm. Owing to the presence of the Markov chain, (9) is not a
standard stochastic approximation algorithm. Care must be taken to
deal with the added complexity.

To ensure the boundedness of the iterates, we use a projection algo-
rithm and write

θi
n+1 = Π[θi

l ,θ
i
u][θ

i
n + εn(Dϕ̂n)iI{α(τ(θn))=i}], for i = 1, 2, . . . , m,(10)

where for each real-valued θi,

Π[θi
l ,θ

i
u]θ

i =

⎧⎨⎩ θi
l , if θi < θi

l ,
θi
u, if θi > θi

u,
θi, otherwise.

The projection can be explained as follows. For component i, after θi
n +

εn(Dϕ̂n)iI{α(τ(θn))=i} is computed, compare its value with the bounds
θi
l and θi

u. If the update is smaller than the lower value θi
l , reset the

value to θi
l , if it is larger than the upper value θi

u, reset its value to θi
u,

otherwise keep its value as it was.

3. Asymptotic Properties
This section presents asymptotic properties of the recursive algorithm.

It consists of two parts, convergence and rates of convergence. To analyze
the recursive algorithm proposed in the last section, we use weak con-
vergence method and martingale averaging. The results are presented,
and the proofs are deferred to Section 5.

Convergence
The basic idea lies in using an approach, known as ODE method

(see Kushner and Yin (2003)) in the literature, to connect discrete-time
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iterates with continuous-time dynamic systems. Instead of dealing with
the discrete iterates directly, we take a continuous-time interpolation
and examine its asymptotic properties. To be more specific, let

tn =
n−1∑
j=0

εj , and m(t) = max{n : tn ≤ t},(11)

and define

θ0(t) = θn for t ∈ [tn, tn+1), and θn(t) = θ0(t + tn).

Thus θ0(·) is a piecewise constant process and θn(·) is its shift. The shift
is used to bring the asymptotics to the foreground. It is readily seen
that θn(·) lives in D([0, T ] : R

m), the space of functions defined on [0, T ]
taking values in R

m such that the functions are right continuous, have
left limits, and are endowed with the Skorohod topology (see Kushner
and Yin (2003)).

To proceed, introduce the notation

Dϕ̂n = ((Dϕ̂n)1, . . . , (Dϕ̂n)m)′ ∈ R
m×1.

Then (10) can be written as

θn+1 = Π[θn + εn1α(τ(θn))Dϕ̂n].(12)

Moreover, (12) can be further written as

θn+1 = θn + εn1α(τ(θn))Dϕ̂n + εnzn,(13)

where εnzn = θn+1−θn−εn1α(τ(θn))Dϕ̂n is known as a “reflection” term,
the minimal force needed to bring the iterates back to the projection
region if they ever escape from the constraint set (18). Using the notation
in (13), it is readily seen that

θn(t) = θn +
m(tn+t)−1∑

j=n

εj1α(τ(θj))Dϕ̂j +
m(tn+t)−1∑

j=n

εjzj .(14)

Set

Zn(t) =
m(tn+t)−1∑

j=n

εjzj .(15)
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In analyzing stochastic recursive algorithms, one often wishes to sep-
arate the effect of bias and noise. This can be done as follows:

bi
n =

ϕ̃(θ1
n, . . . , θi

n + δn, . . . , θm
n ) − ϕ̃(θ1

n, . . . , θi
n − δn, . . . , θm

n )
2δn

×Iα(τ(θn))=i} − ϕθi(θn),

bn = (b1
n, . . . , bm

n )′,

ψi(θ, ξn,i) = χ(θ, ξ+
n,i) − χ(θ, ξ−n,i),

ψ(θn, ξn) = (ψ1(θn, ξn,1), . . . , ψm(θn, ξn,m))′,

where ϕθi(θ) = (∂/∂θi)ϕ(θ). In the above, bn is known as a bias term
and ψ(θ, ξn) as a “noise” term. Note that in fact bn is also θn dependent.
For future use, using bn and ψ(·), we may also write the recursive formula
in an expansive form as

θi
n+1 = Π[θi

l ,θ
i
u][θ

i
n + εn[ϕθi(θn) + bi

n +
ψi(θn, ξn,i)

2δn
I{α(τ(θn))=i}]],(16)

or its equivalent vector notation

θn+1 = Π
[
θn + εn[ϕθ(θn) + bn + 1α(τ(θn))

ψ(θn, ξn)
2δn

]
]
,(17)

where Π is the projection onto the box constraint set

[θ1
l , θ

1
u] × [θ2

l , θ
2
u] × · · · × [θm

l , θm
u ],(18)

1α(τ(θ)) = diag(I{α(τ(θ))=1}, . . . , I{α(τ(θ))=m}) ∈ R
m×m,

and diag(A1, . . . , Al) denotes a block diagonal matrix such that each Ai

has an appropriate dimension. Using an expansive form (17), we have

θn+1 = θn + εn

[
ϕθ(θn) + bn + 1α(τ(θn))ψ(θn, ξn)

]
+ εnzn.(19)

To establish the convergence of the algorithm, We will use the following
conditions.

(A1) The sequences {εn} and {δn} are chosen so that 0 < δn, εn → 0,
εn/δ2

n → 0, as n → ∞, and that
∑

n εn = ∞. Moreover,

lim sup
n

(εn+k/εn) < ∞, lim sup
n

(δn+k/δn) < ∞,

lim sup
n

[(εn+k/δ2
n+k)/(εn/δ2

n)] < ∞.
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In addition, there is a sequence of positive integers {γn} satisfying
γn → ∞ sufficiently slowly such that

sup
0≤i≤γn

∣∣∣εn+i

εn
− 1

∣∣∣ → 0 as n → ∞.(20)

(A2) For each ξ, the function ψ(·, ξ) is continuous; for each i = 1, . . . , m,
the sequences {ξ±n,i} are stationary such that

E|χ(θ, ξ±n,i)|2+γ < ∞ for some γ > 0 and Eχ(θ, ξ±n,i) = 0 for each θ.

Moreover, as k → ∞,

1
k

�+k∑
j=�

E�
ψ(θ, ξj)

2δj
→ 0 in probability,(21)

where E� denotes the conditional expectation with respect to F�,
the σ-algebra generated by {α(u), u ≤ t�; θ0, ξ

±
j,i : j < �, i =

1, . . . , m}.
Remark 3.1 Condition (A1) is for convenience. It is not a restriction
since we can choose {δn} and {εn} at our will. For example, we may
choose εn = O(1/n) and δn = O(1/n1/6); in this case, (A1) is read-
ily verified. In view of the definition of ψ(θ, ξn), it is easily seen that
E|ψ(θ, ξn)|2+γ < ∞ and Eψ(θ, ξn) = 0 for each θ. Note that (21) is
an averaging condition of law of large numbers type. In fact, we only
require the law of large numbers hold in the sense of in probability. It
indicates that the observation noise is averaged out. In the simulation,
one often uses uncorrelated sequences. In such a case, the averaging
condition is readily verified. If {ξn} is a sequence of φ-mixing processes
(see Billingsley (1968)), which indicates the remote past and distant fu-
ture being asymptotically independently, then (21) is also verified. The
continuity of ψ(·, ξ) is for convenience. In fact, only weak continuity
(continuity in the sense of in expectation) is needed. Thus, indicator
type of functions can be treated. To proceed, we state the convergence
result next.

Theorem 3.2. Assume (A1) and (A2). Suppose, in addition, the dif-
ferential equation

θ̇(t) = ϕθ(θ(t)) + z(t)(22)

has a unique solution for each initial condition θ(0). Then θn(·) con-
verges weakly to θ(·) such that θ(·) is a solution of (22).
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Corollary 3.3. Under the conditions of Theorem 3.2, suppose that
θ∗ is a unique asymptotically stable point of (22) being interior to the
constraint set and that {T̂n} is a sequence of real numbers satisfying
T̂n → ∞ as n → ∞. Then θn(T̂n + ·) converges weakly to θ∗.

Remark 3.4. Note that (22) is known as a projected ODE; see Chapter
4 of Kushner and Yin (2003). The term z(t) is due to the reflection or
projection constraint. To prove Theorem 3.2, our plan is as follows. We
first show that {θn(·)} is tight and then we characterize the limit process
by use of the martingale averaging techniques. To prove Theorem 3.2,
we proceed by establishing a sequence of lemmas.

Tightness of θn(·).
Lemma 3.5. Under the conditions of Theorem 3.2, θn(·) is tight in
D([0, T ] : R

m).

In fact, we obtain the tightness of a pair of processes (θn(·), Zn(·)).
Therefore, by Prohorov’s theorem, we can extract a weakly conver-
gent subsequence. Select such a subsequence and still denote it by
(θn(·), Zn(·)) without loss of generality and for notational simplicity.
Denote the limit by (θ(·), Z(·)). By the Skorohod representation (with-
out changing notation), we may assume that (θn(·), Zn(·)) → (θ(·), Z(·))
w.p.1 and the convergence is uniform on any compact time interval.

ODE Limit. To characterize the limit process, choose a sequence
of positive integers {βn} satisfying βn ≤ γn (with γn given in (A1)) and
βn → ∞. For j ≥ n, define

qn
j =

j−1∑
i=n

βi, and tnj =
n+qn

j −1∑
i=n

εi.(23)

Using the sequence tnj defined in (23), in lieu of (14), Zn(t) may be
rewritten as

Zn(t) =
∑

j:tnj <t

εjzj .

Owing to (23), βj = qn
j+1 − qn

j , and

∆n
j = tnj+1 − tnj =

n+qn
j+1−1∑

i=n+qn
j

εi

=
n+qn

j+1−1∑
i=n+qn

j

( εi

εn+qn
j

− 1
)
εn+qn

j
+

n+qn
j+1−1∑

i=n+qn
j

εn+qn
j
.
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By virtue of (A1) and (23),

βjεn+qn
j

= ∆n
j + η(j, n),(24)

where η(j, n) → 0 as j, n → ∞. In other words, we can approximate
βjεn+qn

j
by ∆n

j with an approximation error going to 0 as j, n → ∞.
Using the approximation (24), in view of the continuous-time inter-

polation, we have

θn(t + s) − θn(t)

=
∑

j:tnj ∈[t,t+s)

(θj+1 − θj)

=
∑

j:tnj ∈[t,t+s)

εj1α(τ(θj))Dϕ̂j +
∑

j:tnj ∈[t,t+s)

εjzj

=
∑

j:tnj ∈[t,t+s)

n+qn
j+1−1∑

i=n+qn
j

εi1α(τ(θi))Dϕ̂i +
∑

j:tnj ∈[t,t+s)

n+qn
j+1−1∑

i=n+qn
j

εizi

=
∑

j:tnj ∈[t,t+s)

βjεn+qn
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

1α(τ(θi))Dϕ̂i

+
∑

j:tnj ∈[t,t+s)

βjεn+qn
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

zi

+
∑

j:tnj ∈[t,t+s)

1
βj

n+qn
j+1−1∑

i=n+qn
j

[βj(εi − εn+qn
j
)]1α(τ(θi))Dϕi

+
∑

j:tnj ∈[t,t+s)

1
βj

n+qn
j+1−1∑

i=n+qn
j

[βj(εi − εn+qn
j
)]zi,

as a result,

θn(t + s) − θn(t) =
∑

j:tnj ∈[t,t+s)

∆n
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

1α(τ(θi))Dϕ̂i

+
∑

j:tnj ∈[t,t+s)

∆n
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

zi + o(1),

(25)

where o(1) → 0 in probability uniformly in t.
Compared with the usual stochastic approximation algorithms, the

iterations and the interpolated processes all involve a Markov chain. To



Pricing American Put Options Using Stochastic Optimization Methods 315

take into account of this additional Markov chain, we state two lemmas
first. The first lemma is on the weak continuity of τ(θ), and the second
one reveals that the matrix-valued indicator 1α(τ(θi)) can be replaced by
1α(τ(θn+qn

j
)) with an error term goes to 0 in probability. These lemmas

will help us to derive the limit results Theorem 3.2 and Corollary 3.3.
The proofs are postponed to Section 5.

Lemma 3.6. Assume that (A1) and (A2) hold. Then τ(θ) is weakly
continuous in the sense that θ → θ̃ implies Eτ(θ) → Eτ(θ̃).

Lemma 3.7. Assume that (A1) and (A2) hold. Then

ζn =
∑

j:tnj ∈[t,t+s)

∆n
j ζ̃n

j
def=

∑
j:tnj ∈[t,t+s)

∆n
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

1α(τ(θi))Dϕ̂i

=
∑

j:tnj ∈[t,t+s)

∆n
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

1α(τ(θn+qn
j

))Dϕ̂i + o(1),

where o(1) → 0 in probability uniformly in t.

Rates of Convergence
We begin with the examination of scaled sequences of the centered

estimation error θn − θ∗. Suppose that εn = O(1/nγ1), δn = O(1/nγ2),
with 0 < γ1, γ2 ≤ 1. Rates of convergence of the recursive algorithm
are concerned with the scaling of nγ3(θn−θ∗), leading a nontrivial limit,
and the corresponding asymptotic covariance. It turns out, γi satisfy
γ3 − 2γ2 ≤ 0 and γ3 + γ2 − γ1/2 ≤ 0, and the largest γ3 is obtained with
equality replacing the inequalities.

This subsection is divided into two parts. In the first part, using per-
turbed Liapunov function argument, we establish the tightness of the
sequence {n(1/3)γ1(θn − θ∗)}. This is essentially a stability result. It
reveals how fast the estimation error varies and exploits the dependence
of the error θn − θ∗ on the iteration number n. In the second part, we
further examine the scaled sequence through its continuous-time interpo-
lation, and show that the scaled sequence converges weakly to a diffusion
process. The scaling factor together with the stationary covariance of
the diffusion process gives us the desired rate result.

Tightness of Scaled and Centered Iterates. Let us assume
that the following conditions are satisfied.
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(A3) Suppose that there is a Liapunov function V (·) : R
m → R such that

the second order mixed partial derivatives of V (·) are continuous,
and Vθ(θ)ϕθ(θ) ≤ −λV (θ) for some λ > 0.

(A4) The second mixed partial derivatives of ϕ(·) are continuous. For
each ξ,

ψ(θ, ξ) = ψ(θ∗, ξ) +
∫ 1

0
[ψ(θ∗ + s(θ − θ∗), ξ) − ψ(θ∗, ξ)]ds.

For each θ,
∞∑

j=n

E|Enψ(θ, ξj)| < ∞.

Remark 3.8. Condition (A3) requires the existence of a Liapunov func-
tion for the limit ODE. The precise form of V (·) need not be known. Con-
dition (A4) poses certain smoothness like conditions on ψ(θ, ξ). If ψ(θ, ξ)
is independent of θ, then this condition is not needed. The summability
of

∑
j E|Enψ(θ, ξj)| is satisfied if ψ(θ, ξj) is a uniform mixing process

with a summable mixing rate (see Billingsley (1968)), which is a typical
assumption.

Theorem 3.9. Assume (A1)–(A4). Use εn = 1/(n+ 1)γ1, δn = δ/(n+
1)γ1/6, and γ3 = 1/(n + 1)γ1/3. Then EV (θn) = O(1/n(2/3)γ1).

Corollary 3.10. Take γ1 = 1. If the Liapunov function is locally
quadratic, i.e.,

V (θ) = (θ − θ∗)′A(θ − θ∗) + o(|θ − θ∗|2),
where A is a symmetric positive definite matrix, then {n1/3(θn − θ∗)} is
tight.

Diffusion Limit. This section is devoted to the limit of the scaled
estimation error {n1/3(θn − θ∗)}. Define un = n1/3(θn − θ∗). Since θ∗ is
interior to the constraint set, we may drop the term zn without loss of
generality. We will also work with interpolated process, and define

un(t) = un+i for t ∈ [tn+i − tn, tn+i+1 − tn) for i ≥ 0,

where tn is defined in (11). In what follows, for simplicity, we work
with the case εn = O(1/n). There are also apparent analog of the cases
εn = O(1/nγ1) although we will not dwell on it here. To proceed, we
state the following condition.
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(A5) The following conditions hold:

(a) The matrix ϕθθ(θ∗) + I/3 is stable (i.e., all of its eigenvalues
have negative real parts).

(b) The sequence

m(tn+t)∑
j=m(tn)

1
j1/2

ψ(θ∗, ξj)

converges weakly to a Brownian motion w̃(t) with covariance
Σ(θ∗)t.

(c) For each ξ, ψθ(·, ξ) exists and is continuous.

In view of the scaling and (A5), we have

un+1 =
(n + 1

n

)1/3
un +

(n + 1
n

)1/3 1
n

[
ϕθθ(θ̃n,∗)un + n1/3bn

+n1/31α(τ(θn))[
ψ(θ∗, ξn)

2δn
+

ψθ(θ̂n,∗, ξn)
2δn

un]
]
,

where θ̃n,∗ and θ̂n,∗ denote points on the line segments joining θn and
θ∗. Noting ((n + 1)/n)1/3 = 1 + 1/(3n) + o(1/n), we need only consider
another sequence {vn} defined by

vn+1 = vn +
1
n

(
ϕθθ(θ∗) +

I

3n

)
vn

+
1
n

[ϕθθ(θ̃n,∗) − ϕθθ(θ∗)]vn +
1
n

(n1/3bn)

+
1

n1/2
1α(τ(θ∗))ψ(θ∗, ξn) +

1
n1/2

1α(τ(θ∗))ψθ(θ̂n,∗, ξn)vn.

Define the corresponding interpolation vn(t) as in that of un(·) with the
replacement of un by vn. It can be shown that the vn(·) so defined will
have the same limit as that of un(·). In fact bn = bn(θ). An expansion
of the term bn(θn) yields that

n1/3bi
n = n1/3bi

n(θn) =
1
3!

ϕθiθiθi(θ∗)δ2 + o(1), i ∈ M.
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In the above, i indices the ith component. Using Lemma 3.6, it can be
proved that

vn,i(t + s) = vn,i(t) +
m(tn+t+s)−1∑

j=m(tn+t)

1
j
[(ϕθθ(θ∗) +

I

3
)vj ]i

+
m(tn+t+s)−1∑

j=m(tn+t)

1
j

[
[ϕθθ(θ̃n,∗) − ϕθθ(θ∗)]vj

]i

+
m(tn+t+s)−1∑

j=m(tn+t)

1
3!

1
j
ϕθiθiθi(θ∗)δ2

+
m(tn+t+s)−1∑

j=m(tn+t)

1√
j
[1α(τ(θ∗))ψ(θ∗, ξj)]i + o(1),

where o(1) → 0 in probability uniformly in t. Using an argument sim-
ilar to the proof of Theorem 3.2 for this Markov modulated stochastic
approximation together with the techniques in Kushner and Yin (2003),
we derive the following theorem although the details are omitted.

Theorem 3.11. Under conditions (A1)–(A5), un(·) converges weakly
to u(·) such that u(·) satisfies the stochastic differential equation

du = (ϕθθ(θ∗) + I/3)udt +

⎛⎝ ϕθ1θ1θ1(θ∗)
...

ϕθmθmθm(θ∗)

⎞⎠ δ2

3!
dt

+
1α(τ(θ∗))Σ(θ∗)

2δ
dw,

(26)

where w(·) is a standard Brownian motion.

Remark 3.12. Note that in Theorem 3.11, we have replaced the Brow-
nian motion w̃(·) by a standard Brownian motion together with a dif-
fusion matrix 1α(τ(θ∗))Σ(θ∗). If in lieu of εn = O(1/n), εn = O(1/nγ1)
is used with 0 < γ1 < 1, then un is changed to un = n(1/3)γ1(θn − θ∗).
Redefine un(·). Under similar conditions as in Theorem 3.11 with (A5)
(a) replaced by ϕθθ(θ∗) being stable, Theorem 3.11 still holds. However,
(26) is changed to

du = ϕθθ(θ∗)udt +

⎛⎝ ϕθ1θ1θ1(θ∗)
...

ϕθmθmθm(θ∗)

⎞⎠ δ2

3!
dt +

1α(τ(θ∗))Σ(θ∗)
2δ

dw.(27)
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4. Further Remarks
In this paper, we developed stochastic approximation algorithms for

pricing American put options. The recursive algorithms enable us to
determine the optimal threshold levels in a systematic way. Only finite-
difference gradient estimates are considered; variants of such algorithms
can be designed. Simple finite difference gradient estimates are used in
this paper. To construct the gradient estimates, the so-called infinites-
imal perturbation analysis in Ho and Cao (1991) can be used; see also
Fu, Wu, Gurkan and Demir (2000).

5. Proofs of Results

Proof of Lemma 3.5. For any δ > 0, t, s > 0 with 0 < s ≤ δ,

E
∣∣∣θn(t + s) − θn(t)

∣∣∣2 ≤ KE
∣∣∣m(tn+t+s)−1∑

j=m(tn+t)

εj1α(τ(θj))Dϕ̂j

∣∣∣2
+KE

∣∣∣m(tn+t+s)−1∑
j=m(tn+t)

εjzj

∣∣∣2.
Owing to the truncation, {θn} is bounded, so

lim
δ→0

lim sup
n→∞

E
∣∣∣m(tn+t+s)−1∑

j=m(tn+t)

εj1α(τ(θj))Dϕ̂j

∣∣∣2 = lim
δ→0

lim sup
n→∞

O(δ2) = 0.

Moreover, we also obtain

lim
δ→0

lim sup
n→∞

E
∣∣∣m(tn+t+s)−1∑

j=m(tn+t)

εjzj

∣∣∣2
≤ K lim

δ→0
lim sup

n→∞
E
[m(tn+t+s)−1∑

j=m(tn+t)

εj |Dϕ̂j |
]2

≤ K lim
δ→0

lim sup
n→∞

E
[m(tn+t+s)−1∑

j=m(tn+t)

εj |Ô(θj , ξ̃j)|
]2

= lim
δ→0

lim sup
n→∞

O(δ2) = 0.

The estimate above implies that {Zn(·)} is tight. In the above, we have
used (A2) to get the boundedness of the second moment. Combining
the estimates above, an application of Theorem 3 in page 47 of Kushner
(1984) yields the tightness of {θn(·)}. The lemma is concluded. �
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Proof of Lemma 3.6. Suppose not. That is, τ(θ) is not weakly con-
tinuous, namely,

θ − θ̃ → 0 but Eτ(θ) − Eτ(θ̃) �→ 0.(28)

Without loss of generality, we may assume that Eτ(θ)−Eτ(θ̃) > 0. By
virtue of the definition of D(θ), we have |diam(D(θ))−diam(D(θ̃))| → 0,
where diam(A) denotes the diameter of the set A. Since

(X(τ(θ)), α(τ(θ))) ∈ D(θ) and (X(τ(θ̃)), α(τ(θ̃))) ∈ D(θ̃),

EX(τ(θ)) − EX(τ(θ̃)) → 0.(29)

On the other hand, using (2),

EX(τ(θ)) − EX(τ(θ̃)) = E

∫ τ(θ)

τ(θ̃)
r(α(s))ds.(30)

Suppose that there is no jump between τ(θ̃) and τ(θ). Then by virtue
of the piecewise constant behavior of α(t) and (29), it is easily shown
that |Eτ(θ) − Eτ(θ̃)| → 0, which is a contradiction to (28). If there is
one jump between τ(θ̃) and τ(θ), denote the jump time by τ̃1. Then∣∣∣E ∫ τ(θ)

τ(θ̃)
r(α(s))ds

∣∣∣ =
∣∣∣E[r0(τ̃1 − τ(θ̃)) + r1(τ(θ) − τ̃1)]

∣∣∣, so

∣∣∣E ∫ τ(θ)

τ(θ̃)
r(α(s))ds

∣∣∣ ≥ E[|r0|(τ̃1 − τ(θ̃)) − |r1|(τ(θ) − τ̃1)],(31)

where r0 and r1 are the constant values taken by r(α(t)) at τ(θ̃) and τ̃1,
respectively, and where without loss of generality, we have assumed that
|r0|E(τ̃1 − τ(θ̃)) − |r1|E(τ(θ) − τ̃1) > 0. Let 0 < c1 < 1 be a constant
satisfying

c1E|r0|(τ̃1 − τ(θ̃)) > E|r1|(τ(θ) − τ̃1).(32)

Then it follows from (31),∣∣∣ ∫ τ(θ)

τ(θ̃)
r(α(s))ds

∣∣∣ ≥ (1 − c1)|r0|E(τ̃1 − τ(θ̃)).(33)

This implies that E[τ̃1 − τ(θ̃)] → 0. Using (32) again, we also have
E[τ(θ) − τ̃1] → 0. Therefore,

E[τ(θ) − τ(θ̃)] = E[τ(θ) − τ̃1] + E[τ̃1 − τ(θ̃)] → 0,
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which is a contradiction to (28). Suppose that more than one jumps
occur between τ(θ̃) and τ(θ). We denote the jump times by τ̃j with
τ(θ̃) < τ̃1 < τ̃2 < · · · < τ̃k1 < τ(θ). In view of (31),

∣∣∣E ∫ τ(θ)

τ(θ̃)
r(α(s))ds

∣∣∣
≥ E

[
|r0|(τ̃1 − τ(τ̃)) −

∣∣∣ k1−1∑
j=1

rj(τ̃j+1 − τ̃j)
∣∣∣− |rk1(τ(θ) − τ̃k1)|

]
≥ E

[
|r0|(τ̃1 − τ(τ̃)) − r̃max(τ̃k1 − τ̃1) − r̃max(τ(θ) − τ̃k1)

]
≥ E

[
|r0|(τ̃1 − τ(τ̃)) − r̃max(τ(θ) − τ̃1)

]
,

where r̃max = maxj |rj | (Recall that the values of rj belong to a finite set
since α(t) is a finite-state Markov chain). Then using similar estimates as
in the case having one jump between τ(θ̃) and τ(θ), we obtain E[τ(θ)−
τ(θ̃)] → 0, which is again a contradiction to (28). �
Proof of Lemma 3.7. In view of the interpolation and the choice of
∆n

j , to derive the desired result, it suffices to consider the term ζ̃n
j . In

fact, we have

ζ̃n
j =

1
βj

n+qn
j+1−1∑

i=n+qn
j

1α(τ(θn+qn
j

))Dϕ̂i+
1
βj

n+qn
j+1−1∑

i=n+qn
j

[1α(τ(θi))−1α(τ(θn+qn
j

))]Dϕ̂i.

Examining the last term above, using the projection and the bounded-
ness of E1/2|Dϕ̂i|2 (owing to the projection and the continuity of Dϕ̂i

with respect to θ), by virtue of the Cauchy-Shwartz inequality, we have

E
∣∣∣ 1
βj

n+qn
j+1−1∑

i=n+qn
j

[1α(τ(θi)) − 1α(τ(θn+qn
j

))]Dϕ̂i

∣∣∣
≤ 1

βj

n+qn
j+1−1∑

i=n+qn
j

E|1α(τ(θi)) − 1α(τ(θn+qn
j

))||Dϕ̂i|

≤ K

βj

n+qn
j+1−1∑

i=n+qn
j

E1/2|1α(τ(θi)) − 1α(τ(θn+qn
j

))|2

≤ K

βj

n+qn
j+1−1∑

i=n+qn
j

max
1≤�≤m

E1/2|I{α(τ(θi))=�} − I{α(τ(θn+qn
j

))=�}|2.
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Thus, it suffices to examine

E[I{α(τ(θi))=�} − I{α(τ(θn+qn
j

))=�}]2, for � = 1, . . . , m.

It is readily seen

E[I{α(τ(θi))=�} − I{α(τ(θn+qn
j

))=�}]2

= P (α(τ(θi)) = �) − 2P (α(τ(θi)) = �, α(τ(θn+qn
j
)) = �)

+P (α(τ(θn+qn
j
)) = �)

= [P (α(τ(θi)) = �) − P (α(τ(θn+qn
j
)) = �)

×P (α(τ(θi)) = �|α(τ(θn+qn
j
)) = �)]

+P (α(τ(θn+qn
j
)) = �)[1 − P (α(τ(θi)) = �|α(τ(θn+qn

j
)) = �)].

Using the defining relation (13) and the choice of the sequence {qn
j },

θi − θn+qn
j
→ 0 as n → ∞, for all i satisfying n + qn

j ≤ i < n + qn
j+1, and

moreover,

P (α(τ(θi)) = �) − P (α(τ(θn+qn
j
)) = �) → 0,

P (α(τ(θi)) = �|α(τ(θn+qn
j
)) = �) → 1.

Thus E[I{α(τ(θi))=�} − I{α(τ(θn+qn
j

))=�}]2 → 0, and we conclude that

E
∣∣∣ 1
βj

n+qn
j+1−1∑

i=n+qn
j

[1α(τ(θi)) − 1α(τ(θn+qn
j

))]Dϕ̂i

∣∣∣ → 0.

The lemma is proved. �
Completion of Proof of Theorem 3.2. To derive the limit dynamic
system for θ(·), we start with the interpolation process indexed by n. In
view of (25), Lemma 3.7 implies that

θn(t + s) − θn(t) =
∑

j:tnj ∈[t,t+s)

∆n
j

1
βj

1{α(τ(θn+qn
j ))}

n+qn
j+1−1∑

i=n+qn
j

Dϕ̂i

+
∑

j:tnj ∈[t,t+s)

∆n
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

zi + o(1),

where o(1) → 0 in probability uniformly in t.
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Note that using the expansive form (see (17) and (19)), θn(t) can also
be written as

θn(t) = θn(0) + gn(t) + b̃n(t) + ψ̃n(t) + Zn(t),(34)

where
gn(t) =

∑
j:tnj <t

εjϕθ(θj),

b̃n(t) =
∑

j:tnj <t

εjbj ,

ψ̃n(t) =
∑

j:tnj <t

εj1α(τ(θj))
ψ(θj , ξj)

2δj
.

Define
Mn(t) = θn(t) − θn(0) − gn(t) − Zn(t).(35)

It is readily seen that we also have

Mn(t) = b̃n(t) + ψ̃n(t).(36)

Using (36), for any positive integer κ0, any 0 < t� ≤ t ≤ t + s, and any
bounded and continuous functions ρ�(·), with � ≤ κ0,

E

κ0∏
�=1

ρ�(θn(t�), Zn(t�))[Mn(t + s) − Mn(t)]

−E

κ0∏
�=1

ρ�(θn(t�), Zn(t�))[̃bn(t + s) − b̃n(t)]

−E

κ0∏
�=1

ρ�(θn(t�), Zn(t�))[ψ̃n(t + s) − ψ̃n(t)] = 0.

We proceed to figure out the limit of each of the terms above. As j → ∞,
βj → ∞, and ∆n

j → 0. In view of the definitions of gn(·) and b̃n(·), we
have that

b̃n(t + s) − b̃n(t) =
∑

j:tnj ∈[t,t+s)

n+qn
j+1−1∑

i=n+qn
j

εibi

=
∑

j:tnj ∈[t,t+s)

∆n
j

1
βj

n+qn
j+1−1∑

i=n+qn
j

bi + o(1),

where o(1) → 0 in probability uniformly in t. The smoothness of ϕ(θ)
then yields that

κ0∏
�=1

ρ�(θn(t�), Zn(t�))[̃bn(t + s) − b̃n(t)] → 0 as n, j → ∞.(37)
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Similarly, we obtain that

ψ̃n(t + s) − ψ̃n(t)

=
∑

j:tnj ∈[t,t+s)

∆n
j

1
βj

1{α(τ(θn+qn
j

))}

n+qn
j+1−1∑

i=n+qn
j

ψ(θn+qn
j
, ξi)

2δi
+ o(1).

Owing to the interpolation θn(tnj ) = θn+qn
j
. For arbitrarily small

η > 0, let {Bη
l : l ≤ m0} be a finite partition of the set [θ1

l , θ
1
u] ×

[θ2
l , θ

2
u] × · · · × [θm

l , θm
u ] such that each Bη

l satisfies diam(Bη
l ) < η. Let

θ̃η
l be an arbitrary point in Bη

l . Then

1
βj

n+qn
j+1−1∑

i=n+qn
j

ψ(θn+qn
j
, ξi)

2δi
=

1
βj

n+qn
j+1−1∑

i=n+qn
j

ψ(θn(tnj ), ξi)
2δi

=
1
βj

m0∑
l=1

n+qn
j+1−1∑

i=n+qn
j

ψ(θn(tnj ), ξi)
2δi

I{θn(tnj )∈Bη
l }

=
1
βj

m0∑
l=1

n+qn
j+1−1∑

i=n+qn
j

ψ(θ̃η
l , ξi)

2δi
I{θn(tnj )∈Bη

l } + o(1).

For each of the θ̃η
l chosen above,

1
βj

n+qn
j+1−1∑

i=n+qn
j

En+qn
j

ψ(θ̃η
l , ξi)

2δi
→ 0 in probability as n, j → ∞.

Thus, we obtain

E

κ0∏
�=1

ρ�(θn(t�), Zn(t�))[ψ̃n(t + s) − ψ̃n(t)] = 0.(38)

Then the definition of Mn(·) together with (37) and (38) leads to

E

κ0∏
�=1

ρ�(θn(t�), Zn(t�))[Mn(t + s) − Mn(t)] → 0.(39)

On the other hand, using (35), the weak convergence of (θn(·), Zn(·))
to (θ(·), Z(·)) and the definition of Mn(·) imply that Mn(·) converges
weakly to a process M(·) defined by

M(t) = θ(t) − θ(0) −
∫ t

0
ϕθ(θ(u))du − Z(t),(40)



Pricing American Put Options Using Stochastic Optimization Methods 325

where Z(t) =
∫ t
0 z(u)du. Using (39) and (40), Theorem 7.4.1 in Kushner

and Yin (2003) yields that M(·) is a martingale. Since θ(·) and Z(·)
have Lipschitz continuous sample paths w.p.1, Theorem 4.1.1 in Kushner
and Yin (2003) implies that M(t) ≡ constant w.p.1. Since M(0) = 0,
M(t) ≡ 0 w.p.1. That is, θ(·) is the solution of equation (22). Thus
Theorem 3.2 is proved. �
Proof of Corollary 3.3. For any T̂ > 0, using exactly the same argu-
ment, we can establish the weak convergence of the sequence {θn(T̂n +
·), θn(T̂n−T̂+·)}. Select a convergent subsequence with the limit denoted
by (θ(·), θ

T̂
(·)). Then θ(0) = θ

T̂
(T̂ ). The set of all possible {θ

T̂
(0)} for

all T̂ and all convergent subsequence belongs to a tight set. The form of
the function ϕ(·) implies that the maximizer θ∗ is unique. The stability
of the ODE then implies that for any η > 0 there is a 0 < T̂η < ∞ such
that for all T̂ > T̂η, P (θ

T̂
(T̂ ) ∈ Nη(θ∗)) ≥ 1 − η, where Nη(θ∗) denotes

an η-neighborhood of θ∗ (i.e., Nη(θ∗) = {θ : |θ − θ∗| ≤ η}). This yields
the desired result. �
Proof of Theorem 3.9. For simplicity, we work out the details for
γ1 = 1 and γ2 = 1/6 (so γ3 = 1/3). The proofs for the other cases
are essentially the same. Without loss of generality, assume θ∗ = 0 and
δ = 1 henceforth in the proof. Using (19), straightforward calculation
yields

EnV (θn+1) − V (θn)

≤ −λεnV (θn) + εnV ′
θ(θn)[bn + 1α(τ(θn))

ψ(θn, ξn)
2δn

+ zn] + O(ε2
n).

(41)

Based on the idea of perturbed Liapunov function (see Kushner and
Yin (2003)), to facilitate the cancellation of the unwanted terms, we
introduce several perturbations as follows:

V1(θ, n) =
∞∑

j=n

εjaj|nV ′
θ(θ)bj ,

V2(θ, n) =
∞∑

j=n

εjEnV ′
θ(θ)1α(τ(θj))

ψ(θ, ξj)
2δj

,

V3(θ, n) =
∞∑

j=n

εjcj|nV ′
θ(θ)zj ,
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where

aj|n =
{∏j

k=n(1 − 1/(k + 1)1/3), j > n,
1, otherwise,

and

cj|n =
{∏j

k=n(1 − 1/(k + 1)1/6), j > n,
1, otherwise.

By (A4), the smoothness of ϕ(·) together with the boundedness of
{θn} (owing to the projection) implies bn = O(δn) = O(n−1/6) w.p.1.
Using

∞∑
j=n

1
(j + 1)1/3

aj|n ≤ K
∞∑

j=n

1
(j + 2)1/3

(aj|n − aj|n+1) = O(1),

|V1(θ, n)| ≤
∞∑

j=n

εjaj|n|V ′
θ(θ)||bj |,

so we obtain

|V1(θ, n)| ≤ K
∞∑

j=n

j−5/6(j−1/3aj|n) ≤ O((n + 1)−5/6).(42)

Similarly, by (A4),

E|V2(θ, n)| ≤ K
∞∑

j=n

j−5/6E|Enψ(θ, ξj)|

≤ O((n + 1)−5/6),

(43)

and

|V3(θ, n)| ≤ K
∞∑

j=n

j−5/6(j−1/6cj|n)|V ′
θ(θ)||zj |

≤ O((n + 1)−5/6).

(44)

Next, detailed calculation leads to

EnV1(θn+1, n + 1) − V1(θn, n)

= [EnV1(θn, n + 1) − V1(θn, n)] + En[V1(θn+1, n + 1) − V1(θn, n + 1)]

= −εnV ′
θ(θn)bn +

∞∑
j=n

εjaj|nEnVθθ(θ̌n)(θn+1 − θn)bj

= −εnV ′
θ(θn)bn + O((n + 1)−5/3),
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where θ̌n is a point on the line segment joining θn and θn+1. Moreover,
we also have

EnV2(θn+1, n + 1) − V2(θn, n)

= [EnV2(θn, n + 1) − V2(θn, n)] + En[V2(θn+1, n + 1) − V2(θn, n + 1)]

= −εnV ′
θ(θn)1α(τ(θn))

ψ(θn, ξn)
2δn

+
∞∑

j=n+1

εjEn[V ′
θ(θn+1) − V ′

θ(θn)]1α(τ(θj))
ψ(θn, ξj)

2δj

+
∞∑

j=n+1

εjEnV ′
θ(θn+1)1α(τ(θj))

1
2δj

×
∫ 1

0
[ψ(θn + s(θn+1 − θn), ξj) − ψ(θn, ξj)]ds(θn+1 − θn)

= −εnV ′
θ(θn)1α(τ(θn))

ψ(θn, ξn)
2δn

+ O((n + 1)−5/3),

and

EnV3(θn+1, n + 1) − V3(θn, n) = −εnV ′
θ(θn)zn + O((n + 1)−5/3).

Define

Ṽ (θ, n) = V (θ) + V1(θ, n) + V2(θ, n) + V3(θ, n).

Then using (41), and the estimate on EnVi(θn+1, n + 1) − Vi(θn, n) for
i = 1, 2, 3,

E[Ṽ (θn+1, n + 1) − Ṽ (θn, n)] ≤ −εnλEV (θn) + O((n + 1)−5/3)

≤ −εnλEṼ (θn, n) + O((n + 1)−5/3).

The last inequality above follows from (42), (43), and (44). Iterating on
E[Ṽ (θn+1, n + 1) − Ṽ (θn, n)], we arrive at

EṼ (θn+1, n + 1) ≤
n∏

j=0

(1 − λεj)EṼ (θ0, 0)

+
n∑

j=0

εj(1 − λεj)O((j + 1)−2/3)

= O((n + 1)−2/3).

By virtue of (42) and (43), we also have EV (θn+1) = O((n + 1)−2/3).
The desired order of estimation error then follows. �
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Proof of Corollary 3.10. By virtue of Theorem 3.9, (again assuming
θ∗ = 0) the Markov inequality leads to

P (V (θn) ≥ K1n
−2/3) ≤ EV (θn)

K1n−2/3
≤ K2

K1
,

for some K2 > 0. This implies that {n2/3V (θn)} is tight. The local
quadratic form of the Liapunov function V (·) further yields the tightness
of {n1/3(θn − θ∗)}. �
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Abstract This paper treats jump-diffusion processes in continuous time, with em-
phasis on the jump-amplitude distributions, developing more appropri-
ate models using parameter estimation for the market in one phase
and then applying the resulting model to a stochastic optimal portfolio
application in a second phase. The new developments are the use of
double-uniform jump-amplitude distributions and time-varying market
parameters, introducing more realism into the application model – a log-
normal diffusion, log-double-uniform jump-amplitude model. Although
unlimited borrowing and short-selling play an important role in pure
diffusion models, it is shown that borrowing and shorting is limited for
jump-diffusions, but finite jump-amplitude models can allow very large
limits in contrast to infinite range models which severely restrict the
instant stock fraction to [0,1]. Among all the time-dependent param-
eters modeled, it appears that the interest and discount rate have the
strongest effects.
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1. Introduction

The empirical distribution of daily log-returns for actual financial instru-
ments differs in many ways from the ideal pure diffusion process with its
log-normal distribution as assumed in the Black-Scholes-Merton option
pricing model [4, 27]. The log-returns are the log-differences between
two successive trading days, representing the logarithm of the relative
size. The most significant difference is that actual log-returns exhibit
occasional large jumps in value, whereas the diffusion process in Black-
Scholes [4] is continuous. Statistical evidence of jumps in various finan-
cial markets is given by Ball and Torous [3], Jarrow and Rosenfeld [18]
and Jorion [19]. Hence, some jump-diffusion models were proposed in-
cluding Merton’s pioneering log-normal [28] (also [29, Chap. 9]), Kou
and Wang’s log-double-exponential [21, 22] and Hanson and Westman’s
log-uniform [13, 15] jump-diffusion models.

Another difference is that the empirical log-returns are usually negatively
skewed, since the negative jumps or crashes are likely to be larger or more
numerous than the positive jumps for many instruments, whereas the
normal distribution associated with the diffusion process is symmetric.
Thus, the coefficient of skew [5] is negative,

η3 ≡ M3/(M2)1.5 < 0, (16.1)

where M2 and M3 are the 2nd and 3rd central moments of the log-return
distribution here. A third difference is that the empirical distribution is
usually leptokurtic since the coefficient of kurtosis [5] satisfies

η4 ≡ M4/(M2)2 > 3, (16.2)

where the value 3 is the normal distribution kurtosis value and M4 is
the fourth central moment. Qualitatively, this means that the tails are
fatter than a normal with the same mean and standard deviation, com-
pensated by a distribution that is also more slender about the mode
(local maximum). A fourth difference is that the market exhibits time-
dependence in the distributions of log-returns, so that the associated
parameters are time-dependent.

For option pricing with jump-diffusions, in 1976 Merton [28] (see also
[29, Chap. 8]) introduced Poisson jumps with independent identically
distributed random jump-amplitudes with fixed mean and variances into
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the Black-Scholes model, but the ability to hedge the volatilities as with
the Black-Sholes options model was not possible. Also for option pric-
ing, Kou [21, 22] used a jump-diffusion model with a double exponential
(Laplace) jump-amplitude distribution, having leptokurtic and negative
skewness properties. However, it is difficult to see the empirical jus-
tification for this or any other jump-amplitude distribution due to the
problem of separating the outlying jumps from the diffusion (see Aı̈t-
Sahalia [1]), although separating out the diffusion is a reasonable task.

For optimal portfolio with consumption theory Merton in another pio-
neering paper, prior to the Black-Scholes model, [25, 26] (see also [29,
Chapters 4-6]) analyzed the optimal consumption and investment port-
folio with geometric Brownian motion and examined an example of hy-
perbolic absolute risk-aversion (HARA) utility having explicit solutions.
Generalizations to jump-diffusions consisting of Brownian motion and
compound Poisson processes with general random finite amplitudes are
briefly discussed. Earlier in [24] ([29, Chapter 4]), Merton also examined
constant relative risk-aversion problems.

In the 1971 Merton paper [25, 26] there are a number of errors, in par-
ticular in boundary conditions for bankruptcy (non-positive wealth) and
vanishing consumption. Some of these problems are directly due to using
a general form of the HARA utility model. These errors are very thor-
oughly discussed in a seminal collection assembled by Suresh P. Sethi
[32] from his papers and those of his coauthors. Sethi in his introduc-
tion [32, Chapter 1]) thoroughly summarizes these errors and subsequent
generalizations. In particular, basic papers of concern here are the KLSS
paper with Karatzas, Lehoczhy, Shreve [20] (reprint [32, Chapter 2]) for
exact solutions in the infinite horizon case and with Taksar [33] (reprint
[32, Chapter 2]) pinpointing the errors in Merton’s [25, 26] work.

Hanson and Westman [10, 16] reformulated an important external events
model of Rishel [31] solely in terms of stochastic differential equations
and applied it to the computation of the optimal portfolio and con-
sumption policies problem for a portfolio of stocks and a bond. The
stock prices depend on both scheduled and unscheduled jump external
events. The complex computations were illustrated with a simple log-bi-
discrete jump-amplitude model, either negative or positive jumps, such
that both stochastic and quasi-deterministic jump magnitudes were es-
timated. In [11], they constructed a jump-diffusion model with marked
Poisson jumps that had a log-normally distributed jump-amplitude and
rigorously derived the density function for the diffusion and log-normal-
jump stock price log-return model. In [12], this financial model is ap-
plied to the optimal portfolio and consumption problem for a portfo-
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lio of stocks and bonds governed by a jump-diffusion process with log-
normal jump amplitudes and emphasizing computational results. In
two companion papers, Hanson and Westman [13, 14] introduce the
log-uniform jump-amplitude jump-diffusion model, estimate the param-
eter of the jump-diffusion density with weighted least squares using the
S&P500 data and apply it to portfolio and consumption optimization.
In [15], they study the time-dependence of the jump-diffusion parameter
on the portfolio optimization problem for the log-uniform jump-model.
The appeal of the log-uniform jump model is that it is consistent with
the stock exchange introduction of circuit breakers [2] in 1988 to limit
extreme changes, such as in the crash of 1987, in stages. On the contrary,
the normal and double-exponential jump models have an infinite domain,
which is not a problem for the diffusion part of the jump-diffusion distri-
bution since the contribution in the dynamic programming formulation
is local appearing only in partial derivatives. However, the influence
of the jump part in dynamic programming is global through integrals
with integrands that have shifted arguments. This has important con-
sequences for the choice of jump distribution since the portfolio wealth
restrictions will depend on the range of support of the jump density.

In this paper, the log-double-uniform jump-amplitude, jump-diffusion
asset model is applied to the portfolio and consumption optimizaition
problem. In Section 2, the jump-diffusion density is rigorously derived
using a modification of the prior theorem [11]. In Section 3, the time
dependent parameters for this log-return process are estimated using this
theoretical density and the S&P500 Index daily closing data for 16 years.
In Section 4, the optimal portfolio and consumption policy application
is presented and then solved computationally. Also, in this section, the
big difference in borrowing and short-selling limits is formulated in a
lemma. Concluding remarks are given in Section 5.

2. Log-Double-Uniform Amplitude
Jump-Diffusion Density for Log-Return

Let S(t) be the price of a single financial asset, such as a stock or mu-
tual fund, governed by a Markov, geometric jump-diffusion stochastic
differential equation (SDE) with time-dependent coefficients,

dS(t) = S(t)

⎛
⎝µd(t)dt + σd(t)dG(t) +

dP (t)∑
k=1

J(T−
k , Qk)

⎞
⎠ , (16.3)
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with S(0) = S0, S(t) > 0, where µd(t) is the mean appreciation return
rate at time t, σd(t) is the diffusive volatility, dG(t) is a continuous
Gaussian process with zero mean and dt variance, dP (t) is a discon-
tinuous, standard Poisson process with jump rate λ(t), with common
mean-variance of λ(t)dt, and associated jump-amplitude J(t, Q) with
log-return mark Q mean µj(t) and variance σ2

j (t). The stochastic pro-
cesses G(t) and P (t) are assumed to be Markov and pairwise indepen-
dent. The jump-amplitude J(t, Q), given that a Poisson jump in time
occurs, is also independently distributed, at pre-jump time T−

k and mark
Qk. The stock price SDE (16.3) is similar in prior work [11, 12], except
that time-dependent coefficients introduce more realism here. The Qk

are IID random variables with Poisson amplitude mark density, φQ(q; t),
on the mark-space Q.

The infinitesimal moments of the jump process are

E[J(t, Q)dP (t)] = λ(t)dt

∫
Q

J(t, q)φQ(q; t)dq

and
Var[J(t, Q)dP (t)] = λ(t)dt

∫
Q

J2(t, q)φQ(q; t)dq.

The differential Poisson process is a counting process with the probability
of the jump count given by the usual Poisson distribution,

pk(λ(t)dt) = exp(−λ(t)dt)(λ(t)dt)k/k!, (16.4)

k = 0, 1, 2, . . ., with parameter λ(t)dt > 0.

Since the stock price process is geometric, the common multiplicative
factor of S(t) can be transformed away yielding the SDE of the stock
price log-return using the stochastic chain rule for Markov processes in
continuous time,

d[ln(S(t))] = µld(t)dt + σd(t)dG(t) +
dP (t)∑
k=1

ln(1 + J(T−
k , Qk)), (16.5)

where µld(t)≡µd(t)−σ2
d(t)/2 is the log-diffusion drift and ln(1+J(t, q))

is the stock log-return jump-amplitude or the logarithm of the relative
post-jump-amplitude. This log-return SDE (16.5) is the model that
will be used for comparison to the S&P500 log-returns. Since jump-
amplitude coefficient J(t, q) > −1, it is convenient to select the mark
process to be the log-jump-amplitude random variable,

Q = ln (1 + J(t, Q)) , (16.6)

Optimal Portfolio Application with Double-Uniform Jump Model
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on the mark space Q = (−∞,+∞), so J(t, Q) = eQ − 1 in general. Al-
though this is a convenient mark selection, it implies the independence of
the jump-amplitude in time, but not of the jump-amplitude distribution.

Since market jumps are rare and limited, while the tails are relatively
fat, a reasonable approximation is the log-double-uniform (duq) jump-
amplitude distribution with density φQ on the finite, time-dependent
mark interval [a(t), b(t)] as in [15]. However, since the optimistic strate-
gies that play a role in rallies should be different from the pessimistic
strategies used for crashes, it would be better to decouple the positive
from the negative jumps giving rise to the log-double-uniform jump-
amplitude model. The double-uniform density is the juxtaposition of two
uniform densities, φ1(q; t) = I{a(t)≤q≤0}/|a|(t) on [a(t), 0] and φ2(q; t) =
I{0≤q≤b(t)}/b(t) on [0, b(t)], such that a(t) < 0 < b(t) and IS is the indi-
cator function for set S. The double-uniform density can be written,

φQ(q; t) ≡

⎧⎪⎪⎨
⎪⎪⎩

0, −∞ < q < a(t)
p1(t)/|a|(t), a(t) ≤ q < 0
p2(t)/b(t), 0 ≤ q ≤ b(t)
0, b(t) < q < +∞

⎫⎪⎪⎬
⎪⎪⎭ , (16.7)

essentially undefined or doubly defined at q = 0, except p1(t) is the
probability of a negative jump and p2(t) is the probability of a non-
negative jump, conserving probability by assigning the null jump to the
uniform sub-distribution with the positive jumps. Otherwise, φQ(q; t)
is undefined as the derivative of the double-uniform distribution for the
point of jump discontinuity at 0, but the distribution

ΦQ(q; t) = p1(t)
q−a(t)
|a|(t) I{a(t)≤q<0} +

(
p1(t) + p2(t) q

b(t)

)
I{0≤q<b(t)}

+I{b≤q<∞}

is well-defined and continuous since points of zero measure do not con-
tribute. The assumption that a(t) < 0 < b(t) is to make sure that both
negative jumps (including crashes) and positive jumps (including rallies)
are represented. The form of this double-uniform model was motivated
by Kou’s [21] double-exponential model.

The density φQ(q; t) yields the mean

EQ[Q] = µj(t) = (p1(t)a(t) + p2(t)b(t))/2

and variance

VarQ[Q] = σ2
j (t) = (p1(t)a2(t) + p2(t)b2(t))/3 − µ2

j (t)
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which define the basic log-return jump-amplitude moment parameters.
The third and fourth central moments are, respectively,

M
(duq)
3 (t) ≡ EQ

[
(Q − µj(t))3

]
= (p1(t)a3(t)+p2(t)b3(t))/4 − µj(t)(3σ2

j (t)+µ2
j (t))

and

M
(duq)
4 (t) ≡ EQ

[
(Q − µj(t))

4]
= (p1(t)a

4(t)+p2(t)b
4(t))/5 − 4µj(t)M

(duq)
3 (t) − 6µ2

j (t)σ
2
j (t) − µ4

j (t).

The log-double-uniform distribution is treated as time-dependent in this
paper, so a(t), b(t), µj(t) and σ2

j (t) all depend on t.

The difficulty in separating out the small jumps about the mode or maxi-
mum of real market distributions is explained by the fact that a diffusion
approximation for small marks can be used for the jump process that
will be indistinguishable from the continuous Gaussian process anyway.

The first four moments of the difference form stock log-return,

∆ ln(S(t)) ≡ ln(S(t + ∆t)) − ln(S(t)),

assuming that a sufficiently close approximation of the double-uniform
jump-diffusion (dujd) by (16.5), i.e.,

∆ ln(S(t)) � µld(t)∆t + σd(t)∆G(t) +
∑∆P (t)

k=1 Qk

= (µld(t) + λ(t)µj(t))∆t + σd(t)∆G(t)

+µj(t)(∆P (t) − λ(t)∆t) +
∑∆P (t)

k=1 (Qk − µj(t)) ,

(16.8)

the latter in a more convenient zero-mean and independent terms form,
are

M
(dujd)
1 ≡ E[∆ ln(S(t))] = (µld(t) + λ(t)µj(t))∆t, (16.9)

M
(dujd)
2 ≡ Var[∆ ln(S(t))] =

(
σ2

d(t) + λ(t)
(
µ2

j (t) + σ2
j (t)

))
∆t,(16.10)

M
(dujd)
3 (t) ≡ E

[(
∆[ln(S(t))] − M

(dujd)
1 (t)

)3
]

= (p1(t)a3(t) + p2(t)b3(t))λ(t)∆t/4,
(16.11)

M
(dujd)
4 (t) ≡ E

[(
∆[ln(S(t))]−M

(dujd)
1 (t)

)4
]

= (p1(t)a4(t) + p2(t)b4(t))λ(t)∆t/5

+3(σ2
d(t) + λ(t)(µ2

j (t) + σ2
j (t)))

2(∆t)2.

(16.12)

Optimal Portfolio Application with Double-Uniform Jump Model
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The M
(dujd)
4 (t) moment calculation, in particular, needs a lemma from

[9, Chapter 5] for the fourth power of partial sums of zero-mean IID
random variables Xi, i.e.,

E

[(
n∑

i=1

Xi

)4]
= nE

[
X4

i

]
+ 3n(n − 1)

(
E

[
X2

i

])2
.

The log-double-uniform jump-diffusion density can be found by basic
probabilistic methods following a slight modification to time-dependent
coefficients from the constant coefficients assumption used in the theo-
rem of Zhu [36],

Theorem 1 (Probability Density). The log-double-uniform jump-
amplitude jump-diffusion log-return difference, written as

∆ln(S(t)) = G(t) +
∆P (t)∑
k=1

Qk

specified in the SDE (16.8) with non-standard Gaussian G(t) = µld∆t +
σd∆G(t), has a probability density given by

φ
(dujd)
∆ ln(S(t))(x) �

∑∞
k=0 pk(λ(t)∆t)φ(dujd)

G(t)+
∑k

i=1 Qi
(x)

≡
∑∞

k=0 pk(λ(t)∆t)φ(dujd)
k (x),

(16.13)

for sufficiently small ∆t and −∞ < x < +∞, where pk(λ(t)∆t) is the
Poisson distribution (16.4) with parameter λ(t)∆t with multiple-convo-
lution, Poisson coefficients

φ
(dujd)
k (x) =

(
φG(t)

k∏
i=1

(∗φQi)

)
(x). (16.14)

In the case of the corresponding normalized second order approximation,

φ
(dujd,2)
∆ ln(S(t))(x) =

∑2
k=0 pk(λ(t)∆t)φ(dujd)

k (x)/
∑2

k=0 pk(λ(t)∆t), (16.15)

where the density coefficients are given by

φ
(dujd)
0 (x) = φ(n)

(
x; µ, σ2

)
, (16.16)

for k = 0, where φ(n)(x; µ, σ2) is the normal distribution with mean µ
and variance σ2, while here (µ, σ2) = (µld, σ

2
d)∆t, for k = 1,

φ
(dujd)
1 (x) = + p1(t)

|a|(t)Φ
(n)(a(t), 0; x − µ, σ2)

+p2(t)
b(t) Φ(n)(0, b(t); x − µ, σ2),

(16.17)
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where Φ(n)(a, b; µ, σ2) is the normal distribution on (a, b) with density
φ(n)(x; µ, σ2), and for k = 2,

φ
(dujd)
2 (x) = σ2

(
(p1(t)/a(t) + p2(t)/b(t))2φ(n)(0, ∗)

+(p1(t)/a(t))2φ(n)(2a(t), ∗) + (p2(t)/b(t))2φ(n)(2b(t), ∗)
−2

(
(p1(t)/a(t))2 + p1(t)p2(t)/(a(t)b(t))

)
φ(n)(a(t), ∗)

−2
(
(p2(t)/b(t))2 + p1(t)p2(t)/(a(t)b(t))

)
φ(n)(b(t), ∗)

+2p1(t)p2(t)/(a(t)b(t))φ(n)(a(t) + b(t), ∗)
)

+(p1(t)/a(t))2
(
(x − 2a(t) − µ)Φ(n)(2a(t), a(t), ∗)

−(x − µ)Φ(n)(a(t), 0, ∗)
)

+(2p1(t)p2(t)/(a(t)b(t)))
(
(x − µ)Φ(n)(0, b(t), ∗)

−(x − a(t) − µ)Φ(n)(a(t), a(t) + b(t), ∗)
)

+(p2(t)/b(t))2
(
(x − µ)Φ(n)(0, b(t), ∗)

−(x − 2b(t) − µ)Φ(n)(b(t), 2b(t), ∗)
)

−2(p1(t)p2(t)/a(t))Φ(n)(a(t) + b(t), b(t), ∗)

(16.18)

where the symbol ∗ means that the common parameter argument x−µ, σ2

has been suppressed.

Proof. The sum in (16.13) is merely an expression of the law of total
probability [9, Chapters 0 and 5] and the multiple or nested form (16.14)
follows from a convolution theorem [9]. When k = 0 there are no jumps
and ∆ ln(S(t)) = G(t), the purely Gaussian term, so the distribution
is normal and is given in (16.16). Note in this case

∑0
i=1 Qi ≡ 0 by

convention.

When k = 1 jump, consider the double sum of IID random variables
∆ ln(S(t)) = G(t) + Q1 near the jump for sufficiently small ∆t and
letting (µ, σ2) = (µld, σ

2
d)∆t,

φ
(dujd)
1 (x) =

(
φG(t) ∗ φQ1

)
(x)=

∫ +∞

−∞
φ(n)(x − q; µ, σ2)φQ1(q; t)dq

=

(
p1(t)
|a|(t)

∫ 0

a(t)
+

p2(t)
b(t)

∫ b(t)

0

)
φ(n)(x − q; µ, σ2)dq

=
p1(t)
|a|(t)Φ(n)(a(t), 0; x−µ, σ2)+

p2(t)
b(t)

Φ(n)(0, b(t); x−µ, σ2),

verifying (16.17) by the normal argument-mean shift identity [9, Chapter
0], φ(n)(x−q; µ, σ2) = φ(n)(q; x−µ, σ2). The density Φ(n)(ξ, η; µ, σ2)/(η−
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ξ) is a secant-normal density as the secant approximation to the
derivative to the normal distribution [9, Chapter 5].
For k = 2 jumps, we consider the triple IID random variables G(t) +
Q1 + Q2, first treating the sum of the two double-uniform IID RVs,

(φQ1 ∗ φQ2) (x)=
∫ +∞
−∞ φQ2(x − q; t)φQ1(q; t)dq

=
p2
1(t)

a2(t)

∫ 0

a(t)
I{a(t)≤x−q<0}dq +

p2
2(t)

b2(t)

∫ b(t)

0
I{0≤x−q≤b(t)}dq

+ 2p1(t)p2(t)
b(t)|a|(t)

∫ 0

a(t)
I{0≤x−q≤b(t)}dq

=
p2
1(t)

a2(t)
min(x − 2 ∗ a(t),−x)I{a(t)≤x<0}

+
p2
2(t)

b2(t)
min(x, 2 ∗ b(t) − x)I{0≤x≤b(t)}

+ 2p1(t)p2(t)
b(t)|a|(t) min(x−a(t), min(|a|(t), b(t)), b(t)− x)I{a≤x≤b(t)},

comprising two triangular densities [9, Chapter 5] plus one trapezoidal
density. On substituting this density composite and again using the
argument-mean normal shift identity again into the double convolution
leads to

φ
(dujd)
2 (x) =

(
φG(t) ∗ (φQ1 ∗ φQ2)

)
(x)

=
p2
1(t)

a2(t)

(∫ a(t)

2a(t)
(q − 2a(t))φ(n)(q; ∗)dq +

∫ 0

a(t)
(−q)φ(n)(q; ∗)dq

)
+

p2
2(t)

b2(t)

(∫ b(t)

0
qφ(n)(q; ∗)dq +

∫ 2b(t)

b(t)
(2a(t) − q)φ(n)(q; ∗)dq

)
+ 2p1(t)p2(t)

b(t)|a|(t)

(∫ min(a(t)+b(t),0)

a(t)
(q − a(t))φ(n)(q; ∗)dq

+ min(|a|(t), b(t)) ∫ max(a(t)+b(t),0)

min(a(t)+b(t),0)
φ(n)(q; ∗)dq

+
∫ b(t)

max(a(t)+b(t),0)
(b(t) − q)φ(n)(q; ∗)dq

)
,

(16.19)

where again the symbol ∗ denotes x − µ, σ2. The last equation follows
from using the following normal integral identity,

±
∫ β

α

(q − γ)φ(n)(q; ∗)dq=±(x−µ−γ)Φ(n)(α, β; ∗) ∓ σ2
(
φ(n)(β; ∗)−φ(n)(α; ∗)

)
.

Finally after some analysis for two cases: a(t)+b(t) < 0 or a(t)+b(t) >=
0, the equation (16.19) for φ

(dujd)
2 (x) can be recollected and simplified

as the form in (16.18). However, there are also practical computational
considerations since some naive collections of terms lead to exponen-
tial catastrophic cancellation problems which are detected by checking a
form for φ

(dujd)
2 (x) for conservation of probability since φ

(dujd)
2 (x) must

be a proper density. The problem arises for the double-uniform jump-
amplitude model coupled with difficulty of computing normal distribu-
tions with very small variances and combining similar exponential as well
as distribution terms. Corrections to this problem require a very robust
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normal density integrator like the MATLABTM [23] basic erfc comple-
mentary error function and a proper collection of terms. Note that the
two forms (16.18) and (16.19) of φ

(dujd)
2 (x) are analytically equivalent in

infinite precision, but not computationally in finite precision.

Using the log-normal jump-diffusion log-return density in (16.13), the
third and fourth central moment formulas (16.11,16.12) can be confirmed
[36].

3. Jump-Diffusion Parameter Estimation

Given the log-normal-diffusion, log-double-uniform jump density (16.13),
it is necessary to fit this theoretical model to realistic empirical data to
estimate the parameters of the log-return model (16.5) for d[ln(S(t))].
For realistic empirical data, the daily closings of the S&P500 Index dur-
ing the years from 1988 to 2003 are used from data available on-line [35].
The data consists of n(sp) = 4036 daily closings. The S&P500 (sp) data
can be viewed as an example of one large mutual fund rather than a sin-
gle stock. The data has been transformed into the discrete analog of the
continuous log-return, i.e., into changes in the natural logarithm of the
index closings, ∆[ln(SP i)] ≡ ln(SP i+1) − ln(SP i) for i = 1, . . . , n(sp) − 1
daily closing pairs. For the period, the mean is M

(sp)
1 � 3.640 × 10−4

and the variance is M
(sp)
2 � 1.075 × 10−4, the coefficient of skewness is

η
(sp)
3 ≡ M

(sp)
3 /(M (sp)

2 )1.5 � −0.1952 < 0,

demonstrating the typical negative skewness property, and the coefficient
of kurtosis is

η
(sp)
4 ≡ M

(sp)
4 /(M (sp)

2 )2 � 6.974 > 3,

demonstrating the typical leptokurtic behavior of many real markets.

The S&P500 log-returns, ∆[ln(SP i)] for i = 1 : n(sp) data points, are
partitioned into 16 yearly (spy) data sets, ∆[ln(SP (spy)

jy ,k )] for k = 1 : n
(sp)
y,jy

yearly data points for jy = 1 : 16 years, where
∑16

jy=1 n
(sp)
y,jy

= n(sp). For
each of these yearly sets, the six parameters

yjy =
(
µld,jy , σ

2
d,jy

, µj,jy , σ
2
j,jy

, p1,jy , λjy

)
,
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are estimated for each year jy to specify the jump-diffusion log-return
distribution by maximum likelihood estimation objective,

f(yjy) = −
n

(sp)
y,jy∑

k=1

log
(
φ

(dujd,2)
∆ ln(S(t))(xk;yjy)

)
. (16.20)

The time step ∆t=∆Tjy is the reciprocal of the number of trading days
per year, close to 252 days, but varies a little for jy = 1 : 16 years used
here for parameter estimation. The maximum likelihood estimation is
performed for convenience directly on the set

ŷjy =
(
µld,jy , σ

2
d,jy

, ajy , bjy , p1,jy , λjy

)
,

since it is easier to get the pair {µj,jy , σ
2
j,jy

} from {ajy , bjy}, rather then
the other way around which would require a quadratic inversion.

Thus, we have a six dimensional global minimization problem for a highly
complex discretized jump-diffusion density function (16.5). Due to the
high level of flexibility with six free parameters, barrier techniques using
large values in excluded regions are adopted to avoid negative variances
σ2

d,jy
, non-positive ajy , negative bjy , p1,jy /∈ [0, 1) and negative λjy . The

analytical complexity indicates that a general global optimization meth-
od that does not require derivatives would be useful. For this purpose,
such a method, the Nelder-Mead downhill simplex method [30], imple-
mented in MATLABTM [23] as the function fminsearch is used, since
simple techniques are desirable in financial engineering. The method is
quite efficient since it requires only one new function evaluation for each
successive step to test for the best new search direction from the old
simplex.

The jump-diffusion estimated yearly parameter results in the present
log-double-uniform-jump amplitude case are summarized in the Figures
16.1 and 16.2. The graphs are piecewise linear interpolations of the
yearly averages when the averages are assigned to the mid-year. Per-
haps cubic splines or moving averages would portray the parameters
better, but since a total of eight or more time dependent parameters
are needed for the optimal portfolio and consumption application that
follows, the piecewise linear interpolation is more convenient due to time
constraints. Figure 16.1 displays the time-variation from 1988 to mid
2004 for the diffusion mean µd(t) and variance σd(t) in Subfigure 16.1(a)
and the jump mean µj(t) and variance σj(t) in Subfigure 16.1(b). The
average values of (µd, σd, µj , σj) are (0.1654, 0.1043, 3.110e-4, 8.645e-3),
respectively. In Figure 16.2, more jump parameters are displayed, but
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the three double-uniform distribution parameters p1(t), a(t) and b(t)
determine the jump mean µj(t) and variance σj(t). The biggest inter-
est here is that the jump rate λ(t), scaled by 500 to keep on the same
graph, with both λ(t) and p1(t) similarly variable in Subfigure 16.2(a).
The double-uniform bounds, a(t) and b(t), vary quite a bit as would be
expected from the variability of µj(t) and σj(t).
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(a) Diffusion parameters: µd(t) and σd(t).
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(b) Jump parameters: µj(t) and σj(t).

Figure 16.1. Jump-diffusion mean and variance parameters, (µd(t), σd(t) ) and
(µj(t), σj(t)) on t ∈ [1988, 2004.5], represented as piecewise linear interpolation of
yearly averages assigned to the mid-year.

The fminsearch tolerances are tolx = 0.5e-6 and toly = 0.5e-6. All
yearly iterations are converged in a range from 399 to 750 steps each.
The time needed for the yearly estimations is in a range from 2 to 5
seconds using a Dual 2GHz PowerPC G5 computer processor.

In Figure 16.3 a sample comparison is made for the empirical S&P500 his-
togram on the left for the year of 2000 with the corresponding theoret-
ical jump-diffusion histogram on the right using the fitted, optimized
parameters and the same number of centered bins on the domain. The
jump-diffusion histogram is a very idealized version of the empirical dis-
tribution, with the asymmetry of the tails clearly illustrated.

For reference, the summaries of the coefficients of skewness and kurtosis
are given in Figure 16.4 for both the estimated theoretical jump-diffusion
model and the empirical S&P500 data to facilitate comparison. The
jump-diffusion skewness values η

(dujd)
3 in Subfigure 16.4(a) are in the

range of -308% to +204% of the empirical S&P500 values, except in
the case of the year 2000 when the empirical value is near zero and the
relative error is ill-defined. Note that contrary to the legendary long-
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Figure 16.2. More jump parameters, (λ(t)/500, p1(t) ) and (a(t), b(t)) on t ∈
[1988, 2004.5], represented as piecewise linear interpolation of yearly averages assigned
to the mid-year.
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(a) Histogram sample of S&P500 log returns
for year 2000.
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turns for fitted jump-diffusion in the same
year.

Figure 16.3. Sample comparison for year 2000 of the empirical S&P500 histogram
on the left with the corresponding fitted theoretical log-double-uniform jump-diffusion
histogram on the right, using 50 bins.

term negative market skewness, the skewness for some years is positive
and the change in sign of the skewness is reflected in the large differences
from the empirical results. The jump-diffusion kurtosis values η

(dujd)
4 in
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Subfigure 16.4(b) are in the range of -19% to +24% with a mean of 3.2%
of the empirical values, which is very good considering the difficulty
of accurately estimated fourth moments and the results are very much
better than that the skewness results. Any discrepancy between the
estimated theoretical and observed data for kurtosis is likely due to the
relative smallness of the yearly sample as well as the bin size and the
fixed yearly double-uniform domain. The concept that the market data
is usually leptokurtic refers to long term data and not to shorter term
data.
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Figure 16.4. Comparison of skewness and kurtosis coefficients for both the
S&P500 data and the estimated double-uniform jump diffusion values on t ∈
[1988, 2004.5], represented as piecewise linear interpolation of yearly averages assigned
to the mid-year.

The main purpose of this parameter estimation has been to have an
estimate of the many time-dependence parameters . Hence, we use the
simple piecewise linear interpolation to fit the jump-diffusion parame-
ters in time assigning the estimate yearly averages to the mid-year as
interpolation points.

4. Application to Optimal Portfolio and
Consumption Policies

Consider a portfolio consisting of a riskless asset, called a bond, with
price B(t) dollars at time t years, and a risky asset, called a stock, with
price S(t) at time t. Let the instantaneous portfolio change fractions

Optimal Portfolio Application with Double-Uniform Jump Model
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be U0(t) for the bond and U1(t) for the stock, so that the total satisfies
U0(t) + U1(t) = 1. This does not necessarily imply bounds for U0(t)
and U1(t), as will be seen later that their bounds depend on the jump-
amplitude distribution in the presence of a non-negative of wealth (no
bankruptcy) condition.

The bond price process is deterministic exponential,

dB(t) = r(t)B(t)dt , B(0) = B0 . (16.21)

where r(t) is the bond rate of interest at time t. The stock price S(t)
has been given in (16.3). The portfolio wealth process changes due to
changes in the portfolio fractions less the instantaneous consumption of
wealth C(t)dt,

dW (t) = W (t) (r(t)dt + U1(t) ((µd(t) − r(t))dt

+σd(t)dG(t) +
∑dP (t)

k=1

(
eQk − 1

)))
− C(t)dt ,

(16.22)

such that, consistent with non-negative constraints Sethi and Taksar [33]
show are needed, W (t) ≥ 0 and that the consumption rate is constrained
relative to wealth 0 ≤ C(t) ≤ C

(0)
maxW (t). In addition, the stock fraction

is bounded by fixed constants. U
(0)
min ≤ U1(t) ≤ U

(0)
max, so borrowing and

short-selling is permissible, and U0(t) = 1 − U1(t) has been eliminated
[12].

The investor’s portfolio objective is to maximize the conditional, ex-
pected current value of the discounted utility Uf (w) of terminal wealth
at the end of the investment terminal time tf and the discounted utility
of instantaneous consumption U(c), i.e.,

v∗(t, w) = max{u,c}
[
E
[
e−β(t,tf )Uf (W (tf ))

+
∫ tf
t e−β(t,s)U(C(s)) ds

∣∣∣ C]] ,
(16.23)

conditioned on the state-control set C = {W (t) = w, U1(t) = u, C(t) =
c}, where the time horizon is assumed to be finite, 0 ≤ t < tf , and β(t, s)
is the cumulative time discount over time in (t, s) with β(t, t) = 0 and
discount rate β̂(t) = ∂β/∂s(t, t) at time t. In order to avoid Merton’s
[25] problems with utility functions, U ′(C) → +∞ as C → 0+ will be
assumed for the utility of consumption, while a similar form will be
used for the final bequest Uf (W ). Thus, the instantaneous consumption
c = C(t) and stock portfolio fraction u = U1(t) serve as control variables,
while the wealth w = W (t) is the single state variable.
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Absorbing Boundary Condition at Zero Wealth: Eq. (16.23) is
subject to zero wealth absorbing natural boundary condition (avoids ar-
bitrage as pointed out by Karatzas, Lehoczky, Sethi, Shreve and Taksar
([20] or [32, Chapter 2] and [33] or [32, Chapter 3]) that it is neces-
sary to enforce non-negativity feasibility conditions on both wealth and
consumption. They formally derived explicit solutions for consumption-
investment dynamic programming models with a time-to-bankruptcy
horizon that qualitatively corrects the results of Merton [25, 26] ([29,
Chapter 6]). See also Sethi and Taksar [33] and much more in the Sethi
volume [32], which includes Sethi’s very broad and excellent summary
[32, Chapter 1].

Here the Merton correction [29, Chap. 6]) is used,

v∗(t, 0+) = Uf (0)e−β(t,tf ) + U(0)
∫ tf
t e−β(t,s)ds, (16.24)

where the terminal wealth condition, v∗(tf , w) = Uf (w), has been ap-
plied, following from the fact that the consumption must be zero when
the wealth is zero.

Portfolio Stochastic Dynamic Programming: Assuming the opti-
mal value v∗(t, w) is continuously differentiable in t and twice contin-
uously differentiable in w, then the stochastic dynamic programming
equation (see [12]) follows from an application of the (Itô) stochastic
chain rule to the principle of optimality,

0 = v∗t (t, w)−β̂(t)v∗(t, w) + U(c∗(t, w))
+ [(r(t)+(µd(t) − r(t))u∗(t, w))w − c∗(t, w)] v∗w(t, w)

+1
2σ2

d(t)(u
∗)2(t, w)w2v∗ww(t, w)+λ(t)

(
p1(t)
|a|(t)

∫ 0
a(t)+

p2(t)
b(t)

∫ b(t)
0

)
· (v∗(t, (1+(eq − 1)u∗(t, w))w)−v∗(t, w)) dq,

(16.25)

where u∗ = u∗(t, w) ∈ [U (0)
min, U

(0)
max] and c∗ = c∗(t, w) ∈ [0, C(0)

maxw] are
the optimal controls if they exist, while v∗w(t, w) and v∗ww(t, w) are the
partial derivatives with respect to wealth w when 0 ≤ t < tf .

Non-Negativity of Wealth and Jump Distribution: The non-
negativity of wealth implies an additional consistency condition for the
control since the jump in wealth argument (1 + (eq − 1)u∗)w in the
stochastic dynamic programming equation (16.25) requires κ(u, q) ≡
1 + (eq − 1)u ≥ 0 on the support interval of the jump-amplitude mark
density φQ(q; t). Hence, it will make a difference in the optimal portfolio
stock fraction u∗ bounds if the support interval [a(t), b(t)] is finite or if
the support interval is (−∞,+∞), i.e., had infinite range. Our results
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will be restricted to the usual case when a(t) < 0 < b(t), i.e., when both
crashes and rallies are modeled.

Lemma 1. Bounds on Optimal Stock Fraction due to
Non-Negativity of Wealth Jump Argument
If the support of φQ(q; t) is the finite interval q ∈ [a(t), b(t)] with a(t) <
0 < b(t), then u∗(t, w) is restricted by (16.25) to

−1(
eb(t) − 1

) ≤ u∗(t, w) ≤ 1(
1 − ea(t)

) , (16.26)

but if the support of φQ(q) is fully infinite, i.e., (−∞, +∞), then u∗(t, w)
is restricted by (16.25) to

0 ≤ u∗(t, w) ≤ 1. (16.27)

Proof. Since κ(u, q) = 1 + (eq − 1)u and it is necessary that κ(u, q) ≥ 0
so that κ(u, q)w ≥ 0 when the wealth and its jump argument need to be
non-negative. The most basic instantaneous stock fraction case is when
u = 0, so κ(0, q) = 1 > 0.

First consider the case when the support is the finite a(t) ≤ q ≤ b(t).
When u > 0, then

0 ≤ 1 −
(
1 − ea(t)

)
u ≤ κ(u, q) ≤ 1 +

(
eb(t) − 1

)
u.

Since ea(t) < 1 < eb(t), the worse case for enforcing κ(u, q) ≥ 0 is on the
left, so

u ≤ +1(
1 − ea(t)

) .

When u < 0, then

0 ≤ 1 −
(
eb(t) − 1

)
(−u) ≤ κ(u, q) ≤ 1 +

(
1 − ea(t)

)
(−u).

The worse case for enforcing κ(u, q) ≥ 0 is again on the left so upon
reversing signs,

u ≥ −1
eb(t) − 1

,

completing both sides of the finite case (16.26).

In the infinite range jump model case when −∞ < q < +∞, then
0 < eq < ∞. Thus, when u > 0,

0 ≤ 1 − u < κ(u, q) < ∞,
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so u ≤ 1. However, when u < 0, then

−∞ < κ(u, q) < 1 − u,

so u < 0 leads to a contradiction since κ(u, q) is unbounded on the left
and u ≥ 0, proving (16.27), which is just the limiting case of (16.26).

Remark 1. This lemma gives the constraints on the instantaneous stock
fraction u∗(t, w) that limits the jumps to the jumps that at most just wipe
out the investor’s wealth. Unlike the case of pure diffusion where the
functional terms have local dependence on the wealth mainly through par-
tial derivatives, the case of jump-diffusion has global dependence through
jump integrals over finite differences with jump modified wealth argu-
ments, leading to additional constraints under non-negative wealth con-
ditions that do not appear for pure diffusions. The additional constraint
comes not from the current wealth or nearby wealth but from the new
wealth created by a jump. The more severe restrictions on the opti-
mal stock fraction in the non-finite support case for the jump-amplitude
models compared to the compact support case such as the double uniform
model gives further justification for the uniform type models.

Note that the compact support bounds can be rewritten in terms of the
original jump-amplitude coefficient

−1/J(t, b(t)) ≤ u∗(t, w) ≤ −1/J(t, a(t)).

In the case of the fitted log-double-uniform jump-amplitude model, the
range of the jump-amplitude marks [a(t), b(t)] is covered by the estimated
interval

[amin, bmax] =
[
min

t
(a(t)), max

t
(b(t))

]
� [−8.470e-2, 5.320e-2]

over the whole period from 1988-2003. The corresponding overall esti-
mated range of the optimal instantaneous stock fraction u∗(t, w) is then

[umin, umax] =
[

−1
(ebmax − 1)

,
+1

(1 − eamin)

]
� [−18.30, +12.31] (16.28)

in large contrast to the highly restricted infinite range models where
[min(u∗(t, w)),max(u∗(t, w))] = [0, 1] is fixed for any t.

Regular Optimal Control Policies: In absence of control constraints,
then the maximum controls are the regular optimal controls ureg(t, w)
and creg(t, w), which are given implicitly, provided they are attainable
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and there is sufficient differentiability in c and u, by the dual critical
conditions,

U ′(creg(t, w)) = v∗w(t, w) , (16.29)

σ2
d(t)w

2v∗ww(t, w)ureg(t, w) = −(µd(t) − r(t))wv∗w(t, w)

−λ(t)w
(

p1(t)
|a|(t)

∫ 0
a(t) +p2(t)

b(t)

∫ b(t)
0

)
(eq − 1)v∗w(t, κ(ureg(t, w), q)w) dq ,

(16.30)

for the optimal consumption and portfolio policies with respect to the
terminal wealth and instantaneous consumption utilities (16.23). Note
that (16.29-16.30) define the set of regular controls implicitly.

CRRA Utility and Canonical Solution Reduction: Assuming the
investor is risk adverse, the utilities will be the constant relative risk-
aversion (CRRA) power utilities [29, 10], with the same power for both
wealth and consumption,

U(x) = Uf (x) = xγ/γ , x ≥ 0 , 0 < γ < 1 . (16.31)

The CRRA utility designation arises since the relative risk aversion is
the negative of the local change in the marginal utility (U ′′(x)) relative
to the average change in the marginal utility (U ′(x)/x), or here

R(x) ≡ −U ′′(x)/(U ′(x)/x) = (1 − γ) > 0,

i.e., a constant, and is a special case of the more general HARA utilities.

The CRRA power utilities for the optimal consumption and portfolio
problem lead to a canonical reduction of the stochastic dynamic pro-
gramming PDE problem to a simpler ODE problem in time, by the
separation of wealth and time dependence,

v∗(t, w) = U(w)v0(t), (16.32)

where only the time function v0(t) is to be determined. The regular
consumption control is a linear function of the wealth,

creg(t, w) ≡ w · c(0)
reg(t) = w/v

1/(1−γ)
0 (t), (16.33)

using (16.29) and U ′(x) = xγ−1 in (16.31). The regular stock fraction u
in (16.30) is a wealth independent control, but is given in implicit form:

ureg(t, w) = u
(0)
reg(t)

= 1
(1−γ)σ2

d(t)

[
µd(t) − r(t) + λ(t)I1

(
u

(0)
reg(t)

)]
,

(16.34)
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I1(u) =
(

p1(t)
|a|(t)

∫ 0
a(t) +p2(t)

b(t)

∫ b(t)
0

)
(eq − 1)κγ−1(u, q)dq, (16.35)

The wealth independent property of the regular stock fraction is essen-
tial for the separability of the optimal value function (16.32). Since
(16.34) only defines u

(0)
reg(t) implicitly in fixed point form, u

(0)
reg(t) must

be found by an iteration such as Newton’s method, while the Gauss-
Statistics quadrature [34] can be used for jump integrals (see [12]). The
optimal controls, when there are constraints, are given in piecewise form
as c∗(t, w)/w = c∗0(t) = max[min[c(0)

reg(t), C
(0)
max], 0], provided w > 0, and

u∗(t, w) = u∗
0(t) = max[min[u(0)

reg(t), U
(0)
max], U

(0)
min], is independent of w

along with u
(0)
reg(t). Substitution of the separable power solution (16.32)

and the regular controls (16.33-16.34) into the stochastic dynamic pro-
gramming equation (16.25), leads to an apparent Bernoulli type ODE,

0 = v′0(t) + (1 − γ)
(

g1(t, u∗
0(t))v0(t) + g2(t)v

γ
γ−1

0 (t)
)

, (16.36)

g1(t, u) ≡ 1
1−γ

[
−β̂(t) + γ (r(t) + u(µd(t) − r(t)))

− γ(1−γ)
2 σ2

d(t)u
2 + λ(t)(I2(t, u) − 1)

]
,

(16.37)

g2(t) ≡
1

1 − γ

[(
c∗0(t)

c
(0)
reg(t)

)γ

− γ

(
c∗0(t)

c
(0)
reg(t)

)]
, (16.38)

I2(t, u) ≡
(

p1(t)
|a|(t)

∫ 0

a(t)
+

p2(t)
b(t)

∫ b(t)

0

)
κγ(u, q) dq , (16.39)

for 0 ≤ t < tf . The coupling of v0(t) to the time dependent part of
the consumption term c

(0)
reg(t) in g2(t) and the relationship of c

(0)
reg(t) to

v0(t) in (16.33) means that the differential equation (16.36) is implicitly
highly nonlinear and thus (16.36) is only of Bernoulli type formally. The
apparent Bernoulli equation (16.36) can be transformed to an apparent
linear differential equation by using θ(t) = v

1/(1−γ)
0 (t), to obtain,

0 = θ′(t) + g1(t, u∗
0)θ(t) + g2(t),

whose general solution can be inverse transformed to the general solution
for the separated time function,

v0(t) = θ1−γ(t)

=
[
e−g1(t,u∗

0(t))(tf−t)
(
1+

∫ tf
t g2(τ)eg1(t,u∗

0(t))(tf−τ)dτ
)]1−γ

,
(16.40)
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given implicitly.

In order to illustrate this stochastic application, a computational approx-
imation of the solution is presented. The main computational changes
from the procedure used in [12] are that the jump-amplitude distribution
is now double-uniform and the portfolio parameters as well as the jump-
amplitude distribution are time-dependent. Parameter time-dependence
is approximated by piecewise linear interpolation over the years from
1988-2003. The terminal time is taken to be tf = 2004.5, one half year
beyond this range.

For this numerical study, the economic rates are taken to be federal
funds historical rates [6] from the U.S. Federal Reserve Bank, because
they are readily available. For feasibility of the computation, the daily
rates, r(t) for interest and β̂(t) for discounting, are transformed into
approximate piecewise linear interpolation representations of the yearly
averages of daily rates over the period 1988-2003. As for other time-
dependent parameters the yearly averages are assigned to the mid-years
as interpolation points. The federal funds rates are shown in Figure 16.5.
Note that the economic rates are much more variable that the stock mar-
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Figure 16.5. Federal funds rate [6] for interest r(t) and discounting β̂(t) on a daily
bases, represented by piecewise linear interpolation with yearly averages assigned to
the midpoint of each year for t = 1988.5 :2003.5 .
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ket parameters displayed early. Also, the typical approximate ordering
of interest and discount rates, β̂(t) ≤ r(t), is not valid in the recent
anomalous low interest period, 2002-present.

The portfolio stock fraction constraints are chosen so that there is at
least one active constraint within the time horizon,

[U (0)
min, U

(0)
max] = [−18, +12],

since in a realistic trading environment there would be some bounds
on the extremes of borrowing and short-selling, but not as severe as
constraining the control to [0,1] as in (16.27). Also, the bound on con-
sumption relative to wealth are assumed to be

C(0)
max = 0.75,

meaning that the investor cannot consume more that 75% of the wealth
in the portfolio and 0 ≤ c(t, w) ≤ C

(0)
maxw.

Subfigure 16.6(a) shows the regular or unconstrained optimal instanta-
neous portfolio stock fraction. Although the ureg(t) results appear to be
out of the conservative range of [umin, umax] in (16.28) using [amin, bmax],
the results are consistent with the worst case scenario range

[ũmin, ũmax] � [-1.150e+02, 1.940e+12]

using the tighter distribution range [amax, bmin] of [-5.156e-13, 8.658e-
03] in (16.26). In Subfigure 16.6(b), the optimal portfolio stock fraction
u∗(t) is displayed. The portfolio policy is not monotonic in time and
the maximum control constraint at U

(0)
max is active during the interval

just prior to the end of the time horizon t ∈ [0, tf ], while the minimum
constraint U

(0)
min remains unused since the stock fraction remains mostly

in the borrowing range with the corresponding bond fraction negative,
1 − u∗(t) < 0. The u∗(t) non-monotonic behavior is very interesting
compared to the constant behavior in the constant parameter model in
[12] or Merton’s [25] mainly pure diffusion results.

In Figure 16.7 on the left, the optimal, expected, discounted utility of
terminal wealth and cumulative consumption, v∗(t, w), is displayed in
three dimensions. The behavior of v∗(t, w) for fixed time t reflects the
CRRA utility of function U(w) template of the separable canonical so-
lution form in (16.32), while the decay in time toward the final time
tf = 16.5 and final value v∗(tf , w) = 0 for fixed wealth w derives from
the separable time function v0(t). The optimal value function v∗(t, w)
results, and the following optimal consumption policy c∗(t, w) results in
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Figure 16.6. Regular and optimal portfolio stock fraction policies, ureg(t) and u∗(t)
on t ∈ [1988, 2004.5], the latter subject to the control constraints set [U

(0)
min, U

(0)
max] =

[−18, 12].

Fig. 16.7 on the right, in this computational example, are qualitatively
similar to that of the time-independent log-normal jump parameter case
in [12] and the time-independent log-uniform jump parameter case in
[15] computational results. Note that the wealth grid uses a specially
constructed transformation tailored to the CRRA utility to capture the
non-smooth behavior as w → 0+.
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Figure 16.7. Optimal portfolio value v∗(t, w) and optimal consumption policy
c∗(t, w) for (t, w) ∈ [1988, 2004.5] × [0, 100].



355

5. Conclusions

The main contributions of this work are the introduction of the log-
double-uniformly distributed jump-amplitude into the jump-diffusion
stock price model and the development of time-dependent jump-diffusion
parameters. In particular, a significant effect on the variation of the
instantaneous stock fraction policy is seen to be due to variations in
the interest and discount rates. The double-uniformly distributed jump-
amplitude feature of the model is a reasonable assumption for rare, large
jumps, crashes or buying-frenzies, when there is only a sparse popula-
tion of isolated jumps in the tails of the market distribution. Additional
realism in the jump-diffusion model is given by the introduction of time
dependence in the distribution and in the associated parameters. Finally,
the large difference in the severity of the limits on borrowing and short-
selling is made clear for the bounds on the instantaneous stock fraction
with respect to compact support and non-compact support models of
jump-amplitudes.

Further improvements, but with greater computational complexity,
would be to estimate the double-uniform distribution limits [a, b] by
fitting the theoretical distribution to real market distributions, using
longer and overlapping (moving-average) partitioning of the market data
to reduce the effects of small sample sizes.
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