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'PREFACE

This is a textbook intended for a one-guarter {(or one-
semester, depending on the pace) course at the graduate level
in Engineering, The prerequisites are Elementary State-Space
theory and Elementary (second-order Gaussian) Stochastic Pro-
As a textboock, it does not not purport to be a
compendium of all known work on the subject,
& "trade book." Rather it attempts a logically sequenced set
of topics of proven pedagogical value,
while not devoid of practical utility.

cess theory,

Neither is it

emphasizing theory

The organization is

based on experience gained over a period of ten years of class-

room teaching. It develops those aspects of Kalman Filtering

lore which can be given a firm mathematical basis, avoiding
the industry syndrome manifest in professional short courses:
it will "woxrk"I"

The first two chapters cover review material on State-

"Here is the recipe. Use it,
Space theory and Signal (Random Process) theory -- necessary
The third chapter deals
with Statistical Estimation'theory, the mathematical framework
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on which Kalman Filtering rests. The main chapter is the
fourth chapter dealing with the subject matter per se. It
begins in Section 4,1, with the bdsic theory and formulas,
making'a compromise in generality between too many obscuring
details and too little practical application. Thus we con-
sider only the case where the observation noise is white and
is independent of the signal, although we allow the system to
.be time-varying., Because of the uncertainty in the initial
covariances, in practice no Kalman filter can be optimal ex-
cept in the steady state -~ and this is by far its important
use.\ Hence Section 4.2 specializes to time~invariant systems
and coﬁggders asymptotic behavior of the filter. Section 4.3
examines the steady-state results from the frequéncy—domain
point of view, relating them to the more classical transfer-
function approach. In Section 4,4 we study a canonical appli—
cation of Kalman filtering: to System Identification, In
Section 4.5 we study the "Kalman smoother': the on-line ver-
sion of two-sided interpolationo In Sections 4.6 and 4.7 we
study generalizations of the basic theory of Section 4.1;
thus we allow the signal and noise to be correlated in Section
4.6, and allow the observation noise to be non-white in Sec-~
"tion 4.7. Section 4.8 features a simple example which illus-
trates some of the theory and technigues discussed in the
chapter, ‘

The book concludes with a chapter on Likelihood Ratios
in which the Kalman filter formulation plays an essential role,

We only consider discrete-time models throughout, since
all Kalman filter implementation envisaged involves digifal
computation.

The problems accompanying each chapter serve the tradi-
ticnal role of testing the student's comprehension of the
text, with an occasional foray into areas of contiguous
interest.

NOTATION

Square Matrices

I ~ Identity Matrix
Tr. = Traée

|a] Determinant of A

Rectangular Matrices

A* ; {(Conjugate) Transpose of A
fa, Bl = Tr, AB*

lal = VT& AT

{aij} ~ Matrix with eniries By

"Column® vector v ~ v v 1is 1x1

*
'Row! vector ¢ ~ CC is 1x1




: Xil NOTATION [ \H;I/
| C
| i
{ Z
Self-adjoint Matrices ‘%
A Self-adjoint ~ 4 = a*
A Nonnegative -~ [Ax, x1 2 0 .for everj p's
5 .
A2B +— (A-B) is nonnegative definite
Gradient of a Function
If. g{(8) 4is a scalar function of &:
i Gradient of g(6) = Veg(e) : | et
» .
vhore . REVIEW OF LINEAR SYSTEM THEORY
(V,g(8))h =~ 4_ | E
GECE)) arE(e + ) i
A=0 :
Y98(8). is Ixm if 8 is mxl ‘ é
Random Variables f A Kalman filter is a linear system. This chapter pre-
. sents a brief review of Linear Systems theory from the “state-

E(-) ~ Expected Value ¢
space" point of view, since the Kalman filter is best de-

: E(*{+) ~ Conditio
nal Expectation
i scribed in that way. For an introductory treatment of State

f p(-) ~ Probability Densit i
j ¥ Funéti ‘
on Space theory, the reader is referred to [23. More advanced

Ve s e

j : ’ Lo - treatments may be found in {7], (123, [20], among otﬁer texts.
| A system is characterized by its "input,'" its "state"
and the "ocutput." These are funétions of time. Time may be
continuous oxr discrete -- in the latter case time is indexed
by the integers. We shall only be concerned with the dis-
crete case in this book.

Let {un} denote the input and {vn} the output. A

linear system foxr our purposes is then completely character-

ized by a "state-input'" equation

Xpwl = Anxn + Bnurl (1.1)
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and by an "output—state—input" equation

n n'n nn °? _ (1.2)

where An is a square matrix and - Bn’ Cn, Dn are rectangu-
lar matrices. If the state-space dimension is P, then An
will be p x p. If the input sequence is such that each u,

is g x 1, +then Bn will be p % gq. If the output seguence
is such that each Y is m x 1, then Cn will be m x p
and D= will be m x q. We can "solve' (1.1), (1.2} or ex-
press the output in terms of the state at some initial time

and the input. Thus we have, taking the initial (or start-

ing) time to .be Xk:

n-1

T Vg k%t iik Yn,i+1 Bi®y (1.3)

where wn x» ©called the StatenTransition Matrix, is defined
by

wn,k = An—l T Ak s k < n-1 ; (1.4)

wn n = 1 {Identity Matrix)+

Note that it has the "transition" property:

wn,kwk,m = wn,m . (1.5)

From (1.3) which specifies the state at any time =n, n >k

»

the output is readily expressed explicitly in terms of the

"initial" state and the current input as:

Here and throughout, the letter I will always denote the
identity matrix regardless of dimension.

CHAPTER 1. REVIEW OF LINEAR stQIFM THECRY 3
n-1
= + C . B,u. + Db u . {1.8)
Yoo ann,kxk i£k> n lpn,l-ﬂ i1 nn

Here the first term is the “initial state" (or initial condi-
tion) response and the second term is the "input response.™
The function

B, | i<n o, (1.7)

is referred to as the '"weighting matrix" or "weighting pat-

tern" of the system.

Time Invariant Systems

We are most concerned with the case where the system is

the "time invariant,' where the system matrices are a;l inde-

pendent of time:

AL o= A,

Bn = B 3
C = C
n

B, = D ,

so that (1.1), (1.2) become:

i

x Ax  + Bu
n
n+l n (1.8)

v

+ Du
n an n

In this case the state-transition matrix
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- n-k
wn,k = A
and hence '
n-k n-1 .
® = A x + z An-——l—l
i Ik Bu, .
i=k 1 (1.9)
and the output
- n-k n-1 —io
Vp T CA . ot 1 oAttt 1 pu, «+ D
Ci=k 1 n

(1.10)

Note the "time-invariance property: the response {state or
output) is invariant with respect to any time translation
In particular, it is customary to set the initial time to

zero (k = 0 in (1.9), (1.10)). The system weighting pattern

depends also only on the time difference;

- n-1-i
Wa,g = CA B, n > i

= D n =i

It is more convenient now to write

_ k
Wk = CA™B , k > 0_ . (1.1
Then (1.10) becomes: *
¥ ca® e
= X +
n o g Vo139 *+ Du n >0

We can combine the second and third ferms and write

v. = aMx

n o F

O~
=
=

i n-i ‘ (1.10a)

CHAPTER 1. REVIEW OF LINEAR SYSTEM THEERY 5
S
by defining
w,oo= Wl—l , i1,
= D , i=0 .

0f the many descriptive properties of time invariant
systems.defined by (1.8) we are mainly interested in three.
These are:
STABILITY
CONTROLLABILITY

OBSERVABILITY

Let us discuss these in turn.

Stability

We shall say that a state x (X ¢ Rp; the linear space

of p x 1 matrices) is stable (or "A-stable™) if

1im A"x = 0 . . (1.12)
o .

In reference to (1.92), this means that asymptotically the

initial conditions term therein will vanish, and similarly
also in (1.10). The class of all stable states is a linear
subspace. We call this the stable subspace. A system is sta-

ble if all its states -are stable. A necessary and sufficieat

!condition for a system to be stable is that the eigenvalues of

A be all (strictly) less than 1 in magnitude. In that case
we also say that the the matrix A is stable. We note that

*® v
A 1is stable if A A is stable, although not conversely.
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For a stable system, the weighting pattern of the system
can be characterized in terms of its Fourier transform —-—

called the input-output "transfer function':

2wiik

W) W e , - < A< %, (1.13)

i
o1 8

. o .
= p 4 e2w1l CZ Ak e2w1kl B
0
let =z be a complex variable. Then

X

Or-1 8§
'z
=
N

converges for |z <1 and is called the az-transform. From

(1.11) we have readily that
Jw, % = zC(1-2z4)"7B + D | lz] <1 . (1.14)
o

All the properties of the z-transform can be inferred from

the transfer function:

PO = o(-e2Tiryy-l g c2min o L b <h<y .

(1.15)

(It is of interest to mention in this connecticn a problem
of importance, even if beyond our scope: given a system
transfer function Y(i), when can we express it in the form
(1.15), for appropriate 'A, B, C?) Note that the =zZ-trans-

form (1.14) continues to be'defined even if A is not stable,

CHAPTER 1, REVIEW OF LINEAR SYSTEM THEOQRY 7

jz} < r for some v, 0 <r < 1; and hence its impor-
for

tance-

Controllabilit

We say‘that a state x is Controllable (reachable is a
petter word) if it can be reached from the zero statq_in some
finite number of steps by an appropriate input. More precise-

1y x is "Controllable" if for some n and some {ui},

XO = 0 3
= 0 <k <n-1,
Xk"’ 1 A.Xk + Buk ] et —
xn = X

{or equiﬁalently, in terms of the explicit expression (1.9}
2

for the state any time,

n-1
x = ] A
4]

n-i-k oo (1.16)

k ).
The controllable states form a linear subspace which we label
the "Controllahle Subspace.'" When the latter is the whole
state space then we say that the state space is Controllable.
We shall then abbreviate this to: (A ~ B) is Controllable.
A necessary and sufficient condition for Controllabllity

is.that the (compound) "Controllability Matrix®
| B aB --- A°71m | (1.17)

has full rank. Or, equivalently, the p x p matrix
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p-1 . 4
R = ] adgp®p™
0

is nonsingular. (Recall that A is P * p.) Moreover, the

subspace of controllable states is precisely the range of RC.

If the state space is controllable, we can express. the
output vn entirely in terms of the input bhistory. To begin

with, we have

k=1 g
X, = g B w g

for some k, and we can rewrite this reversing time as:

A7 g,
J

Fal
<
1
AT

where

i = 1

n k+§ ¢ "k <3< -1

In other words, we may think of the initial state Xey being
accounted for in terms of an appropriate input history. More-

over, we can then write the current state A in the form:

-1 . n-1 .
x, = A% JaTpy o4 Ty ogmeded g0

_k J ] i

n-1

= 7 oA
it L
where
u, = o, 0 <i<n-1 |,

e e e — -

CHAPTER 1. REVIEW OF LINEAR SYSTEM THEORY 9

We can fufther rewrite this in the 'generic" form:

n-1 .
E An—l—l Bui ,

00

where the input sequence uy is zero for -= < i < -N,

In turn, we can express the output as:

n-1
Yn T a} Wﬂ—l—l ui + Dun ?
= é wj.un—lﬂj + Dun ,
og
= 1.
é ¥t ) (1.18)

In other words, the output is expressed entirely in terms of
the input without introducing state, as a consequence of con-
trollability. Moreover, it is possible (although it is beyond
our present scope) to deduce the *sxatemspace" description in

which the state space is controllable, starting from (1.18).

Remark. From (1.10a) we note that if the system is Stable,
the first term in (1.10a) goes to zeré for large n, so that
the representation (1.18) holds "asymptotically" for stable

systems.

Observabilit

To introduce the notion of -Observability, let us begin
with a problem -- one which is not without practical impor-

tance. Let us assume that the system is known: A, B, C and
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D are given. We are also given a sequence of input-ocutput

pairs: (ui,vi), i=1,...,n, wu, being the input and vy

b
the output. Can we determine the corresponding states

Eqs «+-» %X, from this data? To answer this question we may

proceed as follows. Since

let us subtract the response to the known input and define

i-1 .
o~ N 1-1-k
V. = v. 7 ca Buy
Then we have

~ i--1 . ’
v = CA Xy, i=1,...,n , (1.19)

If we can determine xq from this, then of course

i1 i-1

1

Atk g,
: k.

will determine the succeeding states for us. Now we may re-
gard (1.19) as a set of n "equations' to solve for SXq.
Moreover, the equatiens being linear, we see that (1.19) has

& unique solution only if the homogeneocus eqguation
0o = cattly i=1,...,n , (1.20)

has no *nonzero" solution z. Recalling that the state space

is of dimension p and that. A 1s p % p, we note that

0 = cal™ly, | i=1,...,p , (1.21)

CHAPTER 1. REVIEW OF LINEAR SYSTEM THEORY 11

implies (1.20) for n > p.

We now define: a state x 1is Unobservable if

ca¥x = o k>0 . (1.22)

The class of unobservable states is clearly a linear subspace.
its orthogonal complement is called the Observable Subspace.
We say that the state space is Observable if the subspace pf
unobservable states contains only the zero state.

Let p bhe thé dimension of the state space. Then the
state space is observable if and oniy if

p_l T 3 5.
7 atccad
0

=
it

is nonsingular. Of, equivalently, the (compound) matrix

ca
caP-1

i nonsingular. Moreover, if the state space 1s observable,

© we can, going back to (1.19), determine xq ‘as:

ATl e (1.23)

We also use the notation "(C v A) Observable" to denote that

the state space is observable. Note, in particular, that

* *
"(C~ A) Observable" is equivalent to "(A v C ) Controllable."
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% DPROBLEMS %
Problem 1.1
Suppose (C~n A) ig observable. If (I-CK) is non-

singular, then (C ~ (I -KC)A) is also observable,

Hint:
C(I-KCAx = 0 = (I-CK)cax = 0
=>_ CAx = 0 |
hence

C(I -~ KC)A(I - KC)Ax => 0

¥

=>  C(I-KC(A*x = o
_ 2
=> " (I-cK)ca®x = o |
=>  oA'x =. 0
ete,

Problem 1.2

Suppose A is nonsingular. Show that (C~a

) is
observable if (C ~ A} is.
Problem 1.3

Show that (Cn~A) Observability is equivalent to:
" )
(CCn~n Ay Observability

. .
(VC_C ~voAY Observability
Problem 1.4

Construct a (square) matrix A such that for some x

Ha™x1

does not converge as n > oo,

TR T T

Chapter 2.

REVIEW OF SIGNAL THEORY

In this chapter we present a brief review of the salient
facts about Signals essential in the sequel. For more details,
including details of proofs, the references [13, 14, 17, 18,
19] may be consulted. l

As in the case of Systems in Chapter 1, we. shall consider
only the "discrete time'" case where the independent variable
may then be replaced by integers. Thus we shall use the nota-
tion: = for the nth éample, counting from some (arbitrary)
initial sample- (time). (The samples need not necessarily be
taken at some ;fixed rate, although that would be the most com-
mon situation.) We take each s, to be an m x 1 column‘
vector. Since the initial starting time is arbitrary, we'may
allow n to be positive as well as negative as need arises.
Although it would be impossible in any physical device to pro-

cess a non-finite number of samples, it would be equally
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unrealistic to iimit the number of samples to be a fixed fi- * 1 H *

Rm = lim Eﬁ Z Sn+msn
nite number, fixed once and for all. Hence we idealize our N -N
signals as nonterminating sequences: {s_}, n = 1,2,..., 1 ¥ *

i ' = lim gy ] “n®n-m
running through all the positive integers; or, as necessary, N ~N
the negative integers as well. i
= R . . (2.2) .
. 0f course,
Spectral Theory of Sipnals with Finite Power .
RO = PS (signal covariance)

We say a signal sequence+ {sn] has finite energy if
' A typical example of a signal with finite power is:

N
. 2
vim § s IF < e )
N+ —N -3 < A < 3

s = aco§(2wnlo+e) . 3 o

h

1

We shall have Iittle to do with the associated theory. which is periodic if Ao is rational. Note in this case:

We say that a signal {sn} has "finite power"

N .
*
R = aa linvgﬁ I cos (2mnk_+8) - cos (2n(n+m)i +8)
N m N o] o
. 1 *
lim gz | s s = P_ < = (2.1)
, oo 2N Sy Bn s .
: = (aa )% cos Zﬁmlo . 10 #F 0
j Actually we shall demand a little bit more than (2.1).
B , i Note that
j (This is usually assumed implicitly in the engineering liter-
*
! 2riim {aa
! ature.) Thus, following Wiener's definitive work [18], we R, = _!; e (—Z*)(ﬁ(l—lo) +8(A+2 D) dr
shall assume that
- N . : ] and, for lo # 0, 1is the same whatever the '"phase angle" ©.
lim g ) oss = R : |
Nosoo 5S¢ D n+m m This result can be generalized. We have in fact the “spec-

{ ; tral representation”‘theorem due to Bochner-Khinchin-Wiener:
exists and is finite for each m > 0. This does NOT neces- -

* *
sarily follow from (2.1)! Note: that . " :
_ Ry = f &P, ) an (2.3)
- —%
i In what follows we omit the gualification "seguence."
% where pPo(A) s self-adjoint, nonnegative definite (and of
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course may contain delta-functions) and is known as the spec-—
tral density of the signal. 1In fact, it may be obtained by
the Fourier series expansion:
PS(A) = (2.4)
or {Rﬁ} are the Fourier coefficients of p (1). From (2.4)

we have that

k]
pg(r) = pg(+2)

Let such a signal {sn} be the input to a linear system with
transfer function P(A). Let {vn} denote the corresponding

ocutput, so that

« n
Yo T g Wksn—k = j; anksk ’
YOy = ] ow, e2Mik Tl P < =
, § K ' 6 ¥
Then
N o N
1 * ~ 1 * *
N jﬁ Vo¥n+m g wk(%ﬁ j% Sn—ksn+m~j)wj ’

and upon taking limits as N + =, we obtain
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v . 1 *
Rm iig 2N % Yn¥n+m
@« o
= w, R LW
g g k Tmtk-3 Y3 /
3
2nidm [T 3 2miAk _-2midj %
= e 1y W, e p_(h) e =TEAD
00 S0 :
-3
3
N 2miim *
= e WEAY p (X)) w(Xx)  dx
"%
(where ¥ indicates "conjugate-transpose™!). In other words,

the output {vn} has "time average" properties similar to that

of the input {sn}, and the spectral density of the output is
‘ *
Po(h) = WA p (XY () (2.5)
In the special case where the system has the structure:
vy o= an . (2.8)

X = +
n+1 Axn. an s

we see {(assuming A4 is stable) that

<
|

T K
% CAF s 4 .,

where now

e

T ok 2
L CA™ e TiAk o

0

-1
= (1 - ae2™INTH g
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80 that we have for the spectral density;

. Coriy —1
p, (M) = (T - ae2Th Fp (R) F (1 - a%em2mihy ™% o*

(2.7

Stochastic Signals: Second Order Theory

In his pioneering work [18], Wiener used the theory
sketched above for the description of the signals. This
theory is a "steady state" theory. . It is possible to obtain
a more general theory which enables us to include the "trans—
ient" or "nonsteady‘state“ analysis and at the same time make
the steady state analysis easief. This is accomplished by
the iﬁtroduction of stochastic signals, including a ”signal
generation" theory, which enables us to construct a signal
with given spectral density.

A stochastic signal for us is a random process’ (sequence)
{(or time series) -- a sequence of random variables whose joint
distributions of any order are given (or calculable, in prin-
ciple). A Gaussian stochastic signal is one whose Jjoint dis-
tributions are all Gaussian._ We shall only need to consider
Gaqssian signals in Kalman filtering theory. More generally,
"in linear filtering theory we shall be concerned only with -
moments up to the second order (means and covariences); and
hence we Shali need only "second order" theory. On the other
hand; we may replace the given process by a Gaussian with the
same means and covafiances, and hence we may as well consider

only Gaussian processes,
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We say that a stochastic signal {sn} is’ (second order)
stationary if E[Sn] is independent of n (where here and
below E[-] denotes expectation or "phase average') and the

covariance
%
n+m

El(s,-Fls,1(s;, ~Bls,, D] = R

m

In other words, a "time translatioq“ goes not make any differ-
ence, In particular, if the procéss is Gaussian, then the
density functions arxe also invariant with respect to a "time
shift": 7

PUSy,s Spyqs ooos Sypn) = PCS s Spamets <o Sptpim

for all n, m and p.  For a second order stationary pro-
cess we have again the Wiener-Khinchin-Bachner theorem

(cf. [141); 3
I ezniml

R =

- p(x) dax

where p(A)} is the "spectral density" of the process {(and

may contain d&-functions, or more strictly speaking:

R = j- oAmimi AP eR)
" %

]

where P(L) is ecalled the spectral distribution). 1In the

-case

dP{Xr} = p(r) éx

(i.e., the process has a spectral density) 1t may be deter—

mined by the Fourier series:




i
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p() = ] e 2Tm g

Note that p()) is self-adjoint and nonnegative definite.

Also

ft

. )
-2 *
p(-1) z g 2mimi Rm )

so that

i

p;; (0D py; (-2 > 0,

where pii(l) denofes the dizgonal terms.

The problem of estimating p{i)- ffom one "long" reali-
zation of the ﬁrocésa is referred to as "spectral estimation™
and is an important one, although beyond the scope of the
present work.

Let us observe now that the spectrai theory of sipgnals
with finite power that we started with, shows strong resem-
blance_to the spectral theory of stochastic signals.  We can
make this connection more precise by invoking the_central Te-

sult of ergodic theory: For a stationary Gaussian process

“which has a continuous speetral distribution function, the

"phase average" may be replaced by the time average. Thus, if

there are no "Jjumps" in the spectiral distributions {(or no
"delta functions' in the spectral density, in engineering

language}, then
5 ?
Elf(s )] = 1im == £(s,)
n . 2N by k

so that in particular
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: ?
Els.] = 1lim =% s
n Nom 2N 4 Tk
Also:
N
* 1 *
Efs s ] = 1im 5% ) §,.8
n n+m X 2N S k™ kE+m

In particular, therefore

N
*- 1 *
R = Els.s 1 = lim <5 | s, s
m n-ntm oo 2N S k" k+m

Thus we may consider signals as ergodic Gaussian processes,

so that we retain the "time average' notion as well as the
phase average or statistical average notion. In this sense,
modeling signals as statlonary Gaussian signals 1s more gener-
al, and is the generally accepted modern view.

Let a stationary {(zerc mean) Gaussian signal [sn] with
spectral‘density ps(k) be the input to a time invariant 1i-

near system and let the output be {vn}, s0 that

Then the output {vn] is also Gaussian and stationary with

spectral density pv(l):

p (V) = ) p ) WD

where

2mik) Z'Iwk‘F < o is assumed
[¢]
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This can be proved essentially as in the deterministic case

but now using "phase" (statistical) AVEeTages:

ifv v 1 = -] 7w E *
R ntm {EJ g k {Sp-1;5n+m_j] A
a1
o co J’Z 2 .)\(
= 57 LA (m-j+k) *
W e
b, Pg(A) dr w

.‘%:
=L 00 p 00 30T a
L0 ,

In particular, (2.7) holds when the system 1s specified by

(2.6).

Signal Ceneration Models

A Gaussian signal {Nn} such that

EN] = 0
EN N
Wl o= 0, n#m ,
= I |, n = m

is o e . . .
alled "white noise" with unit covariance. Let

Xn+1 = Anx + BN n o

which is then a "model" for generating the signal {s } re
n-’ -

ferred to as "white noise through a linear dynamic system,"
It turns out that for all practical purposes this is the only

class of signals of interest in filtering theory. Let us now
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study some properties of the signal process {sn} S0 genera-—
ted, We assume that %q is Gaussian and is independent of
the noise {Nn}, for n 370. Then the process {xn} —— the
ngtate" process —- is Gaussian and Markovian, Thus we can

readily verify that

Elx | x ]

vy Xq, Xg] D

Indeed, we have only to note that solving (2.8):

o7 An—l-‘.ﬂpxp T 1N Ay-1Tn-2¥n-2
oA Ay oFn alyg
-+ «ww + An——lAn-*?,."- 'AprNp )

the noise terms on the right being independent of xp. Once

again, this implie$ that all the memory resides in the state

one step behind.

Let us now calculate the means and covariance of {sn}.

We have
E[sn] = Cn E[Xn]
and
E[xn] = An—l E[erl]
= A!’]_—l AOE [XO]

In particular, S has zero mean if the initial state X,

has zero mean.

Let us next examine the covariance structure. TFor sim-
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Plicity, we shall assume that

4
)

E[xo]
S0 that

li
(=}

E{xn] 3 ﬂio

(Otherwise w : i
€ may work with “"centered© process

that

B

R(n+p,n
) A[]'Fp—l”-AnR(n:n)

~and  R(n,n) satisfieg:

R(n+1 n+l) = p R( * *
' n,n) R ‘
n ) 'a *E R(0,0) = E[Xoxg]

) | | (2.9)
nd for the Signal covariance we thus have:

*
E -
[SmSn] = Cm R(n,m) C;

Of special interest to us is the +3 i |
time invariant cage where

An = A ,
Fn == F ,
Cn =

Then we have:
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B{m,n) = R{m-n) = AT R(m,n) , m>n
while
* *
R(n,n) = A R{n-1,n-1)} & + ¥r¢ . (2.10)

We. can, of course, "solve'" this difference equation to obtain

. * n-1 O
R(n,n) = A"R(0,0)A " + 7§ Ak FE A F
L

Of special interest to us is the case where A is stable.

In that case,

ABR(0,0) 4™ & 0

and the series

v ok o F K
I A% FF A
4]
converges. Hence
s * %
lim R(n,n) = 7§ Ak gt a*k
n-eo G
Let us denote this by R, . Then.
im E * = #P > 0
lim {xnxn+p] = R _A¥ p > . (2.11)

n-ee

In other words, the Gaussian process {xn} and hence the

signal process {sn = an} is asymptotically stationary. Note

that RUo satisfies

o
R = AR A + TF . (2.12)

The spectral density corresponding tc the asymptotically

§
f
3
i
i
!
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stationary Process is

p (X) = ¢ *
s p, (2) C
x ’ " 2 .
where (19
( R
P_o(-1) = e~ 2Tiin ,n 2
% g A"R_ 4 R, z e2Mikin aftn R
O o0
- —-2wix, 1
I- *e2TiA -
(I-ae )R, o+ R (I-aTeRTIATL o

(2.12), yielding

- +27riy, —1
Pxfl) (I - fe “ll) FF*(I-—A*e‘zﬂil -1

it

eV 760N

3

h .
where Y(dA) is the system transfer function

vr) =

z Al e+2winl F
0

]11 DAY Llcula] we ha Ve the fac tor 1zation for ]le SLlgnal
1 t g
a

spectral density:
PO = (opdopny®

Where CI'U (}\ } ‘ 1s th ¥
e tra]lsfe[' 1 Orx
T ncti of a 'physicall

T
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realizable weighting pattern.” Tinally, let us note that fTor
the stable sysfem (A-stable) we can show that the time aver-
age is equal to the (steéady state) phase average:

1

lim Si4pSp = AR
Nooo N op2j PR

. Example

Let us illustrate our ideas with a simple example. Sup-
pose our stochastic sighal arises from sampling periodically

the noise response of a linear oscillator. Thus

Sk =. s{nd) . (2.14)
a® a 2
E¥§r+ ZbE% + wgs(t) = N(t) (2.15)

where WN(t) is the noise input to the oscillator system and

A is the sampling interval. We assume that mOA < w. Our
first step is to derive the signal-generation model for (2.14),
using (2.15). For this purpose wé first rewrite (2.15) in

"state-space' form:

s(t) = Cx{t)
, (2.16)
k(t) = ‘Hx(t) + GN(t)
where
0 1
H = '
' -~y -2b
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_ 0
o - [
Let
X, = =(na)

Then from (2.18) we can write

I, = e X1 F Ty - . (2.17)
where _
A .
T g H{d~a) GN(n~TA+c) do . (2.18)

Let us assume that N(t} is g Gaussian processAwith mean

Zero. Then so is Cn and further:

A4 N .
* - — -
E[gngm] = f I eH(b~a) GR(m—nA+c—s)G* eH_(A s) do ds
¢ 0 .
where X
' *
Rty -ty = EN(ty) N(t,) )

We assume that (corresponding to . "large bandwidth" noise):

M=o for || > A

El

and further take 4 small enough so that the double integral

can he approximated well. by

*

= AR(O) FF for m=n
= 0 for m# n
Hence we obtain
by = AR(O) GNn ,
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. i . hus have
re N is Whlte Gaussian wi -h unit variance We t v
whe n

the representafion in the canonical form:

T an , (2.19)
n+l Axn + ¥
where o
A = e ,
F = JAR(0) G

Jote . 2.19 ot o Y Y 1210
t ha't ( 1 ) is n btained b directl discretizi £

the differential equation {(2.185).

. that
Let us pursue this example further. We assume
e .

b
99

< 1 ,

o that we ds & n o0sel ¥ v m. arn lel:tlng
5 & 0 have =z illator syste Th

b E (damping ratio) ,
“0
2
l'.l)s = l'-l)o 1_E 3
we have
HA
A = e
5 i — sin w/A
costnSA + = sin wSA N s
~bi 1-E
= | E | A
- - sin o
o sin mSA casmSA 5 "

2 it

btain a
that (C ~ A) 1is observable. Hence we canh o
Note at
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! 11 :
! difference equation"™ for

2
we obtain
—-bA
Sneg T (Ze cosmsa)sn

- sin w
o—bA i
£

Moreover, 4 being stable

iy stationary and ergodic,

for small £, a1so

e =

(Cayley-Hamilton Theorem (see i1

A® & (2e7PA -
(2e cos w A)A + e ba

REVIEW OF SIGNAL THEORY

5, Exploiting the fact that

1)

-ba
+1 e =

— 5 |¥AR(0y n
s n

the sipn i
ignal fsn} 1s asymptotical—

Its spectral density ig

1 *

= 271 -
p(A) I -e WlAA) (1 me_gﬂilA*)ﬁlc*
- ~2bA
- AR(O) e mgsin2a,A P _n
5 S . [gbA —Ami(A+E A)
(1-£%) - e
—bA ~2mi(a-r_AY|"2
. e - e s
where I ’
2‘ =
T!fo UJO ; 2'}Tfs = ws
Note that

P(A)  has a maximun at
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pnder our assumptions, for small £. TFinally,
log p{A) = constant
- log (14—9“2bﬁ-2e_ba cos (A-f_4))
- log‘(1+e_~2bA--2e_bA cos (A+£.4))

where the second term is symmetric about {fSA) with maximum
at (fsﬁ), while the third is symmetric about (—fsA) with

maximum at’ (—fSA). The smaller b, the sharper the peaks.

% PROBLEMS
Problem 2.1
Let {sn} be & stationary Gaussian signal with spectral
dersity p(A). Define (for fixed B) the continucus time

stochastic procéss by

sin w{2Bt-n)

s(ty = | o8, Sommeay

—0 < O <

where the convergence of the infinite series is taken in the

mean square sense. Find the covariance-of the process

s(kA) -0 <t <o

for fixed 4, 2BA < 1. Specialize to the case where the

spectral density of {sn} is such that

p(x) = 1 -4 <A <}

Hint:

g an(t) an_l_p‘('t"‘k[,\.) )

. .
E[s{t) s(t+kd) 1 = J R
p p
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where

= r
R E*Snsn+p] ,

gin w(2Bt-n)

2y (1) T(2BE -1

Hence

r Sin w(ZBkﬂhg)

Eis(t) S(’t+kﬂ)*} = P W(ZBkﬂ“‘p)

Dt~

_ L2midp sin T{2BkA~p)
= 2 _MA«DKA~p )
f Ie T{2BkA-1} P(A) dx

3

i

2 .
_ / o 2TikA (2B4) p(A) da
XL

-2
Hence spectral density

- 1 A -
= SBA p('z—ghﬂ—] for -Ba < A < BA B
. = otherwise
Problem 2.2
sJPLem 2.2
For the signal model ;
Sn = an
Xn+1 = Axn + FNn , n >0

where A ig stable and ¥y 1s independent of the unit-
variance white-noise sequence {Nn}, calculate the mean

and variance of the "sample® covariance

N *
ngl Sn$n+p

2=

for each n.

Show that. the variance goes to Zero as N + o,

CHAPTER 2. REVIEW OF SIGNAL THEORY

problem 2.3
problem 2.3

Prove the Schwarz inequality for random vectors

' 9
Elxy 112 < ®Il=|P[ By ]

Prave the Holder inequality:

ety 77 < ARDI=P] +

£l v %1

,

33
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3 »

T 'LeI out 'Lfle e 8] <] vale v -

1l neis s r qui 1 ntl N to extract the de

Sired Slgl]al Irom the Corruptlng nolse . A i‘lltel .15', in OtheI

3 r of e si gn 1 I!le T lglﬂs f()I thls
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3.1 PARAMETER ESTIMATION: THE CRAMER-RAQ BOUND;
THE PRINCIPLE OF MAXIMUM LIKELIHOOD

We "observe" an n x 1 vector v. TFor example, v
could be n samples (arranged as a column veetor) of a con-
tipuous time waveform that is sampled at some discrete inter-
vals of time. Given v we need to estimate an m x 1 ‘para-
meter" 6 (see below for examples). We consider the situa-
tion where nothing is known about_ B: it is just an "unknown"
paraﬁeter, and v 1is modeled as a random variable whose dis-
tribution is known for each 0.  We have then what is called
a "parameter estimation" problem, in the classical statisti-
cal terminology associated with the names of Cramer and
Fisher. (See [31).

0f course, as we shall see gquickly, other points of view
concerning © are possible, although we cannot discuss them
211 in this book. Which view we adopt is determined by our
"track record" of success -- how well we do. We retain the
ﬁodel +1f our experience is positive and discard it, otherwise.

The unknown parameter ©O is any point in m-dimensional
‘Tuclidean space. For our purpose, in this book we need only
to consider the case where the distribution‘of v can be
replaced by its density; or, in "pure mathematics" terms, the
distribution is absolutely continuwous with respect to Lebesgue
measure. Thus we are given a family (indeked by 8) .of pro-
bability densities:

p(vley > 0




36 CHAPTER 3, STATISTICAL ESTIMATION THEORY
[ piviey djv] = 1
Rn

The notation p(v]@) is intended to suggest that we may

think of p(v|e) as the "conditional" density of v given

@, even though 0 is not a random variable,
' Any "estimate" wil?l bhe (in fact, will have to be) a func-

tion of v, Thus, the "hat" denoting an estimate, we can

write:

8 = f£(v)

where the function I(.) completely specifies the estimate.

How shall we measure the "goodness'" of our estimate? Note
that f(v) is a random variable. Hence any such measure
must involve "statistical averages." -We-begin with the first
moment : '

r

Eg(8) = [ 1(v) p(v]e) djv|

where the subscript o indicates that 0 is fixed. The

quantity
Eo(8) - o
is callgd the estimate "higg, The "hias" is cleariy a.func—
tion of o:
b(e) = E (&) - o

An estimate ig said to be "unhiaged" if the bias is mero.

Let OO denote the "true" value of ©, whieh is, of

course, unknown and, in faet, unknowable. Nevertheless we
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ecan talk about the "arror':
f(v) - @0

i 8 the "mean
i wn, we consider for arbitrary
Since 00 is unknown,

square error"

[ e -olf pevled dlv]
R

n

Rl —elp® -

ix of the error:
ally, the second moment matrix
or, more gener ,

*
R(O) = E@((f(V)-@)(f(V) -0))

(3.1.1)

*
[ (£Ce) - 8)(£(vy - ©) plr|e) d]vi

R

as a function of €.

The remax kable dlSCOVer 5\.88001ated with the names of

" "minimal®
d Rao [3, 16] is that one can calculate the
Cramer an a R

- i . 8] r he
t trix R(@) the minimum of (3.1 1)
s5e Coﬂd Mmomel ma <) 13 Ve

) . s . K
1 of a.ll pOSSlble estimators f( - ) -— without ac t;ll.la 1
class v
l]ee(] n o know (<] : Sl;llma.Le (excepl: fo
. ’ the corr Spondlng e r its
g

. . . d to
. btain a lower boun
ecisely, we can ©
bias). Or, more pr

R(O) in the form
: *
- (3.1.2)
R(D) > (T+Vgh(8)) AT (T+T(b(0))"

where

* 0371
A(B) = Dgl(Vglogp(vie)) (Vg log p(v]

* (V e) divi I
RI’!.
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timate which can be difficult te evaluate in general. The
inequality is most useful, inp fact, when the bias is zeyo.
Thus we have that for unbiased estimators the second moment
matrix R(@) {(which isg then also the variance matrix of the

"error' (o - @)) has the lower bound ("c_p bound');
R(O) > {Ee[(ve1ogp(vle))*(vélogp(v]e))]}“l . (3.1.3)

Again the inequality is most userful when the bound is indepen-

; its use ig circumspect when this 4g not the case,

Proof of the C-R Bound Formula
TT———————2 Jound Formula

Let us see how to brove (3.1.2), First we shall need to

assume that

Vo f plv|e) dlv] = f Vgp(vioe) dlv]

R r"

Or, in ather words, ”diffefentiation With respect to the para-
meter 0 ig Permitted under the integral sign." There are
nontrivial cases where this doeg not hold. (see [31), but fop-
tunately we will not need to bhe concerned with them in this
book. Note, in particular, that Since

| pteloy ajv] = 1
R"

we have that

Jovgptvloy alv] = o h
Rn

39
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ince
or, Sin

V@p(vle)

Vo tog P(VI®) = preTay”

re we are not concer ned with thﬂse values of V . for which
e ‘
(Wh

t denon nator is zZero we can w ite equ1va18n tly
‘ )l x
he

‘ N
= 0 (3.1
| (7 log p(v|e)) p(vie) alv]
or .
log p(v|8))}
EQ(VO g
ias
e i T As we have seen, the bia

for all n .

b(e) = E[8} - &

- 0

5 a 1 tion of o Since we can dgifferen tiate under the
| .
1 func h

at
integral sign, we have th

. L
Vg b(B) = [ £ Vep(vle) dv

rix; we can rewrite
is the m % m identity matrix; and
where I is
this as o

I+ V@b(e) = Y(ey ,

sing (3.1.4), we can write finally

where, u .

| ‘ (3.1.6)
0y)p(v|e) dlv]

[ (£(v) - 8)(Vylog p(vl

Rn

v(g) =

- 3 . "
— gu 11ty 18 baSlcal 19 a dlrect consequence of the
The C R ine a.

ell~ wn Schwarz 1nequallty e this le
1-~kno h N To se s (
W
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A = £(v) -0

Vg log piv]e

Note that A

18 mx 1 and B is 1xm so that B*

is
mx 1. Let A be any m X m matrix. Then we note that
* * %
((A-AB )(A -paB ") ) » o0
and hence.
* * %
I (A-AB )(A-4B) p(vie) dlv| > 0 (3.1.7)
R0
Let us "expang" (3.1.7):  we have
* * % * * *
E@(AA ) - AE@(B Ay - EO(AB)A + AEG(B B)A > 0
(3.1.8)

We now assume that the mx n matrix

*
EO(B B) =

/ (V@IogP(V!@))*(Vélogp(VIg)) p(v|e)
n

d|v|
R

ig nonsingular for all ©. Then we can choose, for each a,

*oyyl1
A Eq(4B) (E,(B'B))

in (3.1.8), vielding

* -
Folfh) - Bo(a) (2o (8B)) B (8%2%) > o

which isg readily recognized to be the same ags (3.1.2).
An important question is: When ean we find an estimator
which actually attaing the minimum second moment matrix?

In
other words,

when does equality hold in (3.1.2)7 ap estimate
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. : " . T
fof which equality holds in (3.1.2) is said to be "efficient

W i O Y .
equa.li ty holds in (3.1-2) if equ&llty ]!I.Olds in (3 1 i)
No 2

" A-sY = o
or f(:) satisfies
£(v) - 0 = AV log p(v]o)) (3.1.9)
(omitting values of 'v for which p(v]|6) = 0). But from
(3.1.9) we see that
Ry (£(v) = 0) = ABg(Vg log p(v]8))
2 .

‘ ond
the estimate f(v) 1is unbiased. Moreover, the sec
or
i Crd of the
t matrix (which is now also the variance matrix)
momen

error is

*
EO((f(V)-@)(f(V)-G) )

‘ *
* A
AEg[(9log p(vie)) (Vylogp(vie))]
or

-1
.1.10
[Eg((7glogp(v]0))" Tglogp(v[e)] . (3.1.10)
[fici 1 have
Hence for the estimate f(v) to be efficient we mus
- - 9) (3.1.11)
e = M(O)(L£(wv)
Vo log p(v]©)

for a v . T o] tal q 4}
11 and ¢ he most impoer nt instance o (31.1 }
lé the case WheIe f(V) 15 linear in V.
mula for Cal(:ulatlng the
Elnally we llote an altEInate for

right side of 3-1.10 whose 1lnverse 1S the C-R bOund for
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unbiased estimates). Let o = Col. (8
(Bysvnn, em). Then

E{(7glog p(v]0) (v, 1og p(v]0) ]

= 32
“)El55, 55— log p(Vi@))
175

(3.1.12)
This follows from
2
0 = 2
50,55, 1 p(vle) djv)
Jgn
B  n 38598 ae p(vie) dfv]
= _E_
- 5 108!3(V!8))p(v19)) dIVl
lo -
o 7 gpivie) ailegp(vlg) p(v]e) dlv]

+f(__83~1
~ asiggj ng(vie))p(vle) dlv|

Principle of Maximum Likelihood"

. .
1 ¥ measure of gOOdlleSS of
So far we haVe ai scussed on he .

an estimate but have not; C()IlSldered the pr()blem of fl]ldlﬂg

- in other words which minimize
error moment matrix (for all e).

estimates which are optimal'

Unfortunatel
¥, there
18 no syste |
matic technique for ilndlng the optimal est
stimate,

even if one eXlStS An eiilclellt eSLll]]a te cannot a.]Wﬂ,yS be

~.h 3 h | t int
. W N i £ P
Showr O ex1s € a3 oweverl S1ln e ou one rescr pPtion
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for estimates, which has some features to recommend it -- and,

in fact, the only one that is used, for all practical purpo-

This is the Principle of Maximum Likelihood. The Maxi-

s€S5 .

mum Likelihood Estimate (MLE for short) is the one that maxi-

mi zes p(vl@) with respect to &, for each wv. Since at

2 maximem (assuming the necessary differentiability proper—

ties) the gradient must be zero, the MLE will satisfy:

v, log p(vlp) = 0

k]

We can state one desirable property of the MLE: An efficient

estimate, if it exists, is a Maximum Likelihood Estimate. To

see this, let us go pack to (3.1.11) which characterizes the

efficient estimate f(v). Let us fix v in it. Then the MLE

is that value of 8 which makes the left-hand side zero. Since

M(©) is nonsingular, this means that
f(v) -0 = 0

or f(v), the efficient estimate, is also the MLE

The maximum likelihood estimate need not, in general, be

unbiased; and the calculation of the corresponding &rror co-

variance can also be nontrivial. Tortunately, we are often

interested only in the Yasymptotic' case! where O is fixed

in dimension, while the dimension of v grows, as we take

more and more data, for instance. Thus we may tallk about an

estimate being ragymptotically” unbiased and "asymptotically"

efficient. As a rule, the MLE has these desirable asymptotic

properties, but, of course, reguires proof in each particular
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instance. See [3, 16] for more of the statistical literature

on this.
EXAMPLES
Example 1
Our first example is perhaps the oldest one of its kindg,
fet
_ 1 -1 ‘
r{vie) = Exp ~3[R™(v-Le),(v-La)] |,

(vam)"|r|?

L being n » m. We see that v is Gaussian with mean L9

and variance matrix R. We can readily verify that
* * _ :
(Vg log p(vlon' = L2 v - Loy
We assume that

Le = 0 implies B =0

Or equivalently

E
L' L is nonsingular. .

El(75108(v]0))" (7, log p(v]0))]

EL R (v - 1) (v - 1o) YR

*®
= LR lL

and is nonsingular; therefore the C-R bound matrix is

(LY, "y

The bound is thus independent of ©®. The maximum likelihood

estimate is given by

3.1. PARAMETER ESTIMATION ’ 4t
& _ ~
LR lv -8y = o
__OI'
i * - *
6 = (Lr oyt vy

This estimate is unbiased since
a *_ _ *_ ..
Bd] = Rl v lEw] = e
The estimate is efficient since

- - - ' - —1. %
R TR Y -6 = W R R T v - ne

= @ty v oz p(vien

Example 2

Our second example is one of the few cases where ﬁn effi-
cient estimate éaﬁ be explicitly calculated, and is nonlinear.
It also illustrates the fact that even an efficient estimate

can leave something to be desired, Thus, let

v = a3 + N

3

where § and N are independent Gaussians with zero means

and the identity for the covariance matrix. It is desired to

estimate a2 (corresponds to signal 'power"). It is imme-
diate that
p(v]a?) = —& Lo -3y Lnvl
Na®)®  (vam 1+a
Hence
3 tog pvle®) = - § -ty . gl
3a 1+a (1+a™)

The maximum likelibood estimate is such that
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or

say. This estimate is efficient since

I 1

fevl 4 _ .2 _ M(a_l_z N sm_}_)
2 1+g 2

In particular, the error

2
2 152
E[(;Q - a%® 2&1;%%_l_
However, the estimate, even it efficient, has the draw-

back that there is =z nonzero probability that

2 < o

»

which is undesirable since we are estimating a positive guan-
tity. We may define a new estimate which does not ha%e'this

defect by taking instead

To(v) + ]fo(v)l
2

This estimate is biased but has a smaller mean square error!

3.2. BAYESIAN THEQRY OF ESTIMATION: OPTIMAL MEAN SQUARE

ESTIMATES AND CONDITIONAL EXPECTATION

" We next consider the "Bayesian" view, in which we assume

that @ is also random. Thus we are given the Joilnt density
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(0,v). Our criterion of goodness of any estimate f(v) is
H
éain the second moment matrix:
* 2.1
E[(f(v)-0)(f(v)-@) 1 . (3.2.1)

*Tﬁe optimal "mean square' estimate is the one that mlnlmlzes

(3.2_1). Let

fa(v) = E{o]v] . C(3.2.2)
HWe show that (3.2.2) -- the '"conditional expectation of ©
given v" -- minimizes (3.2.1)., For our purpese, we can

express the conditional expectation as

Elo|v] = [ epto|v) 4ale| , (3.2.3)
Rm

where p(0|v) is the conditional probability:

p(OIV) - B_I%_?_VL‘)F_)_ . (3.2.4)

The crucial property of conditional expectation we need is

that for any m % 1 (Borel measurable) function h{wv)
' * * 5
Eldn(v) } = E[E[0iv] hiv) ] . (3.2.5)

This can be proved easily using (3.2.3). In fact, the right

f (f ep(efv) dI‘@!) h(v) ' p(v) d|v]

g® g™

side of (3.2.5) is

)

ff oh(v) p(8|v) p(v) d|o] dlv|
g™

which by virtue of (3.2.4) yields the left side of (3.2.5).




48 CHAPTER 3. STATISTICAL ESTIMATION THECRY

Lef us now'rewrite (3.2,1) as
EL((25(v)=0) + £(v) = 20(¥))((1(v)=0) + £(v) - £,(v)) "]

= E[(fO(Q)—9>(f0cv)—e)*]-kE[cf(v>—f0(v>)(f(v)—f0<v))*];
since from (3.2.5)

El(2(v) = 0(£(v) ~ £,(v)"] = o

taking e

BVY = £(v) - £,(v)
Let us note that from (3.2.5) (or directly) we can see that
Elfy,(w)1 = Elo] (3.2.6)
therefore
ELO - £5()0 - £,(v) 1 (3.2.7)

is the (minimal) error covariance matrix. We can "expand"

(3.2.7):

= BL(O - fotv))e*] - (3.2.8)

= m(eo’) - E(f,(v) 1,0 . (3.2.9)

Both follow from (3.2.5). From (3.2.8) we have the inequa-
lity:

E(Ig(v) f5¢v)") < B(ee™) (3.2.10)

Remark. The conditional expectation E[e{v] is definable as

a Borel function of v for any two random variables @, v

2 ?

A% So0n as - €& has a finite first mement, that is
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EL{8]|]1 < » |, @ = Col.(8y, ..., 8.0 -

The.definition is based on (3.2.5) rather than on (3.2.3) and
does not, in particular, require that a joint density exist.
see [28]1, for example, for more on this. For our purpose,
since we are concerned mostly with Gaussians, (3.2.3) is
adequate. .

let A be any k % m matrix. Then we may consider the
best mean square estimate of A8 rather thén that of @ --
some linear combinations of the components of 8, in other

words., . Let h(v) be any estimate, Then

EL(A® ~ AE(O|v))h(v) 1 AEL(O - E¢o|v))n(v) 1

by (3.2.5). Hence as before, it follows that AR[9|v]l is
the best mean sguare estimate of AO.
An important property of the Conditional Expectation we

shall need in the sequel is:

Elolv,i = E{E[@[vl,sz Fv,b , (3.2.1D)

2

Which'is easy to verify.

3.3, GAUSSIAN DISTRIBUTIQONS: CONDITIONAL DENSITY;

UNCONDITIONAL MAXIMUM LIKELIHOOD; MUTUAL INFORMATION

Let us now specizlize to the case where 9, v is (joint-

1y) Gaussian. Let us see how to calculate the conditional




;
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expectation E[®|v] in this case. Tlet

6= G“E[e] 5

G = V_E[V] ]
~ %

R, = E[8"]
ook

RV = E[V ] ,

' ek
Rgy = E[6V ]

and let A be the (m+n) x (m+n) compound matrix:

BO R@V
A = R* 7
gv Rv

Then assuming A to be nonsingular and writing

8

v

SRR

where 7 is now an (n+m)-dimensional Gaussian, we have

a7t

W Exp —%[A—-li, E}

p(o,v) = . (3.3.1)

where we may "partition" A_l in the same form as we did 4.
To calculate the conditional expectation E[@Iv], we
need not use (3.2.3) but can proceed indifectly.
Theorem 3.1. let 9, v be jointly Gaussian. Then
Efejv] = E[0] + A(%)

. (3.3.2)

where A satisfies (the linear equation)
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E[Bv'] = AE[SY'] . (3.3.38)

Remark. Equation (3.3.3) is a discrete version of a more

general equation known as the Wiener-Hopf equation.

Proof. We shall need to use one fact that uniquely character-
izes CGaussians: that "uneorrelated Gaussians are indepen-

dent." Or, more specifically: suppose X is mx 1, Y .is

n » 1 and they are jointly Gaussian; furthermore, suppose the

cross correlation matrix
* .
E(X - B(X)MY ~ B(Y)) 1 =0
Then ¥ and Y ' are independent:
p(X, Y)Y = p(X) p(Y) . (3.3.4)

We can see this readily, agsuming that the covariance matrices

.of the variables

R

. EL(X - B(X))(X - B},

E[(Y - (Y)Y - E(¥)"]

fy

are nonsingular. in that case the covariance matrix of *?i
is
RX 0
) o B, |
and its inverse is
RS0
o r;t
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Hence we can write, using (3.3.1):
L
|Ry iRy
YUK
p{X,Y) =
( @E)n+m

which is

i

IR, |3 1o o glrgl7E -
—=——Exp ~% [R] x,x])(—_————E -3 (R, 7Y, Y )
(( 2w)m [By ( 2ﬂ)n Xp RY )

(%X} p(Y) .

so that X and Y are actually.iﬁdependent. it RX or BY
are singular, we cannot, of course, write down the probability
densities; however, if RX is singular, we can work with a
submatrix which is nonsingular, whose rank is the same as that
of RX; similarly for Ry. The result (3.3.4) would apply
to the variables corresponding to the submatrices. 3ince the
original vériables can be expressed as linear combinations of
these, the independence result follows even if we cannot write
down (3.3.4).
Next let us note that

0 - (E(Q) + A%

3.3. GAUSSIAN DISTRIBUTIONS 53

i

E[(B-a9h(n)*] = (8[8-a¥DEM(v)]F

= 0 (3.3.86)
or
E[(6 - (E[61+ACv-E[vD)R()*] = o

Or, from the definition (3.2.5) of conditional expectations,

our theorem follows.

Remark. The Gaussian case is thus characterized by the fact

that (3.3.5) implies (3.3.6). Also, the best mean sguare
estimate is linear in v.

Let us now célculate the corresponding error variance
matrix:

P = E{(6 - Ele|v])(o - E[GIV])*]

= BB - E[B{vD(E - EB|v ]

= E{(® - B[B]v])E ]

= R - AE[vG]

*

ov (3.3.7)

= R., - AR

Also specializing (3.2.9), we have

being linear in 0 and ¥, 1is jointly Gaussian with v, and
by virtue of (3.3.3) is uncorrelated Wifh v, since
) LM . *
El{e -~ E(6) - A¥)V I = Efov ] - AE [¥% ]
= 0 (3.3.5)

hence 0 - A% is independent of wv. Hence, in particular,

for any m x 1 function h(v) (with finite second moment):

Moreover, if

r

R
v

Ry - E[E[E]v)] E[é}v]*}
*
Ry - AR A

is nonsingular, we have that

(3.3.8)

(3.3.9)

(3.3.10)
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‘,
50 in that case | Re Rev j
- -1 * A w *
P = Ry - Ry Ry Ry, - (3.3.11) RSB
L Det
In particular, always:
- *
P o< Ry . : (3.3.12) Rg=ARg, Ry AR
) R* R
_ ov v Det
Calculating the Conditional Density P(a]v)
It is interesting to note that {3.3.2) can be used to P 0
= * 2
calculate the conditional density: p(@]v). We know that the R R :
L “ov V ipet

mean is given by (3.3.2) and the variance P defined by

(3.3.7). Let us assume that P is nonsingular: therefore and by the rules of computing the determinant of a partitioned

By will be nomsingular also, Let us assume that R, is non- matrix:

Al = |ei [R

singular. If we assume that p(e[v) is Gaussian, then we vI '

know it must be given by as required. IHence we see that, in multiplying the right side

-1~ N ~ m : f 8 check. Next we
p(ojv) = —»«—;—w£ Exp -3[P V(B - 4%), § - AW of (3.3.13) by p(v), the constant factor w
(V2my7p|*® how that
(3.3.13) need to show a
N ) g s 1 - . -1, . -1ls =
To show that this is indeed the correct answer, we have only [P 1(@—-Av),e-Av] + [vav, ¥v1 o= iz, Iy
to multiply the right side of (3.3.13) by p(v) and show that
the product is indeed p(6,v). Tor this purpose, let us first wpere .
. ‘ ‘ 5 _ |©
prove a result that is also of independent interest: viz- _ Z2 = ¥
|A[ = ERvi el (3.3.14) In other words, we have to show that we may partition A_l a8
: . . : ‘ -1 -1 ®
where | | denotes determinant. To this end, we recall that » -P A
-1 _
we may perform "elementary operations" on = matrix while com- ) A T -1, % -1
prl RV +A P TA
‘puting its determinant. Thus
or we have only to show that the product matrix
.
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-1 -1
oy P~ -p

x -1 o1k
o Hy ae™h P tag™p s

equals the Identity (n+m) matrix. But this follows since,

by the rules of multiplying partitioned matrices, the product
ig

* ~1 -1 *_ -1 —1
R,~R, A - +R

1

* %* -1 * -1 *__1 _
R. -R -
(Rg,-R A" )P RoyP  A+R A'PTUA+R R_

and the result follows since P is self-adjoint:

* s
P = - = - .
RO AR@V R@ R@VA :
* *
RBV - RVA = 0 ;
T _popd * -1 * 1
ROP A ¥ R@vA P TA = (—R8 + RVA PTTA
= -A
and
R, R-F = A

Qv v

Remark. The formula (3.3.14) does not tell us much about P

2

since it involves only its determinant. 1£f, however, © is

scalar, then

P = |P]

Error Variance_ = %éuT ,
v

and, of course, v c¢an be of arbitrary dimension. Note that

Thus we have

(3.3.14a)
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IR in that case is the cofactor of the "1-1 position,"

ol
since we can write

2
Ty Alv
A= * s
Alv Rv
where
et
og = R[es 1 ,
" e K
Alv = Elev 1 ,

and is 1 x m.

Unconditional Maximum Likelihood

We shall now indicate another way of deriving (3.3.2):
by the principle of "unconditional maximum likelihood, " the.
qualification “unconditional' indicating the slight difference
from the principle of maximum likelihood we saw in Sectioh
3.1. Thus we maximize the ("unconditional" or "joint"} den-
sity function p(v,8), which is the basic datum of our pro-
blem under the Bayvesian assumption. Or, we seek that wvalue of
0 for which

HVO log p(v,8) = © (3.3.2a)

‘for each v. But

p(v,0) = p@|v) p(v)

and hence we only need tazke "the root of the gradient equa-~
tion':

v, log p(ajv) = 0

e

Now, we have seen that p(g|v) is Gaussian with mean Elelv],
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and the Gaussian density function attains its maximum at the
mean. Ilence the maximum unconditional likelihood estimate
(MULE) is the same as the conditional expectation. The point
in showing'this'is that (3.3.2a) is "operationally easier"
for an important class of applications we shall deal with.

(Cf. Section 3.5.)

Mutual Information

Let us next calculate the mutual information I(a;v),

that is, "information about © given by v," which by defi-

?

nition (in our context) is

oy = p(9,v) )
1005 E(log PCEIBIVY

We can show that

[Rgl
I(0;v) = 3% 1og—[§|~_ ) (3.3.15)
Let us cutline the steps. First
p{O,v) _
198 S8y n 00 log p(6]v) log p(0®) ,
therefore
I(9;v) = E{log p(8lv)] - E[log p(e)]

We note that p(OIv) is Gaussian and so is p(8).  Now, if

¥ is any m x 1 Gaussian with variance RX’ we can see that
~log p(X) = %log |Ry| + log (2™

+ RN -BIXD), (X-EB[X])]
Then
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BB, (X-E[X]), (X-E{XD]

Tr. E [Ril(X—E [X])(X-E [X])*I

= Tr.R;KJ"E[(X—E[X])(X~E[X])*}

1R = m ,

= T R <

X

or

E[-log p(X)] = 3log|Rgl log (VZM™ + g (3.3.16)

Since p(6|v) has.variance matrix ¥, and p{(®) has var-
iance matrix Ry, and both are m x m, we obtain (3.3.15),

using (3.3.16) and simplifying.

3.4. GRAM-SCHMIDT ORTHOGONALIZATION, AND COVARIANCE MATRIX
FACTORI ZATION

Let X be an m x 1 Gaussian with zero mean, and let

us use the notion

X = Col. (xl,..., xm)
Let RX denote the covariance matrix of X, -Then
R, = {Aij} . 1<i, j<m |,
where
Aij = E[xiij

Let us construct a new set of Gaussian variables {yi],

,o.-,0, as follows:
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B Xl B
= Xy - E[x2|x1] ,

= . — Elx. . ;
XJ [X_] l xl: H] X_]-l] H

= x - E[xm le""’ K11

Note that the {yi} are zero mean Gaussiansg, but furthermore:
E[yiyj] = 0 |, i#3 . (3.4.1)
Indeed, for any i, by construction:
E[yixj] = 0 H j=1:'°‘,i‘_1;
and since v is a linear combination of x
E[inj] = 0 ] j= 11"*’1_1
For j > i, we can exploit the fact that
E[viyj] = E[yjyi]

to obtain (3.4.1). We say that ¥i is "ortﬁogonal“ to y
if

E[yiyj] = 0

Hence the variables {yi} are mutually orthogonal. Equiva-

lently, the covariance matrix of

Y = Col. Iyss oo, ¥l

is diagonal:

%
E[yY ] = D ,

f
3.4, GRAM-SCHMIDT ORTHOGONALIZATION 61 % i
f

b
where *
|

i T B51%g F 8yp%g T A
where

a,, = 1 .
Define the matrix L by

L = {Elj} L 1il! Jim ]

where

zij = aij s T <3,

= 0 i>

Thus defined, 1 is an m X m "lower-triangulax" matrix, Tl
and we fhen obtain

Y = 1IX

The determinant of a lower—triangular matrix is the product

of the diagonal elements, and hence in our case
i = 1

Hence L is nonsingular, and

where L"l is also lower-triangular, with the diagonal ele-

ments also equal to unity. Furthermore, for any p x m



B
g 62 CHAPTER 3, STATISTICAL ESTIMATION THEORY 3.4, GRAM-SCHMEDT ORTHOGONALIZATION o3 i‘ ‘
.. - |

i matrix A,

2z,
1 1 * 2
A% = (ALTT)Y o(zy) = —~—f exp -5 dy .
( h] ) i mmm 2
. . . Then
so that any linear combination of the {xi} can also be ex- !
. . Zo= Col. (Zg, «vv, 2) i
pressed as a linear combination of the {yi}. Moreover, we m

have that e ) is Gaussian with identity covariance matrix. Using the i
o * B _1 *__ ko - !
Lo Rx = EfXx] = 1L E[YY JL - . factorization (3.4.3) and taking i
5 L T .
| = L DL L = 4, 5
| .
i _ - * o : . .
| = whbma et . (3.4.2) T 5
. N

Thus we have factorized thg covariance matrix Rx as we can see that X is Gaussian with covariance RX.

%

R, = L : (3.4.3) Remark. Even if X has nongero mean, we may define

where L is lower-triangular. Finally, let Z be an m x 1 vy T o - E[xi[ By s e xl} s i=1,...,m |, )

Gaussian with zero mean, and-identity covariance matrix. Then i

and {yi} would again be zero mean Gaussian, orthogonal. for ‘
LZ (3.4.4) : . o
i# j. Also ;

is Gaussian and has Rx for its covariance matrix. We note vy, = % - E[xil ii—l”"’ il] :

" i i
that (3.4.4) provides us with a "simulation" technique for

: : . R . or we can write
constructing Gaussian vectors with prescribed covariance ma-

trix, from a random number generator. Thus, let Y = Col. {y.} = LX = LX - LE [X]
; 3 !
El’ Ez,..., Em be mutually independent random variables uni- and
formly distributed between 0 and 1. Define X = L"IY + B{X]
B -1
zZg =0 (gD ;

where ¢(-) 1is the cumulative Gaussian distribution
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3.5. ESTIMATION OF SIGNAL PARAMETERS IN ADDITIVE NOISE

Let us now specialize our estimation models closer to
practice. We consider a communication chapnel with additive
noise, where Va represents the received signal at the nth

sampling interval, so that we can write:

Ve = s, N, (3.5.1)

where {Nn} represents the channel noise and {sn] the
th

transmitted signal at the n sampling interval. The cano-
nical problem is to estimate the signal s, from the received
waveform samples Vo "Real time'" or "on-line" operation
would mean that Sn would have to be estimatéd from Vi
k < n. Moreover, we'wouldAneed to specify tﬁe class of sig-
hals to be transmitted in some fashion. In keeping with our
two points of Viéw, we have the "sure signal"” -— or "determin-
istic signal" -- case when we assume that signal parameters
are unknown but that signals are specifiable once the parame-—
ters are specified. Or, we may have the case where the sig-
nal is a random process —- a "stochastiec signal." These, of
course, are not necessarily mutually exclusive poinés of view
and further various shades in between are also often employed.
In this chapter we shall discuss only the former. We

assume that the signal parameters enter linedrly, and consider

the following model (corresponding to processing over a fixed

m
v = -g 8,8, + N , (3.5.2)
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where V, 8§, N are all p x 1. The {Sk} are known to
the receiver but the parameters {Bk}, k=1,...,m, are not,
and their values specify the traqsmitted waveform. We assume
N is Gaussian with zero mean and covariance Ry+ Although

we have stated the problem in a Communication System setting,
cuch a model can occur in a variety of other applications; in
any event the model (3.5.2) can be considered divorced from
aﬁy specific application.

To proceed with the estimation problem, it is convenient

to let

6 = Col. (B4, ..., 8)
and write

m

g 6,8, = Lo ,

where. I, is the p * m matrix defined by

L = {zij} ,
3 = ith component of 3. - (3.5.3)
ij | S
= [Sj,ei] ,

where {e.} are p x 1 unit basis vectors:
i .

ei o Col. [eil, eiZ’ “vey eim] »
where _
i -
= ., = 1 1 =] s
€13 85
= 0 , i# 3

Assuming that © is an unknown parameter, we see that V is
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Gaussian with mean L@ and variance RN. Then, p(Vi®) de-

noting the density of V, we have

Vy log p(v|e) = ~éV6[R§1(V—LO), (v-Le)] (3.5.4)

where we have tacitly assumed that RN is nonsingular. We
know that an efficient estimate exists and is given by that
value of © for which (3.5.4) is =zero,

We may alsc take the Bayesian view and assume that a
is Gaussian with zero mean and variance matrix A. The signal
is then, of course, "stochastic" in a ”trivial” way. It is
natural to assume that 0 is statistically independent of N
(”signal and noise independent" cése). We can then calculate
the joint density p(8,V) and, in turn, calculate the condi-
tional expectation E[8]v] yielding the best mean square es-
timate of ©. In fact, even without explicitly calculating
p(®,V), we know that

E[6]V] = av

since both © and V have zero mean, and A is given by:

Blev'] = appw’]
But
Efev'] = Elo[Le+n]] = an* ,
BVl = B[Le+m) (Lo = marn* . Ry

*
which is singular only if both LAL and RN are singular.

Assuming that at least cne of them is nonsingular, we have
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a = st o+ RN)'l . (3.5.5)
and thus our estimate is
AL aL® + )TN L (3.5.6)
The variance matrix of (3.5.8) is clearly
st m)T o,
and hence the error-covariance matrix P is

1

. * . -
P o= 4 - ALT(LAL s By AL . (3.5.7)

If we assume that RN is nonsingular, we can invoke the
maximum unconditional}l likelihood principle. Since © ‘and N

are independent, we have that the conditional densi;y
p(Vle) = pg(V - Lo)

pN(-) being the density of N. Hence

Vo log p(V;0) Vglog p(@) + Vg log py(V-Le)

1

' - -1
~475( 147 e, 01 + [RyM(V-Lo), (V-1.0)1)

' (3.5.8)
The MULE makes (3.5:8) zero. But comparing with (3.5.4), we
see that the difference between the MLE and MULE is the ap-
-1

pearance of the additional term [A "9,8] in the MULE. Or we

may consider (3.5.2) as the case corresponding to
A= e

b

. . .. .
which we may interpret as "maximum ignorance"; or, in other
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words, the MULE with . i : .
s the 2 priori variance equal to infinit

in this model.

is the same as the MLE, Let
US now proceed ¢
)

B!

. take the gradient in (3.5.8). we have
4

1 -1
2da{“‘ (O+AR), (0+AR) ] + [Rgl(v-L(e+xh)) V-

L(®+1h)]}

-1 -
477, n] - [ty pe), Lh]

e T e e

-1 * _q
© = LR 7(V-18), n]

_1 * -1
AT+ LR (vore) = o
or

1 * .
(A 1 *_ ..
*LRLYe = Rva
Or the MULE is given by

-1 * -1
+ L RNlL) L*Ri .

(A

Hence

B[O]V] = (471 4 g tgelpy-1 ko
R By'Vv (3.5.9)

hich =] t i (
W, N und r he aSSump ion tha RN iS nonsingul
. " ‘ ar must
3
colncide with (3.5. ). Putting = in (3 5 9) w
7 ! w0 o, » L= get

" the WLE:
L N W S
SRS ORE N N .
brovided (3.5.10)
¥ -1
L RN L
is nomsinguylar, or

, 8ince

RN 15 assumed to be_nonsingular
k)
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provided L is one-to-one: -that is to say

Lg = 0

implies that

‘or, equivalently,

E'3
L L is nonsingular

- In terms of the {Sk], I, being nomsingular obviously means

that the {Sk} are.linearly independent, a natural condition
in the signal transmission context. Moreover, the estimate
being efficient, the error covériance matrix equals the C-R
bound which is

(L*RﬁlL)ml (3.5.11)

Let us calculate the error covariance matrix corresponding

to (3.5.9). TFrom (3.3.7), this is

]

A - (A'l4~L*R§1L)_1L*R§1E(ve*)

1 -1
A—(ﬂ4+Lﬁ%Ho Lﬂ%&ﬁ

R T - 1l
= (f1+LH%HJ ((A1+Ln%HJA—If%ﬁLM

~1 -1
= (A'14-L*RN1L) (3.5.12)

Of course, (3.5.12) is readily seen to be smaller than
{3.5.11), as it should bhe, since the latier corresponds to

maximum ignorance. And (3.5.12) checks with {3.5.11) upon

"setting A = 4w. If P denotes the error covariance matrix,

we can write (3.5.10) and (3.5.9) as




COMS LR LUN THEQRY

\ o = PL*R§1V
NS >
EAL
We not t in terms of the {Sk}
*o-l, ~1 =1
LRe™V = (o1, (Isy. Ry vy, ... (5, Ryt )

In most applicationg we may take

identity:

RN = dr ;
in that case

¥oa-1
- -1 L L

P (A + -E—) P

where
*
LL = {[sl,sj]} 1<i Jsm
Remark 1. If we do not care about optimality and
timate ¢ as
1 %
(L1y~ 1%y

* - * * — -
°- WLty o Yy
80 that the error Covariance ijig
ES —_— —
(L™L) 1L*RN Len ¥y -1

which is, orf course, always

RN to be g multiple of the .

(3.5.14y

Simply eg.

tedious

. and (8.5.9) in the case R

to prove directly,

case

Re = dI

‘Remark 2.

exercise, which we now outline for the curious.

(3.5.5) as

ALALY + R) = st

"Multiplying hoth sides by g1 on the right, we have

N
- *
ALAL*RNl ta = Rt
or .
* 1
4 = @eann'y
Hence writing ‘
A = HAL*Rﬁl

and substituting in (3.5.5), we obtain

AL g BALYRGY LTV A ne aL"pt

Hence it ig enough if

HAL*REI +H = r .,
or
- -1
L IV
_ -1 *o-lo =1 g
= (A + L RN L) &
hence
o -1 O R e |
A= + L RN L) L RN

as required.
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We rewrite

71

It is immediate, however, jn the important

Similarly, the proof of the equivalence of (3.5.8)

is nonsingular, ig gn algebraie

(3.5.15)

i

i
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3.6. PERFORMANCE DEGRADATION DUE ‘o PARAMETER, UNCERTAINTY

We pause now, before treating more general estimation
problems, to dwell on an important consideration in the prac-
tical utilization of our theory. We will need to deal with
it more generally later, but it is instructive to see it in
- our present context. _

As we have noted, in the Bayesian approach it is neces-
sary to specify the a priori probability density of the un-
known parameter-vector ©. In the Gaussian case we have been
Specialirzing to, this means specifying the covariance matrix
A. This is in .general unknown, and one can argue that it is
unknowable and hence must be replaced by a "guesstimate" —-
say PO" The question then ig: What is a good guesstimate?
Let us ponder over this briefly. Based on.our theory, our

estimate will then use P0 in place of 4:

o -1 T T, |
e = (PO + L RN L) L RN v
This estimate will, of course, no longer hecessarily be opti-

mal. Let us calculate the corresponding error covariance.

We have

S

. 0 WL T -1, % 1
8 ~0 = (PO + L RN Ly (1 RN v-—(PO + L RN L)a)
Let us use the notation

_ -1 * 1 .~1
Pc = (PO + L By L) s

where the subscript ¢ ig Supposed to indicate "ealculated.™

Then substituting for v

» we have:
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&)
1
@
i

* 1 o L O
Po(LRy(LO+ M) - (Pot+ L Ry71)O)

it

* =Ty -1
PC{L By "N - Pyl
from which is follows that the error matrix P is given by

P = RNL+PAP)C,

which we can rewrite as

_ -1,.,-1
= Pc + PC(P0 APO

-1
- Py )Pc

Hence the discrepancy between the actual and the calculated:

1 -1

- -1
(P-—Pc) = PC(PO -—PO APO )PC
_ -1 I |
. = PPy (PO—A)PO P, (2.6.1)
Note that the matrix
_ -1 ' -1
D = PO (PO--A)PO

is self-adjoint and nonnegative/nonpositive definite according

as (PO—gA) is. Hence we can conclude that:

True Error Variance

> Calculated Variance if PO > A (3.6.2)
True Error Variance’
< Caleculated Variance it PO < A (3.6.3)

The degradation in performance even if not calculable

- {since A is unknown} is
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S B N 1
(A7 By L) - P, - P.DP

= (A TH4+L Ry "L) (4
The matrix

* o1
L Ry L (3.6.4)

deserves to be ecalled the signal-to-noise ratio matrix. Note

that the degradation in performance is "small" when the sig-

nal-to-noise ratio is "large," the latier meaning

L*R;IJ'L >s 47t .o ' (3.8.5)

This is generally true and explains incidentally why at high
signal-to-noise ratio anything will work.

Let us also note that we have here a dilemma that is ty-
pical in estimation theory: we may discard the overly-pessi-
mistie "maximum-ignorance' view and po Bayesian. But the lat-
ter has the disadvantage that the necessary statistics may
have to be "guesstimated." A way out of this is usually to
show that as we process more and more data —- ”asymptotically"
-— the estimate becomes independent of the a priori probabi-
1ity. We shall elaborate on this in the next section.

Finally, let us examine the dependence on the uncertainty

ir the noise covariance: RN' We shall only consider the case

where

2

Let Ug be our "guesstimate" of g Then our estimate of

© will be-
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- *
5 -1, L\t LYy
= Pt o
%0 %o

and the corresponding error covariance P will be

E[(6 -8)(8 - 8]

* 2

L Lfo + (plip-1 -1

P, +Pc(“§“(‘§“ ) (POAPO PP, . (3.6.6)
a5 \og .

2 .

Note that only the ratio (25) enters; this explains why the
%

logarithmic measure is often used:

02
10 log "'3

%o
in "decibels," instead of the ratio itself. Note also as be-

fore that the larger the signal-to-nocise ratio

*
L

L
2
Yo
the smaller the discrepancy

@ -2

Note as well the interlacing of the noise variance errcr and
the a priori variance error in (3.6.68). We may slso define

the "normalized" discrepancy as
-1 : ~1 _
(V¥P.) (PMPC)(@c) (3.6.7)

and note that this is also smaller the higher the signal-to-

noise ratio.







Chapter 4,

THE KALMAN FILTER

This is the main chapter of the book and is organized as
follows. We begin in Section 4.1 with the basic theory and
formulas, making a comwpromise in generality between too many
obscuring detéils and too little practical application. Thus
we consider dnly the case where the observation noise is white
and ié independent of the Signal, although we aliow the system
to be time-varying. Because of the uncertainty in the initial
covariances, in practice no Kalman filter can be optimal ex-
cept In the steady state -- and this is by far its most impor-
‘tant use. Hence Section 4.2 specializes to time~invariant
systems and considers steady-state behavior of the filter.
Section 4.3 examines the steady-state results from the fre-
quency-domain point of view, relating them to the more classi-

cal transfer-function approach. In Section 4.4 we study a
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canonical application of Kalman filtering: to System Identi-
fication. In Section 4.5 we study the ”Kalmanrsmoother": the
on-line version of two-sided interpolation. In Sections 4.6
and 4.7 we study generalizations of the basic'fheory of
Section 4.1. Thus we allow the signal and noiée‘to be corre-
lated in Section 4.6; 'and allow the observation noise to be
non-white in Section 4.7. We conclude in .Section 4.8 with a
simple example which illustrates some of the theory and tech-

niques discussed in the chapter.

4.1, BASIC THEORY

The estimation technigues of the previous chapter in~
volved "batch" processing -- processing of all the data at
once. We wish\now to consider the "on-line” probiem: where
the data has to be processed sequentially, as sample—time
progresses, Or, we-need to design a “filter." Let us examine

this more closely. We have as before the data model:

v = g + N

" o o n>1 , 4.1.1)

where {sn} is fhe signal and {Nﬁ} thé noise. The problem
we pose now is that of estimating 5, from all the available

data at sample time n. Our estimation criterion being Baye-
sian mean square error, to determine the optimal estimate, as

we have seen, we must calculate the conditional expectation

g8 = E{sn| v, v

" n nelr * o vl] (4.1.2)
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We propose to do this by a (time varying in general) filter,

in block diagram we have:

Filter

Since we will only be concerned with the Gaussian case, we
know that the filter will be a "linear system" with input-

output relations:

n ‘
s, = ; wn,kvk + Els ], (4.1.3)
where
¥, = v, - E[vn] ;
5, = s, - E{sn] ,

and the ”Syétem matrix" {Wn k} is determined by solving the

Wiener-Hopf equation:

Wt~ r3

E[E vi] = R [9.5
SpVel = 4y Wox BI¥%

For each n, we see from (4.1.3) that we need to "store”
all the data samples Vi up to k = n. This can lead to pro-
hibitively large data storage, and so alternate means need to

be found for practical implementation.

The key is provided by having an appropriate signal-gen-

.,
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eration model for the signal {Sn}, such as we have studied

in Chapter 2. Thus we now assume we have the "state space"

model:
s, = Cnxn
, (4.1.4)
Fawl T Anxn + Un + Ni
where {Ni} is a white noise séquence, {Un} is a known

deterministic input, and of course, the matrices An and Cn
. i . o
are known. Next we assume that the "observation™ noise {Nn}

ig white also. It is then convenient to combine the white

noise proceéses in (4.1.4) and (4.1.1), using the following

notation:
s
Nn B FnNn '
(4.1.5) .
0 —_—
Nn = GnNn ,

where {Nn}' is white Gaussian with unit covariance matrix,

and of course:

s 8% F
EMNCNST] = FF,
0% *
E[NND'] = 6.6
* F G
Ef(F N Y(GNy) 1 = Fy

Then we can write our signal-generation model as:

vn =8 + GnNn
= {4,1,4a
S, C %, ( )
= +
Xn+1 Anx + Un FnNn




implying that signal and noise are mutually independent Pro-
cesses. Another important assumption throughout will be that

the observatlon noise covariance is nonsingular

*
G Gn nonsingular

n (4.1.8)

The remarkable achievement of Kalman and Bucy [8] was to
show that given the signal-generation model’ (4.1.4a) (and the
assumptlon that the observation noise is white) it ig Possible
to descrlbe the optimal linear filter also in state- ~Space form
analogous to (4.1,4). This representatlon_ls now generally
referred to as the "Kalman filter," which we shall NOW proceed

to derive.

First of all let

Xy, = Elx_ | v, ...

- 0 n vli s n>1 |

which we refer to as the "state estimate.v We assume that
Xy 1s Gaussian ang independent of the noise sequence {Nn},

S0 that in particular, we may define:
ﬁo = E[XO}

The Kalman filter is structured on two simple but essen-
tial ideas:

(i) 'The Innovation Sequence

We carry out a Gram-Schmidt orthogonalization of the

‘gequence {v }. Thus we define:
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<
[

N v, - E[vn Ivn_l,..., vyl

(4.1.7) i

if

v vy - E[vl] for n = 1

1

We know of course that {vn}, which is referred to as the
"Innovation Sequence" (the name indicative of the fact that

v for each n represents the "new information" provided

n .
th

by the " n is a white noise sequence.

data sample Vn),

We can "simplify'" the right side of (4.1.7) by noting that

= +
Ya Can _ GnNh

= C, (A (4.1.8)

nmlxn~14‘Unm14-an1Nn—1) * GnNn
Hence we may proceed to take the conditional expectation term—
by-term. We note first, however, that by the independence of

signal and noise

v [T . = 0
E[F _ N i Vae1r ces V4l |
and
; ; = 0
B[N | Vpetr <o Vq]
Hence
E[Vn ! V-1 ‘0 vl]‘ = Cn(An~1Xn~1-+Un—1) 4

and hence we have the representation:

Vo= oy . C, (A (4.1.9)

n n n—lxn—li'Un~1)

As in any Gram-Schmidt orthogonalizatibn procedure, we know

that (cf. Chapter 3)
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E[vn] = 0

and in fact that v does not "depend" on the mean of the
process {vn}. It is convenient to express this explicitly,

et

<
I

n Yo ~ E[vn] ’

M
i

n X, — Blx]

Then, as we know from Chapter 3, we can write

R, o= Elx 1+ EE |V, ..., .1 (4.1.7a)

and in particular, as a consequence,

L A | Vg o-es 941, (4.1.9a)
= v -ca EoL, (4.1.9p)
‘where
§n = E[x |9, ...,%1 , (4.1.103
and we note that .
| %, = Elx ] + ﬁn (4.1.10a)

The form (4.1.9a) shows explicitly that the innovation process
vn remains the same whatever the deterministic input '{Un},
since the latter enters only in the definition of the mean of

{v,}. In fact, let

m, = E[xn]

Then, taking expectations in the state equation (4.1.4), we’

have:
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m, = An_lmn_1+Un_1 R n>1 ,
my = .E[xo} , (4.1.11)
and, of course,
E[vn] = Cnmn (4.1.12)

(ii) State-Innovation Sequence

Next we (Gram-Schmidt) orthogonalize the state estimate

{xn}. Let
s ~ _ TS A A
v, o= R E[xn| Ro_qr +o %41, (4.1.13)
5 _  a
'\Jl-— Xl—ml
= %y - (Agmg +Ug)

We shall refer to {vﬁ} .as the State-Innovation Sequence:

the superscript s sigpifying this. As before, we may remove

the means:

V= % - E{§ |

A
X
n n n

s>

-1 *n-gr o0 Fql

To calculate the second term on the right, let us observe that

- E[xn] Vpoqr = o vl]
is uncorrelated with ﬁn—l""’ %1 and hence also with
£ 4 o+ %y, since X .y 4is a linear combipation of ’
Vs s Vi Hence it follows that
E[xnl Vs -0 ¥41 0= E{Xn! EIETIRRN S

But the left side can be expressed
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E[E[xn fvn,..., %41 ]Gn_l,---, vyl

which we may now calculate term-by-term, using

o= L PNy - (4.1,14)
This yields ' '
Bl |9y p, - ¥y = a8 .
Hence we have that
vﬁ = in - An—1§n—1
= %n - (Anulﬁn—1*'Un—1) . (4.1.;5)

Thus the state innovation is the same whatever the input se-

quence, and if we wish, we may obtain it by setting Uk iden-

tically to zero.

The Kalman filter is obtained by showing that
v = KV . (4.1.18)

This is based on the important property bf the innovation se-
quence {vn} that it “gontains all the information in the
observation sequence {vn}.“ More precisely, for each n,
W& CAn express %n in terms-pf vy Un—l"p" V. But this
is a consequence of the Gram—Schmidt orthogonalization process
that we have already seen in Chapter 3. Hence in turn, it

s

Tollows that Vi can be expressed linearly in terms of

-The first two terms are uncorrelated with %
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sV Furthermore, v° is uncorrelated with

1- n
s

1. This is because we can express vn as:

5 o
n T Anoi¥Fno1

e A £y 7 Anulxn—l

(B -%)) - A G 4 -% )+ F N L (4.1.17)

n-kt ¥ 21, by

the optimality of the estimates ﬁn “and §nh1‘- As for the

third term, we have

EIF, 4N, 4%, g1 = EIF, Ny 3(Cy g%y 4+ 6, N ")
Now the state noise Fn—an—l is independent of Xn—l; and
- hence the above expression is
= Fn—le—l
= 0
s

by our.assumption of signal-noise independence. Hence vn

is uncorrelated with ¥ for k > 0, and hence with v

n-k n-k

for k i'l. Hence to prove (4.1.,16) we have only to define

‘Kn so that

g * . * .
E[unun] = KnE[vnvn] . (4.1.18)

Using Kn so0 deflined, we have, rewriting (4.1.18) by

replacing vﬁ v, by (4.1.9) and (4.1.15), respectively:
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0 7 (An~lxn—1*-Un—1) = Kn(vn"Cn(Anwlxn—14-Un—1)) :
(4.1.19)
or
By o7 (I-KCDA) %) 5+ (I-K CHT 4 +Kv  , (4.1.19,)
Ry = E[xo] s
sn = Cnxn

The Kalman filter is defined by (4.1.19a). Note that this ig

a time—varying linear system with the state space same as
that of the signal process. The "input' is comprised of the
terms

(r - Kncn)Un—l + KnVn

and thus involves the chserved data sequence {vn}
the input seguence {Un}. It is important to note that

(4.1.19) can also be expressed as:

£
X = 0 |

0 (4.1.20)

fl

k)
X

n (I_'Kncn)An—lxn—l * Kn(vn'_cnmn) :

where

n+1 nn n

]

Elx

mo O-j )

as is readily verified. What we have done in (4.1.20}) is

separate the "mean' process {mn}. It is also important to
note that

% = A + ¢ + K v , (4.1.21)

] n-1*n-1 n-1 n'n

as well as‘?
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which shows that {ﬁn} is a Gaussian Markov process just as

‘{Xn}-

To ipstrument the filter system (4.1.19) we only need to
calculate the gain matrix Kn' For this purpose, it is con-

venient to introduce. a new notation for the state-estimation

error covariance matrix. Thus let
P o= 1 *j 1.22
Poo= e ey , (4.1.22)
where
e = x - % = %X - %

n n n n n

First let us derive the difference-equation satisfied by the

@rror process {en}. Subtracting the difference equations for

{xn} and {xn], we obtain

e = Ane + F N - K v

n-1"n-1 7 FpVy (4.1.23)

Now vn defined by (4.1.9) can be expressed in terms of
{en} as:

v = G N =+ Cnxn - Cn(A %

n-1%p-1 7 Up_q?

and substituting for X in this from (4.1.4z) we have:

v = G N +C

+ C F
n nn

WP, 1 . (4.1.24)

nAn—len—l
so that substituting this into our expression (4.1.23) for

e, we have:

en = (IP“KnCn)An—lenml * (I"Kncn)Fn—an—l - KnGnNn

(4.1.25)
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This shows that {en] is also a Gaussian Markov Process,

€1 being independent of the white noise
(I"Kncn)Fn—an—l - KnGnNn ;

and since each of these terms is also independent, we can

readily calculate that

* * %k
Pp = (I-KCHH (I-KC)  + K, GG K. (4.1.28)

where we have used the notation

H = Ap A+ pp
- n n'n

n nfn (4.1.27)

Let us next calculate Kn from (4.1.18) by calculating
the necessary covariances. First in (4.1.24), we note that

is independent of C F N 1 because of our assumption

“n-1 n n-1"n-

of the independence of signal and hoise; in fact,

~ * * _ #* ‘*
E((Xn—l"xn—l)anan—l) B -Ecﬁn—an—lrn—l)
B 0 s
since vn—l""’ v1 are all independent of Fn—iNn—l‘ Thus

every term in (4.1.24) is independent of the other two, so

that
Y Foyct
n-1"n-1 Fn—l nwl) n

#

* GG+ o (a .p
E[\}n\)n] nn - n( n-1

* . C*
GnGn Can—I n

1

(4.1.28)

. %k
which is clearly nonsingular, since GnGn is. FNext let us

calculate the cross correlation matrix
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5 *
E[unvn]

For this purpose, let wus Ffirst use (4.1.17). We see that the
first term is uncorrelated with vn. For the second and third
terms we exploit (4.1.24), noting that ©ho1 is uncorrelated

with F

nuan—l under our assumption éf signal-noise indepen-

dence. Hence it follows that

s %o * Lk *
E[\)nvn_] B (An~1pn—1An—14'Fn—lrn~1)cn
= " .cF |
N n-1"n
Hence we have:
B¢ = KR
n-1*n = K, [vnvn]

* *
Kn(GnGn'+ann~1Cn)

(4.1.29)

Let us now go back to {4.1.26) and note that the right side

can be rewritten:

~ * ok ' * *_ %
Pn- = (I“'Kncn)Hn—l - Hn—lcnKn + I{(Canw_lcn-anGn)Kn

But substituting (4.1.29) inte this, we see that
P, = (I-—KnCn)Hn_1 . (4.1.30)

Moreover, rewriting (4.1.29) as

¢« xgdt

(I__Kncn)Hn—l n nn'n

and using (4.1.30), we can express Kn in terms of p as:

p ¢t o= N
nn KnGn n
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Or finally we have

E = pC(egH?
n nCn (G, Gy
and
= (I1-2 C(6 6 Tc )

Pp = I-Fy n( 1nCn) ) n-1

Collecting terms containing Pn’ we have
* * 1 _
Pn(14~Cn(GnGn) Canml) = Hn_

The matrix in parentheses (see ‘Problem 4.1.

ig nonsingular and hence

P = e 6y len
n Hn«-—l(I n € nCn? n n-1
-{and taking adjoints)
- « (ren et ety eyt
. L n-1n€6,6,) C) H

We have thus expressed Pn in terms of _Pn

Pn we have only to add

-

*
0 = E[(xo_ﬁo)(xo_ﬁo) }

o
f

. Lk
= E[xoxo]
= A ,

say. This completes our derivation of the K
which we may now express as:
-1

* *
n T Apog®no1 Y Upoq t PRGu(6 60 vy =

(4.1.31) ]

(4.1.32y

1 - (4.1.33)
1, if necessary)

\

-1
) , (4.1.34)

01 (4.1.35)

K To determine

(4.1.36)

alman filter,

(An~1ﬁn—1-FUn—1))’
(4.1.37)

state at (n+1) given the data up to n.
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&

2y = E{xo] ,

where Pn is given by (4.1.35) (which is our "error propaga-—

tion'" equation), with Po defined by (4.1.386).

One-5Step Predictor

It is often useful to exXpress the Kalman filter formula
(4.1.34) in a different way in terms of the "one-step predic-
tor."” Thus let

*n+1 T E[Xn+1 IV1""’ vn]

Note that §n+1 is our prediction "one step ahead" of the
We may express both

s . - .
v and v, in terms of X,» Since

n
v, o= vn - E[v [vn_l,l.., Vl]
5 Vo~ Cnin
" and
ve o= %= EIR, | R 1, oo, 2]
= i‘;n—E[xn|v 10 V4]
= R - 2_';n
Also using (4.1.4), we have:
§n+1 = AR+ U (4.1.38)
The corresponding error is
O in+1 = A -+ Fplly s



st

2.

ey
AR

1
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and hence the one-step-predictor error-covariance:
X x T = av At +rFE = m
E[(xn+1-xn+1)(xn+1-xn+1) 1 o= n nn nn n

yielding, in particular, an "ihterpretatiou" of Hn' More-
over, we can rewrite the Kalman filter formula (4.1.37) in
terms of the guantities involving one-step prediction, using

(4.1.38) and (4.1.16), in the form:

(xn—-xn) = Kn(vn-Cnxn) .
Hence we have
Xy T An—l(I"'Kn—lCn—l.)xn—l + An—lKn-—l‘_vn—l ’
£ = (I—~KnCn)xn + Knvn s
Xy = U0 s Ry o= 0 = Xy (4.1.39?
= SRR T T e
K, = Hy 4 n( n n-17"n n'n

Signal Estimate Erxrrory Covariance

The signal estimation error covariance can he expressed
in terms of Pn as:
n K *

E[(sn-én)(sn—-sn) 1.= C,P,C,

* o
Let us now derive ithe equations that Cnpncn must satisfy.
From (4.1.33), multiplying on the left by Cn and on the right

%
by Cn’ we have
%

Can—lCn

]

* * * ol *
C P C+ CP C (GG TCH €

]

* * 1 *.
.1.40
(Cnpncn)(14_(GnGn) ann~lcn) ., 4 )
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or
* * * _1 * =1
Cnpncn - Can—lcn(I'+(Gnqn) Cally_1Cy)
. * * ~1 -1 *
(I-+CnHﬂ_lcn(GnGn) ) Can_lcn . (4.1.41)
From (4.1.40) we can also write
* * * .1 #
CnPnCn = Can_lcn(I-—(GnGn) CnPncn) B (4.1.42)

Fit Error
We may also consider at this point what is known as the
“fit error." This is an error that we can observe: the error

beétween the data sequence {vn} and our "best fit" to the

data {sn}:

It is easy to see that this is a white noise sequence. To

obtain the fit error covariance, we note that

G N = vV -8

nn n n
A A
= v - 8 + 5 -
n n n Sn
= 2 + C e
n n

Since (sn-§n), by virtue of the optimality of §n is uncor-

related with v_ |

n_ke E 2 0,. it follows that Z, and e = are

independent, and hence, in particular,

¢ c¥ = Blaz c *
WGy = Elzgz, 1+ cpc . (4.1.43)

It follows that




ql CHAPTER 4, THE KALMAN FILTER

%
E[ann]

3
o
:sm
=3
|
]
=
o
=]
(o]
=

In particular:

*k
E[znzn]

A
;:G)
(7]

From (4.1.44) we see that a fit-error variance much smaller

than the noise wvariance indicates poor filter performance.

I.et us show that the fit error variance is nonsingular. Tor

this purpose let us express Zn in terms of Vo We have
o . _
i, vy Cnxn
= o U " C* *
= Vn -~ Cn(Anflxn—luanwl n-1 "t PpCnl6,8,) ")

_ . * *_ 1
= (I - CnPncn(GnGn) )vn (4.1.45)
From which we also have that
i ®o * * _1 * *__1 *
| E[znzn} = (I-—CnPnCn(GnGn) )E[vnvn](l-—(GnGn) CnPnCn)
i (4.1.46)
ik ]
v Suppose
wi %1 * .
5 (I -(G6) CPCIHX = 0 , =x#0 . (4.1.47)
; Then by (4.1.42) we would have that
crcix = o
n ¥
and hence from (4.1.47) that
x = {
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leading to a. contradiction. Hence

¥ 1 *
(I - (G,6)7"C P C)

and
* * 1
(T - € P C (6,67

are nounsingular. And hence

GG - cp o
nn nnn

i

) *
E{znzn]

: * L *
(1 - CnPnCn(GnGn) )(GnGn)

are nonsingular. Now

: * * _1 * * .1
(I'FCan—lcn(GnGn) )(I"Cnpncn(GnGn)' )

1

I+ CcHC(eHyt-cpc ¥yl
nn n( n n) T tYnn n(G Gn}

* B

_(cu ey e p ¥ e
n nn nn nnn"n

=

~since

cu ¢ - cpc -cH Lo Lep ¢f -
nn-1"n = “n'nn ~ “n‘n-1 n(GnGn) n ncn = 0

by (4.1.40). Hence we also obtain

(1+cH creey ™l - (1-ce cteeH T

nn-1%¢Cn % = - PG (660 T - (4.1.48)
We can also reformulate the Kalman filter equations

(4.1.21) in terms of the fit'error rather than the innovation.

Thus we have:

b4 = A % +Bn—1Un—-1+ann , {4.1.49)
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o * * 1 * * -1 ~1
I = Pncn(GnGn) (I"Cnpncn(GnGn) )

* * 1 # N P §
PnCn(GnGn) (I4-Can_ICn(GnGn) ) (4.1.50)
Remark. Before we leave this section let us make an important
observation. For the filter to be optimal we need to calcu-

late Pn by formula (4.1.32) which involves

But this (starting) covariance is unknown, and perhaps even
unknowable. Hence no Kalman filter in practice is optimal,
except in the case where the signal-~generator model is time
invariant; then we can show that under certain conditions we

can make our filter asymptotically optimal, whatever the ini-

tial guesstimate for A.

% DPROBLEMS ¥
Problem 4.1.1

Let L, M be self-adjoint nonnegative definite matrices.

Show that (I + LMY is nonsingular.

Hint: (I+LM)x = O => [(I+LM)x, Mx] = 0

=> Mx =0 => x= 0
Problem 4,1.2
Consider the case where {vn} is one-dimensional. Show
that if the fit error is Zero, then fhe'signal—estimation

error is the maximum possible. What happens to the Kalman

filter in this case?
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Problem 4.1.3
Show that
z = vy - v .
n n

Problem 4.1.4

In the class of estimates of Sn of the form %V

find the optimal . that minimizes the error covarlancg

* : . .
- - . Denoting the minimal error covar-
E[(sn anvn)(sn anvn) 1 g

iance by Tn, show that

* < G G*
Cnpncn = T S5
Show that the optimal o, is given by:
* * _1 *
. = R X
Cnnncn(I'%CnRhcn) ! Rn [Xn n]

Problem 4.1.5

Consider the case where there 1§ no "state noise"; Eh =0,

Showlthat in that case, for zerc input (Un Z0) and E[x0]= 0:

-1 .
0o * 1 S 8 TR S S * -1
= i LG C.d, + A B, C.(G.G.) v, .
§n B CnQn(g Qici(Glel) 174 ) (i iTitTii i
where
Bi0= At Ay
@O = Identity
Show that
-1
o % % * _1 -1 *
= . ,C. [
Pp = Qn(g ¢ici<GiG1) ByCy A ) n

satisfies (4.1.33) (yielding a "closed form'" solution to

(4.1.32)).




and use the "batch" formulas of Chapter 3.

Problem 4.1.6

find E[xnivn] and the corresponding error matrix.

Problem 4.1.7

§
. . =
b 1
|

Let R denote the covariance matrix of v:

Find the optimal "zero memory'-state estimator, i.e.,

Let Z, denote the fit error and let for each n:

v

ok
R = E[W ]
Show that
Bk v 1 -1
= — m
| & I IGkai [ (1 (GG ) "CR.CI |,
k=1
where | | denotes determinant. Similarly, writing
v = \}1: vz, ? \)n H
show that the determinant of the covariance matrix of
E{ 10 - g G G*-+C H * =
ifvv ]I = I ¢ 10 K k—lck)l = |E| .
k=1
R Use z. = (I-C%P C (66 by
n n"n n*"n-n’ n
+ terms containing ¥

P LRI Vi,
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where L is "block" lower-triangular.

problem 4.1.8

Show that

* *
+ F F
Pn+1 = AnPnAn 1111 n

pProblem 4.1.9
This problem illustrates the dependence on the guessti-
mate for the initial covariance. Assume zero input. Define

the subopitimal filter

o= (L-PRCICOA, LS04 + PaCrv, =0
Py = (I H§-1C:Cn)—1Hz-1 '

Py = A,

Hf: = AﬁPiA:: + FnF;:

" Let T denote the corresponding error-covariance matrix:

n
PX: s ¥
T, = E{(xn”lxn)(xn'_xn) ]
Show that
a* a . * _ ¥ a
Pi =T (=P CC) Ay Py~ Ty 28, (T - C E P

Hence in particular

if
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Problem 4.1.10

Let

K = E[N, | v

12 "‘:Vn]

Is {ﬁn} white noise? What is the covariance? Calculate

~ * S -~
E[NnNm}. Are {FnNn} and {GnNn} independent?

Problem 4,1.11
Zxoblem &,4.31

Alternate Definition of Fit Error:

We may define anotheyp

"fit error," using now the'onehstep predictor, as:

where

w1
[

S= 0 X
n nn

Show that the variance of this fit error is equal to the- var-

iance of the innovation and isg always larger than the noise

variance. When does it attain its minimum?

4.2. KALMAN FILTER: STEADY STATE THEORY

By far the most important for us is the case where the

signal is (asymptotically) stationary. Thus we need to condl-

der the asymptotlcs of the case where the signal-generation

model (4,1.4) is time-invariant. Let us restate this problem

for the time-invariant system:
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i i ime -] riant
Since the signal-generation system is time-inva ,

=} ep v O Q ility ’ 1 us
he concepts of Observability and Controllabi lity can tel
t

i i le
h about its structure. Let us first examine what ro
mue

these concepts play in analyzing filter performance.

m 4.2,1 Suppose (A ~ F) is controllable. Then if Pn
Theol'e 2.1
Theoremn =.s.-~

i fined by (4.2.2) for every
is nonsingular, so 1is Pn+k defi
integer k > 0, b
| i t also be non-—
Prdof. Let Pn be nonsingular. Then Hn mus

b we have:
gingular. TFor suppose for some nonzero X

* *
Hx = APAxX+FFPx = 0
n an
Then
* x
P, A"x, A'x] + [Fx, Px] = 0 ,
n
hence *
‘ = 0
Fx = 0 and Pt x

. ; we must have
i P is nomsingular,
Since n-

hence
k>1; x%20

111ty i is nonsingular. But
This wviolates controllab;llty. Hence }n

* -1
- qs+ucoylm
Pn'l'l (I n In

1 = -
and hence is nonSll}gular. Hence by lnductlon P 1 on

singular for every positive integgr k.

Let us next examine the role played by Observability.




§
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vV, = S, +GN_ qheorem 4.2.2. Suppose x .is unobservable:
g : —_—
éi én = Cox cgng = 0 for every n > 0
{:
: d further:
= Ax -+ u_ + FN_ an
; n+1 n 1 sup HAHX” = 400 (4.2.3)
* ‘ . n
3 FG = 0 (4.2.1)
| we can chcose P so that
Then our filter formulas are: Then 0
) b w_q K w1 lim Tr. P, = +o (4.2.4)
X, = (I-—PnC (GG ) C)Axn_1 + Pnc (GG ) Va n
L * * 1 - . lity assume that
R Hn(CHn—lc + GG ) (vn-an) s proof. We may without loss of generality
* ¥ 1. —
Prar = (I+H C (a6 1 1Hn , H=li = 1
* * t us choose P, so that
H o = ap a” + yr* | Le 0
n n POX = Ax , A >0
_ *
P0 = E[xoxo] (4.2.2) Let
. XO = [Xosx]x + =z
In order to save space, we shall from now on take .
' Kow
E
= i1 = + FN
GG Identity I X1 Ax F
: - has the solution:
Otherwise, we only have to replace 1
n._
% - Anx + Z An—k»—l FNk
~1 n 0 0
C by (VGG”) c
1 Hence
Vo by (VGG ) v, v, an + GN
We shall also set the input u to be zero, since our main ) C en 4 Cnil An—kml R o (4.2.5)
interest_is in the error coVariance, which is the same regard- : 0
less of the input. since
cax = 0
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From (4.2.5) it follows that

i
o

El{xg, x]v, ]

since

* kp K
E[[xo,x]z A B¢ ] E[[xo,x}z*}A*nC*

and

[

Bllxg,x12"1 = Bllxy,x)(xg~ [y, 215 "]

i

. N
Efx Xo(Xg = [%5,x]x) " ]

* * * * *
= x E[xoxo] - x E[xoxo]xx

* * %k
AX - AX %X

[

Hence {vn} is independent of {xO,X] and hence so is x .,
_ n

Hence

) n-1
X, =& = [x,,x1a%x + AP 4 oAt Eey, - g
(8] ] k b1] B

where the second, third and fourth terms are uncorrelated with

the first.‘ Hence

Tr. P = Ty, E{[xn-ﬁn}[xn—-ﬁn]*]

Ellx%,x)%] [a%, a%x]

Since

E[[x,,x1%] = [Pox, x] = 2

we have that
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Tr. P > |[A%x]Pa
e
or

sgp Tr. Pn = 4w

Remark. Note that even though.

we do have that (cf. Exercise 4.1.4)
* * * o
Cp C < CR C (I+CR C) < I
n sl 1l n —

As we have already noted, it is impossible to construct
(in general) an {(optimal) Kalman filter, because to do so we
need Pn, and Pn depends oﬁ PO which is unknown and un-
knowable. However, in the time-invariant case (4.2.1), we can
show that it is possible to achieve "asymptotic” pptimality.
Thus under certain conditions (indicated below) we can show
that Pn will converge to a limit matrix T as n-+ew, inde-—

pendent of the initial matrix PO’ and further, if we define:

Al _ * A8 *
x = (I-pC C)Axn_1 + PC Voo

then the corresponding error covariance
El{x - xa)(x -xa)*] + P as n + w,
n n n n . ’

For this purpose, let us define the function ®(-) on

self-adjoint nonnegative definite matrices P by

#(P) = (1+mpycey ey | (4.2.6)
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where H(P) is defined by

4

* *
H(P) APA + FF .

Then (4.2.2) becomes:

Pn+l ¢(Pn)

Suppose Pn converges to P . Then we would have

o
i

» Py .
The equation

P a(P) * (4.2.7)

i

is called the Algebraic (or Steady State) Riccati Equation
(SSRE}; and we see that P,s if it exists, satisfies this
equation.

Let us recall next some definitions from state space

theory. The class of (C-A) unobservable states is definéd as;:
all x such that CAkx =0 for every k i‘O

The class of A-stable states is defined as:
all x suech that {[A%x{|+ 0 as Kk » w

The class of stable states is 4 linear subspace. let

PS denote the corresponding projection. The class of (Cn 4)
unobservable states is also a linear subspace. Let Pu de-
note the corresponding projection and Pr that of the ortho-

gonal complement. Our basic result on the steady state Kalman

filter is: -

Theorem 4.2.3. Suppose all (C ~ A) uncbservable states are

i
: * * * H
A-stable and all (F “A ) unobservable states are A -stable. |
f

|
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Then the steady state Riccati equation has a utiique self~ad— i

joint nonnegative definite solution. Denote it P ) :

o(P) = P,
Moreover,
*
(I-p_C O)a

is stable, and the filter

= aad g o a .
= Axn—l + P _C [vn CAﬁn_l] ;

is asymptotically optimal.
Proof. Let us state the individual results we need as lemmas,
since they would be of independent interest.
Lemma 4.2.1. Suppose P and Q are self-adjoint and nonne-
gative definite. ‘Then

H(P+R)Y > #(P)

Proof. Let

* *
H(P) = APA + FF

mapping self-adjoint nonnegative matrices into the same class, .
Let- P, @ be self-adjoint and nognegative definite and let

A > 0. Then we can express $(P+Q) - #(P) as:

1
2(PIQ) - B(P) = [ S a@aQ) A . (4.2.8)
!




108 CHAPTER 4. THE KALMAN FILTER
4.2, STEADY STATE THEOQRY 1ag

where M is a self-adjoint nonnegative definite matrix, and |
*
é% oP+AQ) = é% (I +H(P+AQ)C C) 1H(P+1Q) may depend on P,.

Proof. First let us assume that we have (Cn A) observability.

* .1 *
(L +HEAQC ey AqA Assume the matrix A is n %x n. Define

* . * -
- (Traenq)c eyt aga*cter + mepagycos L apiag)
‘ nol o x|k
R = § a"c"ca
o

(I +uEAQCc ey a0a™(1 - c*cap+rg))

¥or any self-adjoint nonnegative definite matrix M: Then R must be nonsingular, as we have seen in Chapter 1.

* 1 . * For m > n, define the suboptimal estimate:
I -¢MCC = T — (I+H(MC C) H(M)C C
= (I+HC eyl ; * wye* £5 = atpml nil Ak
= ( (M) YT I+ HE(MC C-AMC ] n 5 Vin+k-n
Y »
= (I+H(M)C Cy . i
What we have constructed thereby is a filter with a memory of
Hence
n, but not optimal. We show that the corresponding error co- ¢
! * E . . . . ' ‘
o é%@(P+AQ) = (I-2a(P+iQ)C C)AQA(I-C*CQ(P+KQ)) variance is bounded. Exploiting the time invariance of the
ijE system (4.2.1), we have:
IS > 0 . ' _ ‘
T - _ - K kil i
. x = A x . AYFN s T , m>n
| From (4.2.8) it follows that _ m+k-n m—n 0 m-n-j+k-1
5
L . Let
; HP+HQ) - o(PY > 0 if @>o0
E - k-1
. . - . 3 _ '
Hence, in particular-: 4k % A FNn—m+k—1+j , m > n
¢(Pn+1) > ®(Pn) if Pn+1 2P,

Then we can express ﬁi as
Lemma 4.2.2. Suppose (Cn A) unobservable states are A-stable.

Then for any choice of Py

\_\_f:\}'IC .
Q}:‘;:?;zb\ Po< M for all n (4.2.9)
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g =1 *
25 = ARy aMkg*oak
m m—
0
-1
n,-1 " K %
+ AR é A e (annm+k'FGNm—n+k)
n-1 .
_ n . -1 *k Lk
= Ax, .+ A'R g A CCT, g * O )
hence the error in the estimate;
' n-1
PR N n. -1 ¥k ¥
*m T ¥y T AR g A7cC (C€m~n+k'FGNm—n+k) - Iy

Tt is readily verified that the covari

tor on the right side is independent o
ELES - x (25 - x »*)
m m m m

J is a fixed matrix.

matrix we have

hence, taking

M

the lemma follows.
Suppose next that A is stable:

strictly less than one in magnitude.

Since . Pm

max (J, max Pk)

ance of the random vec-

f m. Hence
= J ,

is the minimal error

3

k<n

all eigenvalues are

In that case the condi-

tions of our Lemma are .satisfied, and we can prove (4.2.9)

very simply.

We have

*
E[xﬂxn]

FA

*
E[xnxn}

/\/\*
- E[ann]

3
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and weé know from Chapter 2 that

n-1

k
A
5

* _ n *p * ¥
E[ann] = APOA + FF A

Now since A is stable, the first term goes to zero as n-+w
(regardless of the choice of PO) and the second term con-
verges to

k k

b * ok
L AYFF A
g

Hence (4.2.9) is immediate.

In other words, if (Cv A) is observable or A is stable,
the Lemma holds. Let us now consider the more general situa-
tion where A may be unstable, but all (C™ A) unobservable
states are stable.

We begin by noting that

an = CPrx
and

P x =

rn PrAxn—l * PrFNn—

1

It is readily verified that A maps the subspace of (Cn 4)

unobéerVable states into itself:

APux = PuAPux
and hence also

P_Ax

PRAPLx + Pix) = P AP x

Let

P x . n >0

= .2.10
yl’l rn (4 )
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Then "by operating with" Pr on- the left of the state equa-

tion-in (4.2.1), we see that Y satisfies:
Yp ¥ (PrAPr)yn—l + (PrF)Nh~1 '
vp = Cy, + OGN, (4.2.11y.
¥, = E[yn |vn,..., Vl]

Then from (4.2.10) it follows that

But since (CPr Y PrAPr) is observable, we see that

. o ik . P
E[Prxn—-Prxn][Prxn-Prxn] = E[(yn-yn)(yn"yn)}

satisfies (4.2.9). In other words,

PP &M < = (4.2.12)
Next let
Zn = PuAPuzm«l * PuFN.n—l ’ nxi (4.2.13)
%0 % PuXO -

Let us see how z, differs from Puxn. By operating on the

left with Pu on the state equation in (4.2.1), we have:

Puxn = Pqun—l + PuFNn—l

it

PuAPuxn—l + PuFNn~1 + PuAPan—l

il

PP %1 PPN, 4 + PAY. o (4.2.14)
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from (4.2.13), we have
= (PuAPu)hn_1 + PuAyn_1

n-1 3
= g (PuAPu) PuAyn—l—j

= Puxo - 2y = o .

¥tz 2, hn'“hn , (4.2.15)
= E[zn] \ TR Y

= E[hnl Vs ooy Vo

By virtue of the condition that unobservable states are sta-

ble, it follows that (P AP)) is stable. Hence
N 5t
E[(zn-—én)(zn-zn 1

is bounded. Now for any two random vectors x,y¥y we have

Elllx+y |21 < BOIx[2) + By ]®1 + 280 =] iyl -,

and by the Schwarz inequality:

JEN=|PT WLy IR

2
(J Eff|x|[*] + «/E[ilyl!zl)

Ef{=|[ {511

A

Hence

E[]]xty [P

{A
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By induction, it follows that for any finite number of randop’

vectors bl""’ bn’ we have that
n 2 n ) 2
sl Dol | < (1 Voumg 1) - canag

Hence in particular

2

| A

~ 2 n_l A ~
Elln, - 5_IP] LABlEP A, 4y -5y 10 P

2

| A

3

n-1 k
3 Hagllle all vie i
0

where

A = P AP
U uou

fl

~ ~ *
M sgp E[(yk-jyk)(yk'“yk) ]

Since Au is stable, it follows therefore that

Lon 2 X ~ .
lS:]lp Ellin, -h, ] sup Tr. Bl(h -& )(h -h )]

2

| A

AN P all s w
0 u 11

It follows in turn from (4.2.15) and the inequality (4.2.186)

that
2
I

]

sup Elllx - % ] sup Tr. P
n_ “n
n n
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- Or

Sxp PIl < oy
as was required to be proved.
Remark. It should be noted that hn need not be zero, in
general. - .
Iemma 4.2.3. Let P be any self-adjoint nonnegative definite
solution of the steady state Riccati equation (4.2.7)y., 1If

* * *
(F A ) unobservable states are A ~stable, then
'
(I-PC YA

is stable, and moreover, P is the only self-adjoint nonne-
gative definite solution of (4.2.7).
Proof. Let P be a self-adjoint nonnegative definite solu—

tion of (4.2.7). Then

*
(I+H(P)C C)P = H(P) |,
or
P+ H(P)C'CP = H(P)
or
i *
P o= H®I-CCR) |
s0 that
P - pC*CP = (I -PCHO)P
= (I -DPC*OYH(P)(T - C*cp)
ar
* * *
P = (I-PCOI(PILI-CCP) + PO CP (4.2.17)

(which is no more than the steady-state version of (4.1.26)),
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*
v o= A%y
*
Y o= (r-pc*oya |
J = 1 -opcre |

Hence for every nonnegative integer k:

Then we can rewrite (4.2.17):

* ok *
FraH¥s = fr*% - o |

* * k. *
P = ¥YPY + JFF g + pCicp . (4.2.1g . %
or x is (F ~A ) Unobservable. This leads to a contradic-

Buppose ¥ ig not stable. T i i * p
2L hen neither is ¥ . Let tion, since by assumption =x must be A-stable . Hence ¥
X be an unstable eigenvector of W*: t b tabl
) mus e stable.
* - r 5
¥'x = yx , IY! >, iix” =1 Let us next prove unlqugness of the solution. Thus, let

Pl’ P2 be two self-adjoint nonnegative definite solutions of

Then substituting in (4.2.18), we have the SSRE (4.2.7). Let
(<] . . i . (=]

P, xd = [y 2w, x] o PSR ¢ foosf? vy o= (a-pcfon

or *
¥ = (I-—PZC C)A

-y 1Py tex,x] = (p" s “licex|® . (a.2.10)

Then both ?1 and V¥ must be stable. Let

2

Since P ig nonnegative definite,

[Px,x] > 0

As we have seen, if P isg any solution of the SSRE, we have
and hence the right side of (4.2.19) must be mero if Iv| > 1. '

1 *
{ence : (I+H(P)C C) = I -CCp
CPx = 0 : d ¥ g * = ‘
an Fax 0 Hence the SSRE yields
Since ‘ )
* -1
Ix = x4 cepx = , . H(P1) = Py(I-CCP)) ,
N - * 1
it follows that _ H(P,) = (I"*PZC C)
*
Fx = 0

Subtracting, we have

and
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Yo * -1 *

Hence

* * -k . .
(I-P,CC)AQA (T-c¥cp y - L N
2 ( 1) (I-p,co)p, - P(I~C v, )

S Rl 2
= Q
or
- *
or for every pPositive integer
_ k *K
Q faQ ¥y
Hence
- *k *k
[Qx, x] QY% x, v,%x]
and Y., v pei :
1 ?2 being stable, letting &k go to infinity, we
obtain

[@x,x] = o
Furthermore, Q being selfmadjoint, it follows that

Q = 0

or

Pl = P

Remark. Note that for uniqueness we require that the solution

(of the SSRE) be nonnegative definite. From (4.2.18) it fo1-=
lows that any self-adjoint solution is honnegative definite

if, in addition, ¥ is stable.
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We can nﬁw complete the proof of Theorem 4.2.3 with the

2id of our lemmas. First, the condition that (C-A) Unobserva-

ble states are A-stable yields that whatever 'PO,

sup Pn < M < = R
n
vhere
Pﬁ+1 m cI:'(Pl’l}

Take the.special case where PO is zero. Then by Lemma 4.2.1

. 1
Pn = & (0)

is monotone nondecreasing and, being bounded, converges to a

finite limit. Denote the limit. by Ps‘ Then PS iz a solu-

tion of the SSRE:
Q(PS) = P,

By the. condition that (F*WJA*) Unobservable states are

A*—stable (Lemma 4.2.3) we obtain that any such solution must

be unigue. Moreover,
- *
¥ = (I-—PSC CHA

is stable. Let us consider the performance of the suboptimal

filter, using PS:

PR} a * Py} )
0= AR+ P.C (v ~-CAR
" el (4.2.20)
~nd -
EoN 0
Let
ad
e = X -~ X
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TNote, however, that the convergence need not be

Let T deno v o B
te the corresponding (error) covariance: t
( : : ges s°

monotone.

T = El(x -2 AA¥
n [¢ n T ED(x -]
Then 5 :

) Tn Satisfies gemark 1. Note that (4.2.20) defines a Gaussian process which .
o . HE
ig asymptotically stationary and ergodic. In particular, we

have that

T - * *
a1 YLV (I-p c*oyprt(r -r.c'cy + p_c¥ep
g 5
N
1 *
lim ¢ ) e e = P
N N 1 oon 5

. | | . . (4.2,20,
using the SSRE in the form (4.2.18), we see that ')

Note that if A 1s stable, all the conditions of

(T -P) = #
n+1 = YT . p
s n sV Remark 2.

are automatically satisfied.

or
0 n . ‘ i Theorem 4.2.3
n T F = Va-pwt (4.2.21y -
where . T
- Opne-Dimensional Example
A= E[XOX*] . L
0 ' The conditions of Theorem 4.2.3 are necessary for the

conclusions therein to hold. Let us specialize to the sim-

Si i - -
tnce ¥ is stable, it follows that
Thus, let the state and

plest possible case for this purpose.

Iim 7 = p
n n 5 observation be both one-dimensional, and let
or the filter is asg i |
ymptotically optimal , the rate of conver-— v, = s, % gNﬁ
gence to opti i i
> Optimality being determined by (4.2,21) Clearl
the m ) ¥, = : 2.1E
ore stable V¥ .the faster the‘COHVGrgenCe' Sn C?n' ' (4239
Next we note ¢ W § initi '
hat for any initial po: i ) xn = 0%, 4 + fNS

where {Ng} and {Ni} are mutually independent white-noise

0 =< PO

Hence by Lemma 4.2,
! sequences, each with unit_variance; and p is allowed to be
@n(O) < QH(P ) = any real number, and we use p for P. Without loss of gene-—
- Q - n = T .
But th . “rality, we may, and do, take g to be unity. Then
ut e left side .
converges to P, and the right sid
. § e conver- ]p1zp " f2

plpr =
2

1+ e?(lpl?p+t
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. o lo|?
' (p) = -
(1 + cZ(|p|%p+12))?
(I)”(p) = "'2'9]404

(1 + e2(jp[%p + £2))°

Thus ¢(p)

0 <p <=,

is a convex, increasing function of p for
degenerating to a straight line for c¢ = 0,
Figure 4.1,
Note that
Pn+1 = ‘1’(13[1)

is always monotone:

increasing if Py > by
decreasing if Py £ Pg

The SSRE

#p) = p

is a guadratic egquation in p and has two "real" solutions:

one positive and one negative, the positive solution being

~(1=[p]|®4c®2®) + N[ p[21e®22) % £ 4, | 2e2s?

pog o ’
2}p[%c?

(4.2.28)

and this formula, of course, requires appropriate interpreta-

tion if ¢ =0 or f = 0.

Case 1. ¢ =0; f 4 0 (Controllable but not Observable).

In this case the graph of ¢(p) degenerates to 2 siraight

line and the SSRE degenerates to the linpear equation

0 = 2.1~ |p|%p

B(P)

r\’//
: = pip
] P = e}
< - (=)
q 20
Lo
or
#0070
- A
P = ¢(P) .G 0P =1
= 50\)\“
o5 OF SSRE
NON-UN\OUENE
{=O;C¢0;‘p2<1 ’

P

FIGURE 4.1. Behaviour of MP):' One Dimension.
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and thus has a unique nonnegative solution

fz

P, = I———)
1 - |p]

if and only if {p| < 1 (system stable). These facts are

also deducible from the sketch in Figure 4.1. If ¢ = g

and :
Ipl > 1 (Unobservable states are not stable), we see that

P, goes to infinity.

.Case 2. f=0; c# 0 (Observable but hot Controllable)

In this case the SSRE has always the nonnegatibe solution
p, = 0 ,

which is unique if |p| < 1; however, if |p| > 1 (Uncon-

trollable states are not stable), it has the additional soluy-

tion

o] > 1 ;
and only this solution will make

(1-p_c%p
stable,

Case 3. £ =20; ¢ =20 (Neither Observable nar Controllable).
The 8SRE becomes

0 = (1“ lpig)p ]

which has only one solution:

so that

4,2, STEADY STATE THEORY 1725

(1-pe®p = o

(or in this case the filter degenerates to a "direct connec-

Miscellaneous Remarks

It is evident that these conclusions are consistent with
our general asymﬁtotic theory. We can also study what happens
when one or both of the assumptions of Theorem 4.2.3 are
violated in the multidimensional case. In particular, the
case where (Aij is not Controllable is of interest to us in
practical filter implementation, especially in the case where
A is stable. Our first résultrin this connection is:

Theorem 4.2.4. BSuppose A is stable. Then

(4.2.22)

* * . :
for all (F ~ A ) Unobservable states, that is, fTor all x i

such that

F*A x = 0 , k>0 , (4.2.23)

and, conversely, (4.2.22) implies (4.2.23).
Proof. Since A is stable, Theorem 4.2.3 applies so that

P, is well-defined as the unigue solution of the SSRE. Let

Bn

*
E[xnxn]

Then

* *
B AR A" + FF

n+1

and since A 1is stable, Rn converges to
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I "
o T g 4 FE A*k since
* ) _
Now the null space of BR_ i [p_C [Vn-—CAxn_l], x] = 0
" ' 18 readily seen to he th ' :
(F q}A*) Ugobservabl e class of fence, for all n
e states. 0
m the other hand ﬁi,x]"= 0 since ﬁ% =0 ,

P < R o

n - n or we lignore any information contained in the observation con-
* *

cerning (F A y Unohservable states. In this case we may con-

3 and Pn converges to P so that

struct a filter which, while suboptimal, does not ignore this

and hence

sk
Fx = 0 a *
d -
n PA X = 0 . (é " JUZI + FF )

The second equality says tha A*x

I
. P.x,x] < (R x,x] . . : .
i - oath information. TFor this purpose, we proceed as follows. Define
e He .
: nee for x satisfying (4.2.23) the new SSRE:
) * * 2 *
p = (I-PC CI(APA +0o I+ FF 3 (4.2.24)
me = O
i ) *
! i i FF by
. Conversel ) corresponding to replacing
o ¥, suppose (4.2.22) holds. Then the SSRE 1
. that . tmplies 21 % ¥F
P s 3 N
;E H(P })x = AP A" *
x + FF = ’ *
} or - @ P x = 0 or replacing F b¥ 0214-FF . The latter is nonsingular,

satisfies (4.2.22). Hence is Controllable; and A being stable, (4.2.24) has =2 unigue

nonnegative definite solution. Denote it by Po' Then PU

% .
F A = 0
and by induction (4.2.23) follows ‘ ‘ is ponsingular, and P, converges to P as 0O 7 0. We may
The singularit ’ ‘ therefore use PU in place of P, and while the filter
arity of P is undesi
: point of view. S © irable from the practical would be suboptimal, the difference in performance would be
: . uppose, for ex )
! 1y optimal £i1 ample, we use the asymptotical- small for small escugh ¢. In fact, let
| tlter defined by (4.2.20). Then we see that f
4 x satisfying (4.2.22 or o0  _  pal * _ o
: .22) X = AR 4 * PGC [vn CAﬁn_l] 7
i a (4.2.25)
N XX = 53 * N
= n 1 A1 B x] Xg = 0
|




126
4,2, STEADY STATE THEORY
128 CHAPTER 4. THE KALMAN FILTER

Let so let *

. 1 WO - (I__pOC Cia
T U S We
to zero.
) P as o goes
# ; he behavior of P_
= examine t
T E[znzn} ,‘t us
have . " I C*CP )—71

Then, as before {cf. (4i2,20a)), we have APGA* + 021 + TR = Pg( - g
‘ 7 = YTV 4B o' 4 (1op c*oyrr* (1 - o*ep * Yo ooy,
P n+1 6'n'o a o o o) ApyA + FF = 0
- ) ) lution to the SSRE)

where & . : the uniqueness of so

in proving
* ‘ Hence (aS

| = —
; . Wc (I PUC CHA
[

“we have

. 3ince ?U is stable, 'I‘n converges to T

y r ~-P y = - (I ~-P CcC C - C Ccp + P - P

o ? . |
T * 0( o 0) o 3] g g

a e st it ollows that
| able, 1 £
Since l{lo nd WU ar
I
| - = o} - - - ( P
: )

= * 2 * *
= PU - ‘ngg‘yo_ - g (IMPOC Ci(1-¢ CPU)

. . -
HBence, adding {4.2.26) and (4.2.27), we hav
since we can rewrite (4.2.24) gg (cf. (4.2;17)); | ] * * .
| T -P. = g2 [(?E(If.poc oy -clep
; " w T F0 4 _
PO’ = ‘yO'PUlPD‘ + PO'C CPU ‘

(s} o o . . - )
( )( 0.) g ) (

(4.2.34a) "
Hence This shows, in particular, that
: P = T =P — (1 b c*oyer o p oty * ]
To =Py = ¥ (T, - ¥ - (T - o X -p _c'c) . To = Po. o as o > 0
or | 02
N 2% * * ok
To =P, = g g vo(I =P CO)(1 -P.CC) Yoo . (4.2.28)

till be accep-
that the suboptimal filter performance may s
so tha

‘ o.
Let PO denote p at o = @. table for small

" T
| i lternate forms o
3 te equivalent a

" * * | Finally let us enumera

Py = (L-pyC O(apgy +1ry |




Now the null space of B, is readily seen to be the class of

* *
(F ~4 ) Unobservable states. On the other hand

" and Pn converges to P_ so that

{mesx] fw [RODX’X]

Hence for =x satisfying (4.2.23)
wa = 0

Conversely, suppose (4.2.22) holds, Then the SSRE implies
that

-
H(P )x = AP _A'x + FF % = .0

or

Fx = 0 and PAX = 0

. *. .
The second equality says tha A x satisfies (4.2.22). Hence

* ‘
FAk = 0

i3

© and by induction (4.2.23) follows.

The singularity of Pm is undesirable from the practical

point of view. Suppose, for example, we use the asympfotical—
ly optimal filter defined by (4.2.20). Then we see that for
X satisfying (4.2.22)

~8 ~8,

*
anx} = Xl’]—l’ A X]

small for small enough o.

4,2, STEADY STATE THEORY 127

gince
* a _
{PwC [vn-—CAﬁn_l], x] = 0 .
Hence, for all n
a2 - . PR
[xn,x] = 0 since %, = 0

or we ignore any information contained in the observation con-

* *
cerning (F ~ A ) Unobservable states. In this case we may con-

" struct a filter which, while suboptimal, does not ignore this

information. For this purpose, we proceed as follows. Define

the new SSRE:

*
2r+7r )

* *

P = (I-PC CI(APA +g (4.2.24)
. *

corresponding to replacing FF by

*
%1 + FF

* .
-or replacing ¥ by chl-FFF . The latter is nonsingular,

is Controllable; and -A being stable, (4.2.24) has a unique

and hence

Ay

nonnegative definite solution. Denote it by Pc‘ Then PU

is nonsingular, and P0 converges to P as ¢ + 0. We may

in place of I and while the filter

therefore use Po o
would be suboptimal, the difference in performance would be

In fact, let

a0 20 * _ a
= Axn_l + PUC [Vn CA%n_l}
) (4.2.25)
PN
g = ¢
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Let

Tn = E{znzn]

Then, as bhefore (ct. (4.2.20&)), we have

N * * * * 0 %
?n+1 = WngWG + PgC CP(T + (I-—POC CIFF (I-C CPU)

where

w _ #

5 = (IT“PUC C)A
Since WU is stable, Tn converges to T, , say:
*

T, = WUTM?O + QU .

where

O
Q
I

r c*cp 4+ (1 * * *
B ot (I-pCTOFFT (1~ cYep )

i

* - g * *
PU - WOPUWU - a (I-—PUC Cikx-¢ CPU)

since we can rewrite (4.2.24) as {(cf. (4.2.17)):

* *
P =
. ?GPUWG + POC CPU
* * L
+(I-P CO) o1+ FFY (1 - ¢ CP) . (4.2.24a) -
Hence
. _ - * 2 * * *
I, - P, ¥ (T =B ¥ — o¥(1-p CY(1-2_C C)
or .
29 * * *
_ - C * ¥
T, - P, - g ¥o(I-P CeX(I-P cC) Y5 L (4.2.26)

Let PO denote P0 at o = Q:

* ES % .
PO = (I-PyCCI(APLY +FF ) |
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Also let

*
WO = (I-—POC CYA .

Let us examine the behavior of P0 ags ¢ goes to zero. We

have

2

:

Tk * * -1
APUA + g1 + FF PU(If—C CPU)

* * k1
APOA + TF (I-—POC ) PO

Hence (as in proving the unigueness of solution to the SSRE)

we have
LI 2 * *
TO(PO-—PO)WU = -g (I-—POC CY(I-cC CPG) + P0 - PO
Since ¥y and ¥, are stable, it follows that
2§ .k * * *
Py =Py = © g“’o(I”Poc CY(I-CcCp )Y, . (4.2.27)

Hence, adding (4.2.26) and (4.2.27), we have
2 of k * * *ic

- = - . 4

T, - Pg = o g(wocx P,C C)(I CCP )Y,

k * * *k
- WU(I-PUC Ci(r-c¢ CPG)‘P0 ). (4.2.28)

This Shows, in particular, that

$0 that the suboptimal filter performance may still be accep-
table for small .

Finally let us enumerate egquivalent alternate forms of
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*
P = (I-pcCyapa¥(r-pcte)
* *
+ (1-PCTO)FFT (T - pe*e)* + potep
. -1
P o= (I+H(P)C'C) H(P) .
b o eyt ot it p
(P)y "+C ) (if P is nonsingular)
*
P = (I-PCO)H(P)
* * *
P = APA" 4+ FF - PCT(I+cH(P)CTYCp
(steady-state version of (4.1.24)%.
(Note that

* * * -
FF - PC (I+CH(P)C )CP

is not necessarily (positive) definite.)

deduce that P pmust satisfy:
CPC* = *y1 *
= (I+—CH(P)C ) CH(P)C

as follows:

(x+camchHeee® = cocr +5(pyc oypc®

B

cH(P)C
by (4.2.30).

]

o (1 +cupycore” - crepyct

cr +meyctor - neyyct

= 0

>

From (4.2.30) we ca

However, from (4.2.33) we can only cbtain that

.2, STEADY STATE THEORY

(1 + HPYCTO)P - H(P) = 2

*
CzC = 0

in other words, (4.2.33) is not necessarily eguivalent to

(4.2.30). Similarly we can also deduce from (4.2.31) that

*
CPC* = (I-—CPC*}CH(P)C (4.2.34)

as follows
. * *
C{I - PC CHH(P)C

(1 - cpcHoreyc”

*
. = CPC
(4.2,32

by (4.2.31). In particular, we alsc have (cf. (4.1.28) also):

1

. _ ‘ *
(I+CH(P)C ) = I - CpC

Y% DPROBLEMS *

‘ Problem 4.2.1
(4.2.33 -
_ Then

et R be a covariance and A be stable.

*
ARA < R

if and only if R has the form

o *
R = - a"qa? Q>0
0
Construct a stable matrix A such that
*
I - AA
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is not a covariance. o
int:
pieidd

S 2 * % * " A*A(A)*
Rts Take i}%l = —nouoaeathn fcte + cferiydag )
a ,

where

n(x) (I-¢(P+AQ)C C)

where b > 1, a < 1 and ab < 1.

it

* -1
(I + H{(P+XQ)C C)
Pyoblem 4.2.2

Show that if (A“F) is Controllable then w(pm

and and CCh()) is self-adjoint and nonmegative. definite.

are nonsingular, D being any self-adjoint nonnegative soly

tion of the SSRE. Show that (AVTEF)Y is not Controliable. if

4.3 STEADY STATE THEORY: TREQUENCY DOMAIN ANALYSIS

is singular. Show that if A is stable and P g Singulaf

i ’ t of digital computers, filtering
then (A% F) cannot be Controllable. Let M(C)Y denote the Prior to the adven g _

i i i i i cy domain rather
hull space of €. Show that (I-—pc*c) has an eigenvalue theory was primarily studied in the frequency

l i i i i 3 tudy Kalman f£il-
equal to unity if and only if M(C) is nonzero, than the time domain. It is instructive to study

IIOble]n 4-2-3 s .
(=] n -— 4 ticula I'ly ihe Steady Sta.te prope:[‘tles 8]
ter d S1g nd par . i
| 1 2.Lu on o the SSRE er ‘th 1 l er ~—- from this poin't of view.
. luti £ . und e co _the f t

ditions of Theorem 4.2.3. Show that

One-Dimensional Example

* * * .
R ) wree Let us begin by considering the one-dimensional case,

Hint: Use Problem 4.1.8 using the notation of (4.2.1E) of Section 4.2.2:
nt: Use Problem 4.1.8.

Problem 4.2.4 s = ex (4.3.1)
n n
Show that for P, self-adjoint and nonnegative defi- s
. ’ X = px + fN
‘e +1 n n
nite: ) = (P +AQ) n (4.3.2)
’ b7d = 5 + NO
is a convex function of A, -w < ) < @. Recall that &(-) n n n

7 Aeted in (8:2.0). Since, in the steady state, we can solve (4.3.2) to vield
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This means that the “gain frequeney" curve of the Kalman £il-

“ter defined by
2wi)

: the "signal" "transfer function" (cf. Chapter 2), denoteq log |e pF] , -5 < A<} (4.3.8)
5 A), is
vs (2 is always "flatter" than that of the signal filter
1) = 3 <A <} (4.3.3) .
e _ .
8 log [®™HA_ o) | - < A <% . (4.3.9)

and the spectral density of the signal pr cess is ]
P v & pro This (following tradition) can be put in another way. The

c2f2 - c2f2 (4.3
2pix _ 012 - -3.4)

half-power ("3db point") "break" frequency A of any itransfer
1+ p? - 2p cos 2m

p(A) =
=8 .
: le function is defined to be that value of A for which the mag-

‘ nitude is half the maximum. Hence for the Kalman filter it
The steady state Kalman filter is .

1 is defined by

- _ 2, & .
x, = (1l-pc )pxnml + pevy (4.3.5) ; |2
l - DF _1.
& = : : 2mid 2 2 ¢
®n oxy . : le - opl
! ’ or A is given by
Hence the corresponding "transfer function" is ;
1 1 l |
2 3 1 . -1 - DF }.Og pF
Y (A) = 'EC (4.3.6) ; T 81n B ® —r—— for DF close fto 1 )
£ PR ’ v
e - pp 2 pF 2
where
9 which is larger than that of the signal transfer function
Pp = (1-pecTip
- break freguency which is
Since

FA
=]

D ]
F : - -
: e sin 1 RO} y = llegwgl for p close to 1
T 2‘/'—3‘ 271'

we have immediately that for the "normalized" transfer func-

tions: - Of special interest to us is the dependence of the Kalman
(1 pF)

; -3 < A < 2.(4.3.7 J : ) . . :
Zﬂll-pl AR S ) _ filter transfer function on signal~to-noise ratio (S/Hy:

2wiA

|E! —QFI
Signal Power

(Observation) Noise Power

(4.3.10)
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which in the one-dimensional case ig

czf

1~»p2

2

Large cof (equivalently, large ¢, £ # 0) corresponds tq
large signal (or low noise), and small of (# 0) Correspong,
to small signal (or large noise). Let us therefore considey -
the limiting cases as ¢+ o and ¢ -+ 0 (fhe latter ig Teo
ferred to as the "threshold" case). We can readily deduyce
from (4.2.2E) that:

Suppose ¢ + w; f #0; p > 1.

2

Then pe+0; pc®»1; Cop+0; s =v

but the "normalized" error

E((s, -8 )%) .

2
E((s,)%)

Suppose ¢ » 0. Then p02 + 0 Pp * P5 cop + O
Xy = X1 (or X, = 0 asymptotically); 5, 0® 0.
In terms of the Xalman filter transfer function we thus

see that

{(a) For low noise or large signal, the filter allows all
frequencies to pass without attenuation, or simply,”stOpé fil-
tering" : op & 0 (§n = v,).

(b} For the threshold case of large noise, the Kalman
filter transfer function "filters" out the noise as much as it

can, and its gain frequency curve approaches that of the sig-

nal transfer function. See Figure 4,2.

NORMALIZED GAIN

1.0

0.9

0.8

0.7

pp =0.0084;C= 10 {HIGH SIGNAL)

pe=036;C=1

P =0.899;C=0.01 (LOW SIGNAL)

| | l { |

a1 0.2 0.3 0.4 0.5 0.6
X FREQUENCY

FIGURE 4.2, Normalized #.F. Gain: One Dimension (Low Pass).




138 CHAPTER 4. THE KALMAN FILTER 4.3. FREQUENCY ‘DOMAIN ANALYSIS 139
Two-Dimensional (Two-~State) Example = TI_MQIFYTI . (4.3.11)
+e

Next let us consider the "band-pass" casge {Linear Oscili The singularities are at

lator: cf. Chapter 2), as cpposed Lo the “low-pass" case gg

o)
i
+

Ep

in our first example. To enable explicit calculation, we ta
: . ider the signal as isi i hi i ;

wgh therein to be %, and b =0 (no damping); so ?hﬂt we e may consi gnal as arising from white noise through

bhave the model (omitting constants): an oscillatory or band-pass system with low damping. We know

that the Kalman filter must be Stable, and hence it is of in-

Xn+1 = Axn * FNn ; terest to study its transfer function. The steady state Ric-
v = Cx + GN cati equation is readily vefified to have the solution
n n n ’
where + /14"—5 - 1 0
+ Y
A = ° ! P, = . (4.3.12)
-1 0 0 % f14—££ + 1
2
‘ Y
0 0
Fos 1 0 ’ where the subsecript ¥ is to indicate dependence on y. Hence
v = (I-p c'C
G = 1o 11 ; y = ( =P ,CCA
2
X 4
. 0 1 5 1+ 5 1
n Y
NI’] = o ’ . 3
Nn -1 0

white noise with unit variance. To study the effect of sig- “and the Kalman filter transfer function ig:

nal-noise ratio we shall take X
C[QZﬂllI

Normaliwzing this, by dividing it by the value at A= 0 we
where O < y < », The matrix A has its eigenvalue on the

. obtain for the normalized transfer function
unit circle and allowing for singularities, the signal normal
g0y = & N(1ea

: a4‘e4ﬂ11

ized gain frequency function isg




NORMALIZED GAIN

-

2

BRSS

| g

6.1 0,2 0.3 0.4 05
A FREQUENCY

FIGURE 4.3. K. F. Transfer Gain: Band-Pass Case.
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where
2
a = 1-% f1+2 -1
Yz
Note that

and |{g(a)]| has its maximum at

s
I
[
i

at the same points where the signal transfer function has sin-
gularities, but now

max |g(0)| = 12

Bee Figure 4.3, where the graph of lg(a)| is sketched for
a <1 and a = 1. Note that unlike the "low-pass" case, the
gain frequency curve of the Kalman filter lies always below

that of the signal filter. Note also that

a0 as Y e

a + 1 as v+ 0

80 that we may make the same conclusions as in the previous
one-dimensional case for the Kalman filter behavior at high

and low signal-noise ratios. We omit the details.

Genheral Case

Let us‘now go on to the general case. We shall assume
that A is stable (the "marginally" stable case when the ei-
genvalues are allowed to be on the unit circle can be handled

allowing for "singularities" of the transfer funcition). Alsc
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we shall assume (A ~ F) controllability and (C ~ A) ObServabi-_'_

lity to assure stability of the steady state Kalman filter,
Let

¥ = (I-PCCHA

Then the Kalman filter transfer function (matrix) is:

i3 . — *
C(I—-¢62WIA) 1 pC

g(A) = ) - (4.3.13y

as opposed to the signal transfer function

TN = (1 - Ae2TiAy-1 o (4.3.14)

v be {p;}. Then

Let the eigenvalues of

. i1 —21i -1
e2W1K(I’ﬁwezﬂll) I (e 2v1k__¢)

AYICH
%$NA £y b'.(e—ZFlA)

ch R Yo, (4.3.15)
I (e—zﬂll__pk). _
k

5 b,.(-) is a polynomial of degree less than of the de-
EN|

nominator and hence we can use partial fraction expansiocn. We
know that }pif < 1 and, if complex, must come in conjugate
pairs. We may thus obtain sums of terms each corresponding to

one of the two examples we have described above. We omit the
details.
Let us now turn to the limiting cases of low noise and

high noise. It is convenient for this purpose to take the

noise variance matrix

*
GG = i
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‘Then the Kalman filter state equations are

§n = Cﬁn ;
J C*C' C*
b4 = - Y Y ~_ .
a1 I PY ¥ )Axn + PY v Vn i
and _—
H(p_ Yo ¢\t
B= I+ H(p
Y Y ¢ Y)

First of all consider the suboptimal estimate

s = v
n

The corresponding error matrix is elearly ¥I and of course,

* .
CP.C" < yI (4.3.16)

in particular, the error covariance for the suboptimal filter

goes to Zero as Y goes to zero, or 1t is optimal inp the 1im-

it. Hence we should expect that

*
Cp_C
v o+ v

¥
on R(C), the range space of C, and that

p c*c

clr - _I?_* > 0

as  y - O._ Since the second 1imip follows from the first, we

need only prove the first. Now we know that

. .
cp,C ' ey L\t ae)
E A (I:+ C M_?lﬁ C*) C —_?l_ cF (4.3.17)

v

1.
|
{
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To proceed, let
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Then we have from (4.3.17) that

I -T
Y

and, of course,

T
v

Let us examine more closely how T

purpose,

%y

with respect to .

i

<

-1 _
QY
vielding
_le dQY Q_l =
Yy dy Yy
or
dg do
L = . g a—X
dy Yoy
where
J =
¥

since

-1
(1+H )

depends on .

let us differentiate

* -
(I+X CC) 1K
Y ¥

Or, equivalently,

- *
(KY1+C )
aQ .
-1 Y A ¥ FF -1
- — - 221K
Ky (A & 2)Y
(rayt g FE g
Y 2%y 7
- b
*
I-gco |
(_ QC )

For this

(4.3.18)
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-1 ®
K = I - C
QY Y QY ¢
Now from
P o= J AP (IAY + JFRSY e p oF
E . Y YOy Y Y Y CQY
e have that
* FEY % * '
= (I A)Q (I Aa) + g EE * C
QY ¥ QY( . ) v ¥ Iy QYC QY (4.3.19)
‘We can prove from this (just as in Lemma 4.2.3) that J 4 is
“gtable, since
. A ~ X
y
is controllable. Hence we obtain from {(4.3.18) that
* %k
dQ o J FF J :
- k *k : :
s g (5,8 —I-Y-2—~1 (3 075, (4.3.20)

from which it follows that QY increases as Y decreases.

In particular, then TY

is monotone nondecreasing as Y de-—

~ creases, and since it is bounded, must converge to, say TO‘
" Let us now prove that

T0 = 1 on  R(C)

For this purpose, we solve (4.3.19), obtaining

* %
0 J FF J
k * * 1
Q = (J_4) + cc A
vy T L Qccq, ) (g a)
Hence
® J FF*J*
k * Kk
T = C(J A X ‘
Y : g ( Y ) Y (JYA) ¢

s k. % * ) ®
+ C({(J_A
g (1,8)7Q ¢C cq, (g 4y *c
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In the second sum the term for k = 0 is clearly T?, and.

hence

o
k * *I kK
+ C(J_A cC C J_A C
§ (s 07a,Coca, (7 4) (4.3.27y
Next let vy = 0. The left side converges and hence so must
the right side; in fact, each term in each summation must cop-

verge, being nonnegative. Hence for each v,

2
* ok * *
[EIEMENS Bl
Y

converges

]

]iCQY(JYA)*kC#sz converges .

The idea is now to deduce from this that

* *g ok .
FAPC(I-Tyv = 0 (4.3.22)

for every k, and by (A-I) Controllability it will then fol-
low that ‘

?

*
C (I—~T0)V = 0

and since v and Tov are in the range of €, it will fol-

low further that

R(C)

H

T,.v = W O
-0
as required-

Let us next deduce (4.3.22). Taking k = O in the first

summation in (4.3.21), we have that -

Rk K * %k
183 7.0 vii = liFc (I—TY)VH

3
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and hence

* ok
HF e (x-T )vi
: T is bounded :
Y

and hence

' *
HFC (I-—TY)VH must converge to 0O
and hence

* ¥
F C (I—-TO)V = 0 (4.3.23)

Taking %k = 1 in the second sum in (4.3.21), we bave that

* * * * *k
||CQYA (r-c¢ C‘QY)C vl = HCQYA ¢ (I —TY)v]I (4.3.24)

converges; while taking %k = 1 in the first sum in (4.3.21)

we have

* * * * *
F(I-C CQY)A (1-¢C CQy)C v

* * * ¥
' {(I-C CQY)A C (I-—TY)V

) * % ¥k
F*A*C*(I—Ty)v - Fcm At (- T

and by the convergence of {(4.3.24) it follows that so does

rcieg At -1y
[ - v
Y _ Y
and hence so deoes
LS I
¥ A C (1 MTY)VH
J;

Eence
* k&
Fac (I-—To)v = 0

We may continue in this manner te obtain (4.3.22), successive-

ly for each k, %X < n-1, where A is n % n.
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and " M i wni
allow v to g0 to infinity. Now the suboptimal signal

estimate

! hm'meermrcmwﬁamm CM# and hence
; i 3]

ce.c® < cre*

3

ar
: cp_c* *
: Y < CRC
; ¥ -

But ;
ut we know that in the same notation as before CQ-C* is
! ! Y

monotone de i i
creasing as vy lncreases, and hence it follows that

CQYC* > 0

Hence in the Kalman filter-:

5n < Cﬁn o
*
2 B L P CC P C*
" Y e

in the limit as Y * =, the system matrix
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The ; : -
case of low sigpnal-noise ratio or high noise ig much PCC
. I - X—}fa +~ a

simpler. Thus we take the system as ’
X I while
n xn_l + I“Nn_l H P C*

El

v, = an + Nn , Y

where _of- course, goes 10 zero so that §n+ 0. However, the normal-

GG* = 41 ized g@in frequency function, since it depends only on the

system matrix, is now the same as that of the signal. In other

words, the conclusions in the examples hold alsoc in the general

case.

- 4,4, ON-LINE ESTIMATION OF SYSTEM PARAMETERS

In this section we shall study a generic problem of
1System Identification": estimation of system parameters, We:
shall treat this as an application of the estimation theory
developed in Chapter 3, as well as an application of Kalman
filtering theory, in which the.novelty ié thatrwe need to exa-
mine the asymptotic behavior of the filter; even though it is

time-varying.

Problem Statement

We are given the linear system signal model:

Cx + N

v
n . n n

(4.4.1)

B
i

+
n+i Axn BUn
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in which we do not know B, but the other matrices A ang §e want now to consider U as a linear transformation on B

C are known, as well as the (observation) white noise vap. rather than the other way around. TFor this purposg,'let:

iance, which we take to be the Identity. Our problen is t§

§ = ulr ufll el (4.4.3)
estimate B from the observed data {vn}, on-line rathep ° " "
than batch, knowing the input-sequence {Un}. We assume that where I -is =n x n, so that Um is n X np. Then we can
i) A is stable : e
writ Be,
1) el < oMy < o Be
i = 2
N ful(Be.) = U
13i)  Iim 3 I NU | exists and is finite (1 i im 7 i
Nom i L n . nput wit
. Be
finite power,) P

In accordance with the theory developed in Chapter 3, we 'From now on, we shall represent B as an np x 1 column

may consider MULE and/or MLE. We shall consider the former

vector
since we shall only be interested.in asymptotically efficieut Bel
estimates and we shall show that the performance of our esti 862
mates is asymptotically independent of the initial variances Bos : (e
assumed. | Bé

To be specific, let A be n x n, € be mxn and B

‘ ite te equations as
be n x p so that the input sequence Um is p x 1.  Sol-. and rewrite the state eq

ving (4.4.1), we obtain: = U 4.4

Bl Axn + UmB s (4 a)
n-1 3 ) :
x o= A Xy * g A7 B Un—l—j (4.4.2) where ﬁ& is specified by (4.4.3) and B has the representa-
tions (4.4.4). 1In particular we can rewrite (4.4.2) as

Let {ei} be the coordinate unit vectors in &P (of the

form: Col. (1, 0, 0, 0, «ewy, 0), ete.), and let

where
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n-t The estimate (4.4.5) requires "patch" processing and is
Kn = % A Un—le ’ : furthermore burdened with having to carry along the estimate
J of the initial state. We shall now evolve anh estimate which
- . - - . o th th E : .
The point in doing this is to facilitate the use of the thcory is recursive or "on-line," and does not involve any state es-—.
developed in Chapter 3. Let. J timate. TFor this purpose we need to assume the following
% "Tdentifiability Condition":
g = | ° ; N
B 1 L
lim % ) E,CCK (4.4.7)
Wooe L n n
o = n ,
Lnd = Ca ) + CKnB ! . existe and is nonsingular.
50 that.we have: We pote that condition (4.4.7) puts additional restric-
vo= LZF Ny tions on the input sequence. Let Ay denote our guesstimate
For the MULE we assume that 2 1S Gaussian with covariance _ for the true covariance ABtr of B. Define the estimate
matrix Atr’ our guesstimate being A, and independent of )
] . ‘ ~ B -1 -1 * %
tbe noise {N }. Then, following Chapter 3, the MULE is given B, = (Ag" *+ Rp) ; KCv, . (4.4.8)
by where
5 . T 4.4.5
zn‘m B[z\vl,...,vn] ( ) .
R = ] KCCK
fm m
n
-1 -1 *
= (Atr * Rn) § Lkvk ! ]
Theorem 4.4.1., Under the Identifiability Condition {and A
where stable) the error covariance matrix
% *
R = L L ~ ~” %
k7k ; - - 1
n LTk E[(B - B, )(B Byl > o0 (4.4.9)
. as n + ®,
n .
K kK *q k
5 A TC CA ; Al CKj proof. We begin by decomposing (4.4.8) as the sum of three
1 : .
= . (4.4.8) terms
n
E 7 * _k
T ok.C cal § K.C CK.
£ 73 3 J
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B = -1 1D k% - ; .
Bn (AB + Rn) b z ch CAme gnd hence that Rm is singular for every m < n,. Hence R
1 ﬁust be singular for every n, however large. Let
-1 -1 % %
+ (A + R} K
B F R ] G0 Ck, B RB, = 0 , Bl = 1
-1 - 0 % : . i -
+ (gt R ) 1 7 ch*N s A further subsequence of B (renumber it B ) must con
, w ] 4
1 yerge; let B, denote the 1imit. Let R denote the limii-

Let us first study the middle term; this is the term thgt ing matrix in (4.4.7). Then
at

would remain if the initi iti
ial condition #n  Were zero ang the
i

- :
were no nolse as well. Hence th;LS is the term we expect +
[s)

R
0 = B, ~ RB and  [IByll = 1,

which contradicts our hypothesis. Hence

conver - ; ,
ge to B. First of all, the middle term can be writf y R is singular
0 3

-1
B

-1

+ Rn) RnB is.nonsingular for all n sufficiently large.

Ch R, !
Let us next consider the difference

We ne -1 . sy .
ed the AB term, since it is possible that R iz i
3 i : i _1 Ml
gular for small n. However, Rn must be nonsingular for o . (AB ' Rn) RHB
‘ _ -1 -1, -1
TR TR e - S (4.4.11)

all n > some NO

M are two nonsingular self-adjoint

by virt 3 ales s ‘ .
Y ue of our Identifiability Condition. For, suppose we Recall that if L and

can find a subsequence
q o s P " ®, such that each B is positive definite matrices, then

. Kk k ’
singular. Then k
n, (L+M)”1 < wt . (4.4.12)
* ok -
K =
§ nC CK_ B 0 _
To. prove this, it is only necessary to observe that
for . 7
some non?ero B would imply that Mml _ (L+M)_1 - M"I(L4-M—-M)(L-%M)“1
n
k -1 -1
= M "L{L+M
Iollex,BlI® = o (L+M)
i .
e o emeHE
o1 -3

= M“l(M“1+L h] M
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is nonnegative defini
inite. 1In parti
cular, we have
: that

il(L»»M)’lHO < “M-1”0

1]

where the subscript

o indi
indicates "operator" norm (see [2]

for example),

Hence from (4.4.11) it follows that t

e -1 =
lewll < IR, Ilagtsy
We shall now show that

e i,

gees to zero. T
rom our Identifiability Condition whe
re the

lllnlt R is quulled to be nOIlSlIIgula.I it follows th t
a

R \71
‘n -1
m + R .
Or, given : i i
any arbitrarily small e > 0O we can fi
that for all n > N ‘ - NE -
. £
-1
R_l - Eﬂ
n < e
o}
Hence
_n -1
< R
ool A (T S
or
-1
(ke Fe R )
2 e—-1
< IR (4.4.13)
.4.13
for '1icl
all n sufficiently large by choosin
: g

Hence

of

which clearly goes to Zero,
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e < WEM,

HeBH 0 (4.4.14)

ate now the variance

Let us calcul

>

or each B, as 1
We have:

eqs regarding B as & Gaussian random variable.
-1 -1 -1
Rn) B

A (A

tr

-1 -1
+ B 4—Rn)

B

i

(A 5 B

*
E [eBeB]

regardless of our not knowing what

A is.
Btr
Let us next tackle the other two terms in (4.4.10). The
first term therein is the response to the_initial condition
X5 let us show that this goes to Zero for each x5, even
though we do not know what the 1atter is. BY virtue of
(4.4.13) the first term in norm is
-1
N1 W S
o T o|ly g cTea"s (4.4.15)
- n m Q0
|1
Now
m-1 Kk
e o< [ 3 1A N
: 0
s &
< LIl
and the series
Lk
7oAt
& o}
Hence

converges by virtue of our assumpiion of stability of A.
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n 2 although a detailed statement would involve specifying the sam-
* %k n 0 1 " !
I KpC ool < | TN | el i,

ple space (sequences, in our case); and the necessary mathema—

tical machinery will take us too far afield for inclusion here.

from which it follows that (4.4.15) goes to zero. It is easy.”

to see that the variance of the error due to the response to Cn~Line Version

the initial condition also goes to zero; in fact, the variagee We may now comstrtct our on-line version of (4.4.8) by

relating ﬁn to ﬁn—l in the following way.

! W L -1 -
= Gg +ROTH D T rclea™ & aWctac Jagter )t
11 tr n-1
' | (4.4.16) - 8, = ogt+rp Y xlcN, + 1 e’y
$4.18) n B n 4 m
and by virtue of our estimate the double sum in parentheses
is bounded in norm, while the outer factors go to g = -1 “lgt et - “roag?
g ero. (AB +Rn) I{nC v, ot (AB +Rn) (AB +Rn 1)Bn—1’
Finally, the third term in (4.4.10) is the error due to
noise. Its varismes is which upon substituting for Rn—l
R = r - K¢
[ n-1 SRS
= gt R )T Kfetor Yazlen )t '
B n im m B n yields:
i -1 1 % %
-1 ~1 1 1 ﬁn . ﬁn—l * (hg"+ R K C (vn"‘CKnﬁn—l) (4.4.18)
= (AB '+Rh) Rn(ﬂB 4—Hn) . (4.4.17) )
We may consolidate the on-line equations finally as follows.
which in operator norm : Let
-1 -1
1 4 P.= (A, +R)
. B
< MM iRl R . !
Then we have
< 4,1 —1p2 .y ' B = N B ;
= E‘”?fRnllollR ||o (for n sufficiently _g -Bn - ﬁn—l * PnKnC(vn"CKan—l) ’
and hence Targe)
Kn = AKn_l + Umm1 )
+ 0 as n > o
| ‘KO = 0 (4.4.19)
This concludes the proof of the Theorem. We do remark, how-
* %
ever, that the convergence of the error to zmero also holds : Pn = Pn—l - PHKDCHCKﬂPﬂ—l '
"with probability one,” and we have essentially proved this
P = A
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Application of Kalman Filtering

The form of our on-line equations (4.,4.19) clearly beay

strong resemblance to the Ealman filter equations. In facy,
)

it is possible to cast the estimation problem in such g way -
that we can use the Kalman filter formalism.

The hasic technique —- which is useful in a variety of

similar situations -- is that of "state enhancement" :

propriately incorporating additional state variables,

if we add the equation:

Xnvifl = AXn * Uan !

we still retain (4.4.1) by making the initial condition
BO = ‘B

The observation equation, of course, is the same as before,

Let
X
v,oo= m
Bm
(recall that Bm has dimension np x 1), so that Ym is
(n+np) % 1, Then we obtain the system
Yn+1 = AnYn ;
(4.4.20)
v = CY + N ,
n n n
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i ound matrix ((n+np) x (n-+np)):
where An is the comp

o
it

A T
n 0 I

IWhere I is the np X np unit matrix, and C is.the com-—

pound matrix

¢c = | ¢c o
We hote now that
Y, = E{Yn| vy, vl
%
amr n +
Bn
where
Bn = E[Bni Yy ,vn]
= E[Blvls }vn]
gince
Bn = B
The Kalman filter equations are:
* ~
' = y — CA . (4.4.21)
Y1 ~ AnYn + Pn+1C (Vper = CAY) (
* ¥
a - C A
Pn+1 (1 Pn+1c ©) An n'n
[ 4 0
P _ xtr .
° A
0
Xtr
. 0
Y =
0 o
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To see the relationship of (4.4.19) to (4.4.21), we note pyy

of all that
CA Yn = CAxn + UﬁBn ;
and that we can write:
Pll P12
P = n n
n 3
21 22
Pn Pn
where
11 *
Pn = E[(x T'ﬁn)(x -®51 ;
22 *
Ppo = EB -8 (B -8 )%
Hence
2 = A% + TR o+ Pl c*  as Lot B ); (4
n+1 n n"n n+i n+1 n n°n?s (4.4.22)
B = B+ P2l c™v _cay _ o g ) (4.4
n+l1 n n+1 n+1 n nn -2.23)

Our previous estimate of B, defined by (4.4.19), ig
suboptimal. Ang since it has heep shown to be asymptotically
efficient, it follows that S0 is the optimal Kalman estimate
Bn' We can also show this more directly, asg follows. Solving

the state equation in (4.4.21), we have ;

where Kn is defined as before., From which, using (4.4.5)

and (3.5.12), it follows that:

[ AR Kn : A*n 0
"o Q . (4.4.24)
n 0 . n K: .

=T 16
b.4, ON-LINE ESTIMATION OF SYSTEM PARAMETERS 3

- where

-1 -1
Q, = (Ao +R) ;
A 0
i - e
tr
o] Ag
tr

i iven by (4.4.6). Let
and Rn is g

11 12
Q9
Q = ,

n 21 22

Qn Qn
22 ' Then we can
11 is np X np.
where Qn is n x n and Qn

readily calculate that

22 . 22 . (4.4.25)
Pn B I ’ _
21 %0, o22% (4.4.26)
S S i A
99 *
* 21, *n n.21,% K K
et = AnQilﬁ o K Q@ A"+ ATQ Ky n kg
n ..
(4.4.27)

Now from (see Problem 4.1.8)

"
Pn+1 s AnPnAn

. J 22 tone decreasing. (Of course,
it follows that Pn is monoto _

i is monotone
this is also evident from (4.4.25), since Qn is

decreasing.)

i the notation
Let us next calculate Qn Using
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22
Rll R12 Qn - 0 ,
R = n n
n Fl
Bt R2? Qi (iyY
where n i
Hence also
22 -1 * ok 15
R C = Ag + 7 ch CK : Q and Q + 0
tr
11 * - Schwarz ine uality)'
R o= § A"k . Axl : since ( 4
tr
12 11 22
12 < WJfiafn e
;12 *
RS = Jadox
b Finally from {(4.4.25) and (4.4.27) it follows that Pn goes
- (Ril)-* s to Zero.
we have Of course, the true values of the variance matrices
I and }\B cannot be considered to be known, so that one
X
-1 -1 -1 _ tr tr
11 11 117712 21 117" 13 -1 -1 . _ '
R, = R - RBTORT R LV —REZ RilRil . (4.4.28 must.replace them by guesstimates A, and Ap. In that case,
22 -1 -1 our estimates are no longer optimal. Hence we define the sub-
- g22 2277 21f 12 227 a1 11\ -1 _
= R - R R _ 12,22 _
g n n fn By Ry Ry R BT, (4.4.20) 0 (ptimal filter:
where the matrices in parentheses are nonsi . 2 a . a,11 * Ceng® - i B
. ngular since Rn Foe1 T Axn + _Uan + Pn+1 C (vn+1 CAxn h n) :
is nonsingular.. We recall now our estimate (4.4.13) from '
- o a,21 ¥ Al o 4,30
whi ch it follows that for sufficiently large n: Bi‘_l_l = Bi’ + P C (V41— CAXn~CUan) , (4.4.30)
-1
22 L2 -1
’R“ ”0 = HHR ”0 where
| * * a * 8 ]
a = a cey + P, ,CCP ;
Now both Ril and Réz converge and P = (I-P C C)A P A (1- n+1 .) n+l n+l
1 A 0 Pa,ll Pi,lZ
11,-1 -1 ® ax o+ k) 1 P - X . pE o n
(R ™) > A o+ §oa ¢ ea (le) 0 o . ; n .21 J0.22
tr ! B- ’ n n
Hence it follows that Let )
a a
T, = E[(xn—&n)(xn %n) 1
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Then (c¢f. Section 4.1) we have:
PR T =

We know that Pz

a .
Pn. also hold for Pn by replacing AB
. tr
by Ax. Moreover, from
a  _ a * a ¥ . a
Pn mn—lpn—lwn—l * PnC Cpn
it follows that
a'* * »*
IJJnwn—l lJ)OPO“’OILZL I"n > 0
Bence
where
% _ * ok *
n wowl wnx

. a :
Since PO 1s nonsingular, it follows that
=, 01 - o

But from (4.4.31) we can write

1t

a’ .
[(PH_TI’I)X’ X} [(Pg_TO)XnJ xn]

A

175 =201l 12

+ 0

Hence

Hence

*
I- 2 a . * *
(T-PICOA (P =T DA (I-c CPY. (4.4.33

goes to zero, since the considerationg for

by A

g and 4
Eir

‘gince

Rematk .
Remat 2

L, 4, ON-i_INE ESTIMATION OF SYSTEM PARAMETERS 167

[T

gl - o

While (4.4.30) is more complicated than (4.4.12), the

former has the advantage that it provides optimal estimates

We note also that the

for both Bn and % simultaneously.

rate of convergence of ﬁn to B ig influenced by the choice

of PO.

Kecessary and Sufficient Conditions for Identifiability
‘Let us next explore'the Identifiability Condition (4.4.7)
and determine conditions for it to hold in terms of the sys-

tem. Let us first consider a sinuscidal input, taking p = 1

for simplicity: ‘
a cos (Zﬁkom)

il
11 =
m
for some A ~and
0 < A ki b

O

(note that AO = 0 vyields a "step" input). TFor this case we

can readily verify that

.
[RB,B] lim + §|ICKJB|F

i)
m

e 12 o ~1
a2l oo a)sll v a2lle(e7 o )l

(4.4.32)

2
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£ g is not zero,

hold is that ¢ ig nonsingular,

(4.4.32)., Ilet

v(x) =

Then for (4.4.32) to be Zero,

(egﬂiAI

it is necessary that

a sufficient condition for (4.4.7) ¢,

,.A)_l

gular and that for some nonzero B:

]

acwr(kO)B

where

it

V(1)
v =

For the more general case,

acwI (KO)B = 0

f]

Re. y(r)
Im. w(a)

it is convenient to use the

notation of (4.4.1). Thus let
Ve = me ;
x = Ax_ + 7 B
m+] m m i

where, recalling the notation in (4.4.4)

Bi = Bei
Then
) n
[RB,B] = 1im 2 7 1% i
neo g ™ ’
which (c?. Chapter 2)
3
= [ 7. p, (3 dax

as we can readily deduce fro
[

C be Sin.
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- where pv(l) is the spectral density of the process {vm}
and may be calculated in terms of the spectral density p(j)

-of the process {Un} as

p P . .
_ 271iA -1 * —2wix _ L ~1F
p 2y = §§C(e - A)77B;Bj(e A) ey (0,
where
p(y = dp 0}, 1=<i, j=<p
Hence
fpep 2min -1 2mir 4 -1
[RB,B] = f 7Y lee*™ M L ay By, C(e -8B I, S (A) .
3 ii J J
(4.4,33)
IT we write
bp
[RB,B] = § g [Riij’ Bj] ,
we have:
X % *
? Ry = I% ITOSIRTON! Py (A dr
If p(i) is diagonal, (4.4.33) reduces to
P2
[RB,B] = ; _él|¢(l)Bi|F,pii(A) ar (2.4.34)

from which'we can deduce generally that a sufficient condition
for ﬂansingularity of R is that € dis nonsingular, assuming

of course that the input has nonzero power.
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* PROBLEM *
Problem 4.4.1

Let it Ve desired to find aN that minimizes

N
; llv, -1 al? YN8

for each N, where 0 < ¥ < 1 and the sequences
are given (deterministic). Show that this can be formulateq

as a trivial System Parameter Estimation problem. {This ig

the so-called Adaptive Equalizer problem in Digital Communi g,

tions. 8ee [15] for example.)
Hint: Let

n
v =
n Lna + Nn v s

where .{Nn} is white.noise with unit variance, Then

N

a’ = Ela| Vs ene, VD]
Let .
b = J n . T [n
Vn ¥ vn 4 Ln = Y LI] .
Then
v, = Lna + Nn

and our theory applies (cf. 4.4.18) as a trivial case of

-4 memoryless system, and we have, in partieular:

N N-1 ' N-1
a = + -
2 KN(vn LNa b

Moreover, our theory yields sufficient conditions for

N
{a”} to converge to a as N goes to infinity, wviz:

v, 1, {1}
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1 N n *

lim % § vy L L. > O

Hareo N 1 nn

This is an added benefit to the conscious use of a sto-
chastic model in contrast to the "ad-hoe" least-squares

minimization criterion.

4.5, (KALMAN) SMOOTHER FILTER

Let us now return to the general time-varying system

equations as in Section 4.1, in the form:

¥

X

n+l Anxn * FnNn * BnUn !

v

i
(]
4
-
|5
=

n nn nn

where An is nonsingular for every n,

F G* = 0

n'm
and

* o i

GnGn > for every n
Let Vir Yay ocn Yy denote the total available data set.
Then

R, = E{xn{vl,...,vN] (4.5.1)

is called the "smocother" estimate of X, because it allows
"interpolation" or ”smoothing” of the data on "both sides" of

th) sample. We shall now indicate a technique

the current (n
for calculating (4.5.1), which has the advantage of requiring

less processing than the batch version. We refer to this as
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the K.a.lﬂ]an SmOOtheI (e uati s 51 1t wi z th 3
a on ) nce t
11 be based on th s]ﬂce e ‘I\) ] are ortl ogona equa ing ik

K:a.llnan fllter estlmate. a forwar ass or (] : btain
. d (<] t we
p h da. a wh_] ch of hY] ’ o

vields the Kalman estimate in and a "backward" pass whien A P c*(G G*)_l (4.5.5)
c = .5,
- n,n nn* nn ?
uses only the latter, and vields the "smoother® estimate s
To begin wi T - _
@ begin with, we note that because of the equivalence 'f An,m An—lAn—l,m ! m < n-1. (4.5.6)
of.
the innovation sequence v . .
4 and the dat .
2 no- ata vy, we may cxpregg Thus (4.5.6) provides us with A for m < n. Next let us
X in terms of v and i . ’ '
n n’ nd in particular exploit the 'yh
whit : .
noise" (orthogonali _ e calculate An,n+1 Let
‘ gonality) feature of v,- Thus let . u B A F*
n AnPriy L
. P N From (4.5.2) we have:
X = n :
n % Ay mVm *ED (4.5.2) . .
where . An,n+1 E[:V:n+1\j1:1+1] = E[Kn\)n"i-l1
y C & E{( )“* ]
=y - = Ei(x -xX
m m m(Am-lxm_lf*Bm_lUm_l) . (4.5.3) n~ “n’n+l
To determine the "coeffici n = I v*
fficients Ay ns We Droceed as follows. T lepVpeyd
First we note that % %
% = B[ = I)nAnCn+1
n g Toge vy Since
; Blvv'] = CH_.C. o+ GG
= E[xh| A TIEERI N N non
we obtain
]
= A v+ Efx ] * % * * -1
n,m m . (4.5.4) » . ;
1 . Ann+1 Pl 1 (C e Cnar ¥ B (4.5.7)
Substituting
n 1t turns out. that we can express A& +1 in terms of
X = A _% + ¥ a1, | n.n
n .nwl n-1 nn*"nn n Bn—1Un~1 ; An+1 i~ analogous to (4.5.8), provided we assume that Pn
into (4.5.2), we obtain: is nonsingular for every n. We shall make this assumption
throughout this section. We note that Pn being nonsingular
n n-1
AL v - A - * * -1 is equivalent to I being nonsingular. Then multiplying b
i b,mom :zl n-lAn—l,mUm = Pncn(GnGn) vn . quis n 4 g plying oy
H; on both sides of the relation:
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* C ok * -1 * *
ann+1 Pn+1Gn+1(Gn+1Gn¥1) (Gn+1Gn+1-+Cn+1ann+1) '
we obtaln -
* . -1 * #* *— * ¥
Cn41 = Hn Pn+lcn+1(Gn+lGn+1> (Gn+1Gn+1'+Cn+1Hn”n+1)‘
Substituting this into (4.5.7), we have
ya .
s
d * _1 * * 1
ﬂn,n+1 _PnAan Pn+1cn+1(Gn+1Gn+1)
* -1
N 'Pn%an An+1,n+1 ! (4.5.8)
using (4.5.5). iet uz ‘use the notation
: = . .5.9
Sn- -PnAan _(4 )
so that
An,n+1 Sn An+1,n+1 (4.5.9a)
Now
R n
Anxn = ; An An,m m
1
= z An+1,m Vi o (4.0.1?)
1
using (4.5.8), Next we can calculate that
Ao ]
(x ~x ) = {(4.5.11)
n n niq R.m o Tm
And, using (4.5.10),
% N
Farn T AR, = nEI An+1,m m "By (4.5.12) !

%.5. SMOOTHER FILTER 175

It is natural to try to express (4.5.11) in terms of {4.5.12).
In fact we shall now show that
*n "% Sn(xn+1"Anxn"BnUn) (4.5.13)

We shall do this by showing that the difference ig uncorrela—

for every m.

ted with Vi First of all,

this is clear for

m < n. For m = n+l, this follows also by our:cdnstrﬁction,

from (4.5.92). Since RRES

LS

n+p} = 0

E[ﬁnv
it follows that

~

X A ~ o V¥
'E{((?n_'xn) - Sn(xn+1’"Anxn_BnUn))un+pJ

z *
= E[(Xn'-Snxn+1)Un+p] *

A
~
P

which by the optimality of X, X1

= El(x, -8 (4.5.74)

*
nxn+1)vn+p}

This is zero for P =1 {(as we can alsc verify directly).

Suppose it is zero for some P > 1. We shall show that it is

true for p+i. Tor this purpose we note that we can write:
= h k1 r.l.i
vm CmCm—l + CmNm ) (4.5 )
where
Qm = A em + FmNm
em = . Xm -'Xm

Now, because of the independence of X, for m »

5}

and Nm

it follows from (4.5.15) that
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* *
E[(Xn'_snxn+1)um} - E[(xn_'snxn+1)em—lAm—1] (4.5.16
for m > n+2. By the induction hypothesis,

0

*
E[(xh-—snxn+1)vn+p] ,
or

o
|

EKxn—Sx )

*
n n+1 en+p—1] (4.5.17)

*
by (4.5.15), since Am is nonsingular. Agsain using (4.5.16)

we have that

* * *
E[(Xn-_snxn+1)vn+p+1] = E[(XnWSnxn+1)en+p]ﬁn+p ‘(4‘5'13)

But by the difference equation for {en} we know that en+p

can be expressed in terms of e F

n+p-1* n+p—1Nn+p—1’ and

Nn+p' The last two terms being independent of %, and X 41

it follows that (4.5.18) must be zero by (4.5.17). Hence

(4.5.14) is zero for every p > 1, and in particular it fol-

lows that
Am,n = SnAn+1,m for every m > n+l (4.5.90)
Thus the (béckward) Kalman smoother. equations are:
Xy = K o+ Sn(xn+1-—Anxn-BnUn) , n <N
(4.5.13a)
*N Ty

Let us calculate the error covariance corresponding to the

smoother:

)(X—§)] .

Fo = E[(xn“xn n n

We may clearly set the input Un to be zero. lLet
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Then from (4.5.13) we have by subtracting X from both sides:

~ ‘ 2 ~
R " = ¥ —-x% -8 Ax
X, - %, N S - %y n nan'n
or
' 2 ; S, A

_ == X -
S %41 ~ ©n n"n'n n

On each side the variables are independent. IHence taking co-

yvariances, we have

A e * N ! *_ % + p (4.5.19)
snE{x'nJrlxnﬂ]sn + P = SnAnE[xnxn]AnSn n
But .
A 2k _ N
E[xn+1xn+1] N Rn+1 Pn+1 ’
A A%
E[xnxn] = Rlrl - Pn .
where
"1
R = E[xnxn
* F*
An—an—IAnwl ¥ Fn—l n-1
Hence substituting these in (4.5.18), we have
N s PN S* - S R S* + P
L n n+1%n n n+1"n n
N Yor st (45,20
= Pn + Sn(Pn+1-AnPnAn Fn n) n

and of course

It is of interest to specialize to the time-invariant

case (and zero input) to consider the asymptotic behavior of
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the smoother. For this purpose we take

=]
1
0| =

and allow N to go to infinity, corresponding to the datg

extending symmetrically both sides in time to infipity. I,

w N
P = $i$ pg , P, = §i$ P,
With
A = A
F,.o= T
G = G ,
c, = ¢

and (A-T) contrellability, and for simplicity, A-stable,

see that

co * .
P o= P, + 5, (P -ap A" - w5t

3

L o¥ * -
S, = DA (ap_a"+wpy-l

o0

We can rewrite (4.5.21) as

0

o ¥ ‘ * *_ %
Pro= 5.PS, - S (AP,A" +FF IS, + p_

. ook * * *
= SPUS, - AT (P AT+ FF ) T hap 4 b (4l

To Msolve" (4.5.21a) for P”, let us note that 8

stable. BSince we are assuming that

#* *
Hn = APnA + FF

at’

we

.21a)

is
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is nonsingular, it follows that Pn is nonsingular, and fur-
ther that P_ is nomnsingular. Moréover, taking GGi=Identity

for simplicity, we know {(cf. 4.2.31) that

* * ) *
(ap A" +FF) = (1-p_cc)yp
and hence

1

* * -
(AP_A" + FF) v H1-p_c'o)

it

wt-c’ey
so that

* 1 *
PA (P "=CC)

tn
1

It

* * -
P (A(I-Cep )yt

* . %k
Since (I - P,C CYA is stable, it follows that 8_ is stable.

Hence we can solve (4.5.21a) as

o
t

[=-]

*
E So}:(pm - SmAPoo)Sook
]

Note moreover that

* -
sk opTd gk p , k>0

oo o
where

#*
(I~-Pp_C A

=
]

so that finally we have

o . % -
PT o= e (] e, w5 a0 )Tt L (4.5.210)
0 @

We can derive an alternate formula for P in terms of
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the spectral d i
ensity of the process {xn]. In fact, in ghe

steady state, the smoother estimate

~
X

E [XH E Vm y —edp<o ] = Xn
must satisfy
B [( A *
X, -¥dv ]l = 0 for every m . (4.5.22)
Let l
X = =
o gm wkvn -k Z ' Wn _ka

-0

Then (4.5.22) yields:

il

I w Elv 1.

%k
. [anm]C n-k'm

E[XHX;] = R(n-m)

Then (4.5.22) becomes

B¢ £ * 0@ *
p-m)C = W GG+ {m W, CR(n-k-m)C
or )
R(n)C* B * pos *
= W,GG + Ew W, CR(n-x)C . (4.5.23)
Let ‘
p(A) = ] 2™ poyy
. )
2 - ' i
= (e Flln.A) i FF*(e—ZﬂlA__A*)—l
and
sy = 7 e2TiME |
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VThen {4.5.23) can be expressed:

p()C $(A(GE + Cp(A)TH

or

dO0) (0 ¢¥ (a6 + cpayc™y Tt

The corresponding error matrix

E

)]

co

P = E[(xn-ﬁn)(xn—- -

P

A% ak
= E[xnxn} - EIxnxn]

i

= [ (0 - e aden ™) ar

(D]

2

(p(M) - pCcTes vop ()Y lepay) dr ,  (4.5.24)

ot

where we have drawn freely from the general theory of Gaussian
processes reviewed in Chapter 2. In particular, the signal-

estimation error

% * * * -1 *
[ Cp(x) C (GG +Cp(r)C ) 7GG  d)

o e

= e e oo™ an L (4.5.25)

[

b
assuming that CP(A)C is nonsingular.
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Example

By way of a simpile illustration of the asymptotic Smooth
ing theory, let us consider the one-dimensional example

(4.3.1), (4.3.2). In this case

2
£
pPA) = e
Iezﬂlk—~p}2

and hence (4.5.24) yields

&
P° = f —B) g
Y T v

o

fZ

. dr
2% 4 |o2TA_ 2 - (4.5.20)

b3
w\‘

(4.5.263)

PR,
soo = 2 2 3
= + 0%,
(4.5.21a) yields
2
z ] - + p 4.5,.26b
124 % f24~p2pm e ( )

which is a 1ot more complicated than (4.5.26a) even after sim-

plification to

2
o0 1- P (l_pmc2)
B
1= p%(1-p chH?
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We can readily (after some algebra) verify that substituting

for p, Vyields the same answer as (4.5.26a), but we omit the
details. We do see without explicit calculation that P = P,
for small ¢ (high noise) and for large ¢ (high signal),

as we expect.

% PROBLEMS %
Problem 4.5.1

Deduce from (4.5.20) that

N
Pn+1

| A

* *
AnPnAn + FnFn ,

using only
*

. *
P = AyPydy + FyFy

N

and no other optimality conditions.
Problem 4.5.2

Prove.that (P_-S,AP_ ) is self-adjoint. Is it nonnega-
tive definite?
Problem 4.5.3

Compare the performance of the smoother versus that of
the Kalman filter for high S-N ratio and for small S-N
ratio in the one-dimensional example, using {(4.5.28) and

Section 4.3.
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4.6. KALMAN FILTER: CORRELATED SIGNAL AND NOISE

.In this section we generalize the results of Section 4,1
to a class of problems where we allow the signal and noise tq

be correlated. Thus in our model

v = Cx + N°
It nn n
s (4.6,1)
. 5
xn+1 = Anxn + Un + N11

where {Ng} and {NE} are white Gaussian noise processes with
. Qo* _ *

E[N'NT'] = GG,

a8 g% _ - *

BINN''] = F,F

and may be mutually correlated:

5,,0%
E[NnNn ] = Iy (4.6.2)
not necessarily zero, although
ety - o n# m
nom !

as bhefore. et in denote again the one-step predictor:

X = E[Xn[ P TRERE

We define the innovation again as

Y = v -E[v |v v
n'! 'n

n n -1 1]

= v -Cx _ (4.6.3)

since
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o, * _
E[Nnvn—k] = 0 |, E>1

The state innovation is defined by

vn_ = ﬁn - E[xn |xn_1,...,'x1]
= ﬁn - in . (4.6.4)
Next the correlation:
E[“E“I_kl = E[fﬁn-§n>“:_k]
= BIU(x, ~-=x )+ (x BETC AN
= 0 for k > 1 |

by optimality of x, and in' Hence we must have
v o= kv (4.6.5)
where Kn must satisfy

g * _ ! *
E[vnvn] = KnE[Unvn} . _ (4.6.86)

As before, let Hn—l denote the one-step prediction error:

= = oy *]
H = E{(xn-xn)(xn-xn)
Also, as before, let
en = xn—Xn »
F 3
Pn = E{enen]

"Writing out' (4.6.5) as:
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- - - o} x = Eix ; V__l,---,'V]_]
e x, = Kn(('ln(xn x,) + N n n n
s
o - = A R U Y EIN v g, ]
= (xn~xn) + (xn-xn) , n-1"n-1
we have: x §S . (4.6.11)
= Ay1¥ner t Upog Y Ny
& = o
X -k = ‘(I-KnCn)(xn-—xn)‘— KN . (4.6.7y ¢ usin
Now The last term is no longer zerc. In fact, using
o - ¥ -
EN (x_ - = 0 = s
N (x -% )] ) E{Ni—-l [ vy qr--envql = EONS_ Dy, 4, vyl
and hence, taking variances on either side of (4.6.7), we have and *
* 123
EWS_ v .1 = BIG_jvo o]
* * ok n-1"n-1 ) n
Py = (I-Kncn)Hn—l(I—KnCn) * R GG, - (4.6.8) S No¥*
= E[Nn-—an—l
Proceeding as in Section 4.1, let us next caleulate .
' _ - = iy
EV, Vil = (C(x -%) + NO)(C (x -3 ) + §%*
nn n*“n n n n*"n n n '
s = 0 k<2 |
= CH _.C +6c RS -
T “nin-1"n nn ! ,
we obtain | )
. ' gs = J  (Efv 1\)* 1])—1\)11 1 -
£ X - - % - X — - -1 n- n- -
E[(xn Xt x Xn)(vn Cnxn) 1 n-1 n
Let
= El(x, -% )v, -C%)*] *oy-1 (4.6.12)
R S T e Q, = J(Elvv D . o
= - X - % 0y ¥ so that we have
Bl(x, - % )(C (%, X))+ N )]
i . - n ot }_{n - An~1ﬁn-1 Ut Qy 1(V - Ch1F )
i n-1"n .
I : )
i Hence, as in Section 4.1, we can deduce from (4.6.8) that ; From (4.6.5) we have:
' _ o - . % (4.6.13)
s - — . . X = x 4 +K _l(vn_l Cn—lxn—l)
! P (T-K,COH . ; (4.6.9) | n-1 n-1" n
* * T i is i .6.13), we have the filter equa-—
; PC = K (GG . (4.6.10) ‘ and, substituting this into (4 )
! n n*nn ;
i . tions:
Let us next calculate ;cn. We have:
i




¥ = (Anml - (Anthn~1.+Qn—l)cnhl)xn—l + Unml
+ (An—lKn—li‘Qn—l)vn—l (4'6'14)
and
X, = (I-—KnCn)xn + Knvn . (4.6.15)

We may look upon (4.6.14) as the "state equation" and (4.6.15)
as the ”input—state—output equation,” together describing the
Kalman filter, It only remains to caleculate Kn and @ .

13

For this burpose, we begin with Hn' Using (4.6.13), we have:

= - o 5 s
X, X An—l(xnwl"xn—l) + Nn—l - Nn—l . (4.6.186)
where, by th i it ® i
v € optimality of £i_q and Nn—l’
- o s ~S * _ Py S¥
1:[.(Xn-»l xn—l)(anlthn—l) b= E{(anl"wxn—l)Nn—li
= Tr % s*
= B[ *n-1Mp-tl
= Ky 1dpq (4.6.17)

using (4.6.13). Hence, taking variances on both sides of

{(4.6.16), we obtain:

* * *
I{ = f
n-1 AnoiPuogby_y + F R Qp_19n_1
3* * %
By Ky qar - S (1.6.18)
with
H, = A pa™ 4 *

0 oA + FoFy Po =4 .

And of course from (4.6.9) and (4.6.10):

- * * -1
Ky = PuCL(G,G) ; (4.6.19)
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_ *¥ oo ¥y -1 -1
Pn = Hn_1(14-Cn(GnGn) Can—l)
. *e 65yl y- .
= (T4, jC (660 ey (4.6.20)
.21 * _1 * *
(E[vnvn]) = (I-—(GnGn) CnPnCn>(GnGn) . (4.6.21)

These equations enable us to determine Pn and Qn itera-

tively. Note that using (4.6.21), we have

_ * _1 * * _1q
Q, = J,(I-(G.6) C P,C, ) (G,6G,) . (4.6.22)

Steady State Theory

Let us now specialize to time—invariant systems, taking

A = A

F = F

n

T

G = *eg
6,6, = GG =

(for simplicity of notation)

Our primary concern will be the steady state behavior of the
filter, as in Section 4.2. As therein, we make the assump-

tions of Theorem 4.2.3. Turther we shall assume that
* * *
(FF - JI )x '= 0 -+ FFx = 0 . (4.6.23)

Let us explain the significance of this assumption. From the

definition of J we have that the conditional expectation

s o0 _ 0
E[Nn; L I
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and hence

ELINS - av°, %112 = PP - 50%yx, x]

Thus cur assumption is equivalent to saying that no component
of the state noise ig exactly identical with any linear compi..
nation of the components of the

measurement" (or "observa_

tion') noise,

We shall naturally exploit fhe theory in Bection 4,2,

Specializing (4.6.9), we obtain:

*
P, = (I-pcC oH, , (4.6,22)

where, using (4.6.18), we have

H

i

* * * K * *
n APnA + FF - J(Iw-CPnC 1 APnC Jo- JCPnA ‘

n

* * *
(A-—JC)PH(A-—JC) + FF - JJ (4.6.25)

To prove that Pn converges, an examination of (4.6.24)

and {4.6.25) shows that we need only to prove that the céndi—

tions of Theorem 4.2.3

are satisfied with (A-JC) in place
* * *
of A therein and (FF -~ J3 ) in blace of FF therein,
But it is readily seen that if
C(A-—JC)nx = 0 for every g >0,
then so is
calx = O Tor every on >0
and hence that
Ik + o

a8 k =+ w

4.6. CORRELATED SIGNAL AND NOISE

But .
k
(A-30)%x = A%y
and hence x is (A-JC) stable. Similarly Suppose
* * *p - 0
(FF - JJ Y(A-JC) "x = s

This implies by our assumption (4.6.23) that

(FF™y (A - 303 P«

= 0
and
*
(13 )x = 0O
Hence
FF'A™x = 0 n >0
Or
F*A*nx = 0 ¥ n .>_. 0
Hence
*.
la™ x| » o
But
*
A nx ]

-
(aA-Jo) "x

*
and hence x is (A - JC) stable.

Theorem 4.2.3 that P, converges to P_,

is the unique self-adjoint solution of

*
P (I-»,COH,

o0

it

* * *
0 (A-—JC)Pm(A-—JC) + (FF -JJ)

o0

Moreover, we have that

(A-—JC)(I-—PmC*C)

n>0

191

Hence it follows as in

say, and that P

(4.6.28)
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is stable. Finally, we note that we may instrument the
. as
totic version as ymp Y PROBLEMS W

Problem 4.6.1

-a *
x° = (I-PCC - %2 * = * *
T oo (A JC)xn_1 + Un—l Show that Knulanl = Hn—lcn—lQn—l .
. )
+ ((A-JCyp C” o+ N, Problem 4.6.2
- » (4.6.27)
~a i - Suppose one designs the optimal Kalman filter assumin
¥ = (I-PCOY + p ¢ty PPOse & P ¢
n

J = 0. Calculate the degradation in performance specializing

whic i s .
b will be asymptotically optimal. to the one-dimensional ease in steady state.

Example
4.7. KALMAN FILTER FOR COLORED (OBSERVATION) NOISE

Congider the one-

dimensional case as in Section 4.2

Then to satisfy (4.6.23) we only need that So far we have assumed that the observation noise

was white. In this section we extend our results to a class

H

@

of non-white (Gaussian) noise processes. Thus we consider the

P =
;_:_E;;E model :
o
v, = Cx +8 (4.7.1)
N (D—jc)23m+-f2_.j2 n rn n
B 58T H ' , where
1+ e(17-3%) + ¢®(p-jc)2p_ o 0 |
Nn = Qnuan—l * R | (4‘7‘2)
o and
ic)“pe 2,.2 .2
(o] - - &
(p=3e)"PL + (1+c%(£9-3%) _(p“jc)z)Pm C 2?52 - . : : K,o= AL yx, U gt Ni—l \ 4.7.3)
Thus in (4.2.2 '
( €) we need only replace 1% py (12~ 3%y ana where {n 1} is white Gaussian with covariance 4 , and {Ni}

p by (p-je). *
p-Je) is white Gaussian with variance FnFn, and {Nﬁ} is indepen-

dent of {nn}.

Note that we are modelling the noise process as a Gaus-

sian Markov process. In the stationary case, where Qn is

independent of =n, so that we have

R
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o _ o
N, = QNp_q * Mp-1

the spectral density of the noise Ng isg

and approaches white noise as

* ol

(e?TA gyt E[nnn:](e"znih-Q )

el

goes to zero.

Thus we

may consider the white noise model as the special case whefe

Q or

The

get white noise.

Q)

is =zero.
technique is to keep "differencing"

Thus we multiply both sides of

(4.7.1) until we

- o
Yp-1 % Cn—lxn~1 Ny
by Qn—l and subtract from (4.7.1), to obtain:
Yp T oVpo1 = Co%n - Qn—lcn—lxn—l N, - Qn—an--l
= Cnxn B Qn—lcn—lxnml F a1 v
which, using (4.7.1) and substituting for X yields
= (CnAn—l'_Qn—lcnml)xn—l * CnUn—lann~1 * nn—l' (4.7.4)

et

Yoo T Vu T Qp 4V
ﬁn = Wa T CnUn~1 ’
yn = Xn—1 '

ﬁg - CnN:—l AT
No= oW

e
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We can then write:

where

Zsoo*
N E[NnNn+k]

Sk
E[NnNn 1

Hence the signal and

= ¥ T

- o
n¥n * Ny
s (4.7.5)
- Anyn + Nn + Un
= (CnAn-l'-Qn—lcn—l) '
= An—l ?
" Un—1 !

* *
= CF r C + A

n n-1"n-1"n n-1

* * ]
n-1 n—lcn—l !

1
o

) k>1 kE < -1

= F 'F*
T “n-1'n-1

noise are correlated, and in the notation

of Section 4.6, we have

We can therefore apply the results of Section 4.6.

0 We note that the transformation from

is  1:1. In fact we

*

Jn = anan—lcn
In doing
{v,} into {w,1:
Wn oWy T CnUn—l ’
Yo T ¥y T Qv 10
Vi % vq
can solve for {Vn} as follows:
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w, = ﬁn + C Un_l ;
Yoo T Va T Quig¥n g Q@ gy o+  Sn-1%np Q.
Now we need
R S\in = E[an AR ’ vn] ’

which is clearly

#

E[xn lﬁl,...

E[yn+1 !wl,..., W

Vet (4.7.6)

Hence we may apply the thebry of Section 4.8 to obtain the

one-step predictor §n The relevant formula is (4.6.14), ang

to calculate the guantities therein, we need to note the cor-

respondence:
* * *
GnGn B Cn‘n—l n-1% * An—l
Hence we have: )
*n = yn+1
= (An—l‘"Ln—lcn}Xn—l + Un—l
+ Ln_l(vn-Qn_lvn_l-CnUn_l) , (4.7.7)
where
_ Lk * * - .
Ln—l = An—lpnCnTn + Pn_an_ICn(I-TnCnPnCn)in, (4.7.8)
T, = (CF F __c +p _y°t
n : n"n-1"n~1"n n-1
Poo= (I+E. _Cppyl
n = n-1 n'I‘nCn) thl ; (4.7.9)
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B * Yo m* A g *
H, = (Anflf'Fn—an—lcn ncn)Pn( n-1" “n-1 n—lCnTncn)
* o er vt 9
+‘Fn---lrn»cl - Fn—anml n'n*n'ne1n-1 5 (4-7.9a)
Cn = CnAn—l - Qn—-lcn—-l

Remark. Upon setting Qn to be zero for every n, it is not

difficult to see that we revert to our previous formulas in
Section 4.1.

Time—Invariant Systems: Steady State Theory

ine the steady state behavior in particular,

Let us now specialize to time-invariant systems and exam-

Thus we set

An = A

c, = ¢, En =C= CA-QC
Fn f Foo;

Ay = T

Q, - Q

This yields for (4.7.7):
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A LSt -k —
X = A-FF C TC -
- { (I PnC TC)xnml + Unml

& k= - * %k .
+ A-FFr C QO)p + -~ - .
(< PPRCT + FFCIT(vy ~Quy 4 - QU L)

(4.7.10)

T = (CFFC + 1)"% .
P = (I1+H. .CMTC
n n-1C TOH, 4

_ * K — * ok — % * * %
Hy = (A-~FF CIOP (A-FF ¢ 10" + FF™ - prcrrere® |

- *
Py = E{xoxo] , E[xo} = 0 ;
Xy T o]

For the convergence of Pn’ we may paraphrase the conditions

of Section 4.6, for the one-step predictor. Thus we need the

conditions of Theorem 4.2.1 that

E
A - unstable states are F* observable

and
A-unstable states are VT(CA-QU) observable.
In addition we need that (corresponding to (4.6.23)3:
* %k * K _ *
(FF' - FF C(I+CFF ¢ CFryx = o

(4.7.11)

I3 . *
implies that FF x = 0, Now since T is nomsingular, the

second condition can be replaced by :

A-unstable states are {CA-QCY observable (4.7.12)
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The condition (4.7.11) is automatically satisfied —-— or is no

condition at all, as is readily shown. Thus, suppose

L] * ok *k ok _ *
C(FF - FE C(IL+FF CHY Ierryx = o |
oxr
* * ok _ *
(1 - crr ¢ (1 +orr ¢ Horrx = o
or V
* & _ *
(1+crr ey Terr'x = 0
Then
*
CF¥ x = 0
Hence
* * % * k1 * *
(FF ~ v (1 rarr ey lerryx = FFTx = 0

“ PROBLEM %

Problem 4.7,1
Calculate P_ in the one-dimensicnal case. Suppose one
designs the optimal Kalman filter assuming Q = 0. Calculate
the degradation in performance in the éne—dimensional steady

state case.
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4.8. YEXAMPLE

To help illustrate some of the theory and techniques we
have discussed so far, we present a worked-out exaﬁple based
on a (gross) simplification of a problem arising in Inertial

Navigation Systems (correcting for vertical deflection of gra-

vity [41). Thus let
- 3
Vg o= oS, eNn , (4.8.1)
s, = gn + Ny (4.8.2)
I = £+ ch 4
‘n+1 Pey n (4.8.3)
n = + 0N2 | 4.8
n+l ®ha n ? (4.8.4)
- where
Nl
n
2 . . . . R
Nn ~ white Gaussian with unit variance
NB
n .
0 <p<1 | 0 < ov,e
We can rewrite this in our notation as:
Vn = an + GN
; (4.8.5)
Xoieq = Axn + FNn
where
En
o= s
"
r p 0
A = R (4.8.6)
L O o
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U 0 0
P o= ,
) 0 g 0

(4.8.7)
Cc = [1 11 , (4.8.8)
G = [0 0 = ] {4.8.9)
We have
*
GG = €2 s
* i 62 -0
FE = s
i O 02
-
- i 1
cCc =
1 1

Let us first consider the structure of the Kalman filter. Let

poo= BIGo - &) -2

We shall 'assume p < 1 (and consider p = 1 ag a limiting

case later) so that A is stable. We note that (C~ A) is

not observable but (A v ) is controllable. Also

eyt
I+ H(P)—ig H(D)
€©

o(P)

i

i

where

H(P) = o2P + ¢°1

y

which is clearly nonsingular, so that ¢(P) is also nonsin-

gular and

-1

2y = | (%1 + oyt 4 EC

*
cc (4.8.10)
€
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The SSRE is therefore
*
™ _ 2 2 -1 cCC
pS = (oI + o PS) + :2— . (4-8.11)
We can solve this by indirect methods, First of all,

Ry

4

*
E{xnxn]
satisfies

2 2
Iy} Rn + o071

If

Rn+1

Hence if Rn is diapgonal, so is Rn+1' We shall take RO to
be diagonal. (0f course RO‘M PO’ g0 that PO is also dig-
gonal.) In bparticular, therefore, gn and N, are indepen-

dent for every n > 0. Also, since

E * = 0
KpXptm) = 0 s om> 0,
it follows that
E(gnnm) = for all n, m

In barticular, therefore,

Bl =m) (e tmd] = 1y 0K il xca

This is zero if

or, in other words, if

H

DIyl = B[2]

Let us assume thisg. (This is certainly true for the special

case RO = 0.) Hence it follows

Efg -n v

it
[

grorees V]

N
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or
&, = s
Now N
PnC
ﬁn = Axn~-1 + o2 (vn"'CAxn—l)
where
CAxn—l = P n-1
Since
[1 -1 0= 0,
and
Axn_l = pxn_l [l
we obtain that
*
1 -1 P,C = 0
or
1 _
’1 *1{ Pn 1' - O H
or ﬁe can write:
q
*
PpC = _ B
n
a4y
Hence we have:
: q N
~ ~ n
- ) - .8.12
T PRyt oplymes ), A )
~ A %n 3 4.8.13)
Ty = PNy F gﬁ(vn'_psn—l) : (4.8,

We can also get an interpretation of a4, by noting that

~ ~
= CXk
8, 1

*
CP_C
= CA% + v~ p& )
- xn—l 82 n n !

or
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*
. . CPnC
Sp = o8 4 o+ =2 (v, ~0p8) (4.8.14)
Hence
ce ¢t =
n Ty
Since {sn} satisfies
(wT4n?) ‘
8,41 = Ps_ + Ao - {(4.8.14a)
o)
and
Vn = Sn + eN
we see that, letting
- ~ .2
tn - E[(Sn—sn) ] )
we have: )
pztn + 202
t = . (4.8.15)
n+1. 14_(02tn+202)
2
£
And of course
. tn
aq = 5 . (4.8.16)

The steady state value of

t is therefore, denoting it by

n

ts, given by

t 2

5 _ _'\A1+27\2—p?)2+8)\2022-(1-!—2}\2—02) (4.8.17)

82 ’ 2p
where

A = .9; ;
€

and the limiting value of q isg

To caleulate

Hence

where

From

we obtain:

Now

and

where

s0 that

and

4,8, EXAMPLE

PS from this, we first note that

B, -A0%1 = o
2]’:‘\n = 2E[Enﬁn] ]
. £ \21 L pqpen \2
fo = BIEDT = LG,

2 2 ~ 02
= - ~ B +
t BICE, -n )71 - ELE, + 0 7]
= 2r - 4rn
2r -t
~ _ n
I‘rE = a I
a9y
- 2
* %
P.o= E[xnxn] - E[xnxn]
by 0
*k
Elx x ] = n
n'n 0 v ’
n
2
T4l <P T + 0 s
n-1
_ n 2 2k
T, = Py 4 g ¢ )
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N Y Th
EIxnxn] = A &
Th n
Hence
' n "
P =
n
. Ta Tntn |
( aptr 9Ty ]
2 2
- . (4.8.18)
A,y qptry
L 2 2 J
Hence the steady state value
Pé = lim Pn
o
+ -
Qg™ Ty 57Ty
2 2
= . , (4.8.19)
Ag-Tq A5 rg
2 2
where
2
T L g
=] 2
1 -9

Or we have found the solution of the SSRE (4.8.11) which is

of course the same whatever the initial PO.

Let us consider some limiting cases. Tet p + 1. Then

increasés without

t and hence a4,

n converge while Ty

bound. Hence from (4.8.18) we see that

increases without
since (C v A)
unstable. Let p

come white noises

as it should be.

goes to zero, but

4.8, EXAMPLE

bound.

is not observable, and for p = 1,

+ 0,

and

a n

Finally let & -+ 0,

the Kalman filter is

207

(4.8.20)

This is consistent with our theory,

A  becomes

In that case both gn and n, be-

(4.8.21)

The observation noise

still well defined.

s e

In fact for this case:

En = DEn_l + %[Vn' QYI]—-I} ’
~ _ ~ N o
Ny oo 2£Vn pyn—ll

. Kalman Smoother

Next let us look at the smoother. We follow the notation
of Section. '4.5. ~Our basic recursion formula is {4.5.13a)

where we note that

]
1]

*ap a* + pryl
P A (AP A + 3

* 1 * * .1
PA (P " - C(GG ) T0)

Specializing to our case,

. L%
* ; P CC
~ -1 c'e a
Sy = PP - = pll - 2
[ £
1-q, ~n
= o ¥
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where

In particular we observe that 8,

gative definite.

[aatod

= P

=]
i

0

where

and satisfies

[aae>

>
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n+l ~ pqn

ntl T P4y

U5y

N
& =

n =

1553

[ )

fim]
j= ]
i
o] 0
rofid

Hence (4.5.13&) becomes

2.
I]+1 + (1-'[) )Eﬂ + P

2.~
n+1 T (-eTIn 4+

is self-adjoint and nonne-

2

a5, (4.8.22)
9~
p°q, 8 (4.8.23)

nn

§n + p(l_zan)(§n+1_p§n) )

as can be verified independently from (4.5.13a) or by adding

(4.8.22) and (4.8.23),

Similarly, subtracting {(4.8.23) from

(4.8.22), it follows that

and hence that

where

Hence

where

= El(s, -4 )%

= B %) -

e N
" n Qn
= T .
= ‘tN
1n

y

B[ )7
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Hence we can write PE in the form:

T ‘FqN r -qN
n I n I
2 2
N
Pn r —-qN r +gq
n n n n
2 2

To complete the caleulation of Pﬁ, we only need to note that

specializing (4.5.20) to (4.8.14a), we have that

N 2 - 2, N 2 2
tn = tn + p (1-—2qn) (tn+1—-2p qn-ZJ }

We can proceed to the steady state as in Section 4.5,

Defining
© X tN w . N
t = l§m N p = 1§m PE s
2 2
we have that
2q 2
2 s 2 2
tS -~ p (l— 5 ) (2p qs-20 )
_tw = £
2q 2 |
2 =]
1 - p (1—"—2—-)
€
[ r t” r t ]
= 5
2 4 2 4
P o=
~ i too
s P s b
2 4 2 4

The steady state matrix p” can be obtained using the

spectral formula (4.5.23) which in the present case yields:
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Ex .
o 2
f pOOI - RO *a ) oy

CHAPTER 4. THE KALMAN FILTER

b = 5
3
" e”+2p(2)
2
XL
2
t = 2p(x) - _ZL_H dx
€+ 2p(A)
-4
B
where
( o
A S,
p(A) | 2Tk 13
0f course
&
X 02
f pP(AY dx = r, = 5
-3 1~0p

and we can go "backwards" and calculate the integral (or

N

verify!)

as

‘—Eiiliw— di
e?+2p(0)

o

t —
2rS

Chapter 5.

LIKELIHOOD RATIOS: GAUSSIAN SIGNALS IN
GAUSSIAN NOISE

In Chapter 3, we have seen the importance of the Ilikeli-
hood funcfional for estimation problems. In this chapter we
shall derive likelihood ratio formulas for Gaussian signals in
Gaussian noise in which Kalman theory plays an essential role.

Let us consider the general time-varying model:

. o
== +
Y Cnxn Nn
s {5.10)
= 0 +
Xn+1 Anxn + rnNn BnUn
where, as usual, {Nﬁ] is white Gaussian with uwnit variance
matrix
FG = 0
nn
e O O " * .
E[NnNn 1 = G,G, nonsingular

U is the (deterministie) input.
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We want to calculate the "Likelihood Ratio'" which we

shall define to be the ratio:

Joint density of AETREREAN (with signal present)

. (5.2)
Joint density of VireeoaVy (with signal absent)

Tc calculate the density in the numerator we need to know

the mean and covariance. Let

and let R denote the covariance matrix of v. Let

E[vi] = m
my
m = :
Then we will need to calculate
-1
[R™"(v-m), (v-m)] . (5.3)

Thus for each n we will need to invert the matrix R. This
inversion is most efficiently accomplished by factorization.

Thus we seek to find 1. such that

and L is "lower triangular." But for the system (5.1) this

is precisely what Kalman filtering does for us. In fact, re-

3
4
e
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call that the innovation

- 2 5.4
v, = v, - Cn(An~1Xn—1'Fan1Un—1) ( )

ig white Gaussian with covariance

® * * o
E[“nun] = GG + CH c ;

d n'n-1"n

1

]

* P F*
Hn AnPnAn + nn

Since the transformation (5.4) is 1:1 with unit Jacobian,

H]

p(vl,...,v b}

n pl(\)l) e Pk(\)k)

n
- L Py (Ve = G (A 1% 1 BBy

where pk(-) is.the Gaussian density with mean zero and var-
iance matrix Jk' Since the denominator in (5.2) is the joint
density of the observation noise sequence with variance matrix

G G* it follows that the ratio (5.2) can be expressed:
nn’

L(vl,..., Vn)
1Y iy L c(A R 4B T, o))
= exp ‘E“% b vy = Gy %50 1P By 1 Pig?)
Vi = Ol 1% ¥ B 1l g0
n * 1
= L GG V]
1 4
n n *
+ ¥ log |Jk| - ] log |Gkai , {5.5)
i i
where |-| denotes determinant (of a square matrix). Of
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course, we can also use the one-step predictor:

e T A 9% g B Uy

in (5.5) along with the one-step predictor equations (4.1.39).

Formula (5.5} comprises thus the basie first step in consider-

ing maximum likelihood estimates for unknown parameters in the

system (5.1). We note that to calculate the Kalman filter es-

timate ﬁk’ we need to know the initial covariance PO' Since
we can only guesstimate this, (5.5) is not totally accurate.

Of course, the lack of knowledge of
& *
[%5%q ]

also means we cannot calculate R  in f5.3) either. On the
other hand, at least for time-invariant systems we know that
under appropriate conditions the estimates ﬁn will be asymp-
totically optimal, and in fact this is virtually the only case
in which we can prove that the estimate obtained by maximizing .

(5.5) is asymptotically efficient.

Lxample

In Section 4.4 we considered the problem of estimating
BE in. the time—ipvuriant version of (5.1) in which; moreover,
there was no state noise as well (FNn = 0). We can usg {5.5)

Tor this purpose. Placing the same conditions as in (4.4.1),

we have:

T A R ST T 5

ARSI S

|
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-2 log L(vl,..., Vn)
-1 A A
= L IO (AR B 1)), vy - COAR 4B )]
n n .
vi,v.1 - J log J , (5.6)
boend - s
where
* C*
J, = I+ ClAP, ,A)
2 *oyasz * CBU,
R = (I-PCOAF 4 + PC (v~ CBY )

Maximizing (5.6) with respect to B will, of course,

yield the Kalman estimate for B given v v for the

1) A ) nl
case where A = +4» and P. = A

3
Btr 0 Xtr

"Likelihood Ratio Using ¥it Error

Instead of using the Innovation we can use the ¥it Error.

(Cf. Section 4.1.) Then the likelihood ratio

L(vl,..., vn)
110 * *__1 ~ RN
= exp -3 § [(Gka-—CkPka) (Ve = O X ), vy~ O %)

n * _q

- g GGy Tvies vy
n n *

+ § log |Jk§ - % log |Gka| , (5.7)
il

where we may replace
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by

and

by

case

(4.86.

where

study. In the notation of Section 4.7,

where the recursion formula for ﬁn

The joint density in the

form now, since the noise is no longer white.

CHAPTER 5. GAUSSIAN SIGNALS IN GAUSSIAN NOISE

(G

* ¥ _1
ka - CDb C

k kO )

(1 + (GkG;)_lckawlcz)(GkG;)—l

* *_ 7, * _1
(Gka)(I : (Gka) CkPka)

We may also develop Likelihood Ratio formulas for the

signal-and-noise dependent case (Section 4.6) as well as the

where the measurement noise is not white (Section 4.7},

since we only need the innovation process which isg defined by

3) and (4.6.14) for the former. The case where the mea-

surement noise is not white would appear to be the more impor-

tant one of the two in applications and therefore worth furthes

the innovation pro-

cess is defined by:

n-1¥n-1 ~ Cnxnwl - CnUn—-l ’

i
£

is given by (4.7.7). Of

c¢ourse, the variance

Efv v'] = cr 5 _c* . CHo 5F
[vnun} Tt n—lrn-l n tAhr * Callnq n

{Hn} is to be determined from (4.7.9a) and (4.7.9).

"Absence of Signal' takes a different

In fact, we have
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M1 5 Yp ™ Qn——lvn—l
so that (omitting constants) joint density of Vis oo, Vo

{signal absent)

Hence

where

n n
1 -1 (5.8)
= — - vi_ ) + ) tog A S
= exp -3 § A1V~ Qe 1V g § k-1
the Likelihood Ratioc
117 o1 v, =GR L -CU
= exp -3 ; b Ve = Qe 1Vieo 1~ Ce¥eo1 ~ CUkon
Vie " Yo 1V%o1 7 ko1 Gl d
7ot —Q vy )]
- § Uy T 0V = Qe Viee 10 Vi~ @o1Vko1
n n
+ 1 log |30 - ] log |n__4I , (5.9)
i i
* * - -
Yo T CeF1FoaB oMo O GG

Again it is not difficult to see that (5.9) reduces to

(5.5) in case Qk is zero.
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