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Abstract
This article describes a versatile family of functions that are increasingly
roughened by successive interpolations. They reproduce, in the simplest way
possible, the main features of financial prices: continually varying volatility,
discontinuity or concentration, and the fact that many changes fall far outside
the mildly behaving Brownian ‘norm’. Being illuminating but distorted and
incomplete, these constructions deserve to be called ‘cartoons’. They address
both the observed variation of financial prices and the generalized model the
author introduced in 1997, namely, Brownian motion in multifractal time.
Special cases of the same construction provide cartoons of the Bachelier
model—the Wiener Brownian motion—or the two models the author
proposed in the 1960s, namely, Lévy stable and fractional Brownian motions.
The cartoons are the embodiment of the author’s ‘principle of scaling in
economics’. While rich in structure, they are unexpectedly parsimonious,
easily computed, and easily compared to one another by being associated
with points in a square ‘phase diagram’.

1. Introduction
Financial prices, such as those of securities, commodities,
foreign exchange or interest rates, are largely unpredictable
but one must evaluate the odds for or against some desired
or feared outcomes, the most extreme being ‘ruin’. Those
odds are essential to the scientist who seeks to understand the
financial markets and other aspects of the economy. They
must also be used as inputs for decisions concerning economic
policy or institutional arrangements. To handle all those issues,
the first step—but far from the last!—is to represent different
prices’ variation by random processes that fit them well.

This largely self-contained paper includes original results
whose main ambition is to hold mathematics to a minimum but
contribute to an ‘intuitive’ understanding of the ‘multifractal’
approach to finance put forward in Mandelbrot (1997),
especially in chapter E6. The theme is that the variation in
time of a variety of financial prices is well accounted for by a
totally new broad family of random processes called ‘Brownian
motions in multifractal time’. Those processes will be referred

to as BMMT. When followed in the ordinary clock time, the
Brownian motions in question will be either the original one
due to Wiener, to be referred to as WBM, or the fractional one,
to be referred to as FBM. Other authors, such as Calvet and
Fisher (2001), prefer to refer to BMMT as MMAR.

The key terms, ‘fractional’ and ‘multifractal’, are non-
classical and they will be explained. They do not belong
to esoteric mathematics, and their practical consequences for
finance and economic policy are numerous and important.
The fear that fractals/multifractals are removed from clumsy
and confused reality is unwarranted; their mathematics strikes
close to the main features of the underlying phenomena.

However, BMMT is new, delicate, and hard to grasp fully.
Without mastering many additional formulae and diagrams, the
claims and contributions concerning multifractals cannot be
fully understood and appreciated. An extensive mathematical
basis already exists for multifractals, for example, in the
original papers of 1972 and 1974 reprinted in Mandelbrot
(1999a). Unfortunately, most are complex. Fortunately, this
paper is limited to the basic conceptual ideas. In explaining
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and motivating them, complicated and/or new formulae would
not help but hinder.

In addition, the central point is best made by using
pictures, as will be done. To be sure, pictures can lie as
effectively as words, statistics and opaque formulae. In the
present case, the message is crystal clear and everyone can test
the pictures’ power, by drawing them afresh.

1.1. Survey of modelling of financial price records
using fractals and multifractals

Throughout the 1960s and again since 1997, I have published
extensively on this topic and it is useful to describe immediately
where this work fits among its old and recent predecessors.
Mandelbrot (1997) reprinted my papers from the 1960s and
added considerable new material. In particular, its chapter
E6 described very concisely: (a) my current best model: it is
BMMT Brownian motion (Wiener or fractional) in multifractal
time, and (b) a family of ‘cartoons’ of BMMT. Substantial
advances in exposition and content make it necessary to tell
the story again in a continuing series of papers, of which this
is the third.

Mandelbrot (2001a) restated the challenges and summa-
rized and compared three successive models I proposed over
the years. The part of chapter E6 of Mandelbrot (1997) con-
cerned with BMMT itself has been expanded in Mandelbrot
(2001b) and Mandelbrot et al (1997). Another part, concerned
with cartoons of BMMT, was elaborated upon in Mandelbrot
(1999a) and is further restated and deepened in this paper. In
the meantime, Mandelbrot (1999b) presented this material to a
very large public, but in incomplete and overly ‘popular’ form.
Forthcoming papers will discuss several ‘degrees of concen-
tration’ (Mandelbrot 2001d) and will restate and deepen the
topic of chapter E5 of Mandelbrot (1997), namely the notion
of ‘states of randomness and variation’.

Be that as it may, this paper refers to its predecessors but
is meant to be largely free-standing, with one exception: it is
good at this point for the reader to be familiar with section 1 of
Mandelbrot (2001a). It includes a long explanation of figure 1,
which combines several historical series of price changes with
a few outputs of artificial models to be discussed in section 1.2.

The totally unrealistic top panel illustrates the standard
Brownian model. Panels 2 and 3 illustrate my 1963 and 1965
models. They are richer in structure than panel 1 but still
unrealistic.

The five bottom panels mix actual records and simulations
of BMMT; all exhibit a very variable volatility and large
numbers of ‘spikes’. I hope the forgeries will be perceived
as surprisingly effective.

In fact, only two are real graphs of market activity. Panel
5 refers to the changes in price of IBM stock and panel 6
shows price fluctuations for the Dollar–Deutschmark exchange
rate. Panels 4, 7 and 8 strongly resemble their two real-world
predecessors. But they are completely artificial.

This paper is concerned with approximating those
simulations of BMMT with the help of ‘cartoons’.

Figure 1. A stack of diagrams, illustrating the successive ‘daily’
differences in at least one actual financial price and some
mathematical models. Obviously, the top three panels do not report
on data but on models; among the lower five panels, in contrast,
identifying the models is a difficult task.

1.2. The simple recursive ‘cartoons’ are deliberately
simplified but useful; the ‘phase diagram’

The ‘ordinary’ Wiener Brownian motion in continuous clock
time is very familiar, yet remains best understood when studied
in parallel with discrete coin-tossing and random walk. These
processes can be viewed as cartoons of the increments of WBM
and WBM itself.

In the case of BMMT, the random walk has no direct
counterpart. However, splendid cartoons in a very different
style were developed and sketched in Mandelbrot (1997),
chapter E6, and Mandelbrot (1999a), chapter N1. They
are limits of discrete-parameter sequences of successive
interpolations drawn on a continually refined temporal grid.
This paper describes those interpolative cartoons in detail and
illustrates their power.

As Mandelbrot (2001a) recalled, price variation combines
very long-tailed marginal distributions and long dependence.
Each of those features is bound to require at least one parameter
and indeed we shall investigate cartoons with two parameters.
They are the coordinates of a point in a square map, to be
defined later, called ‘phase diagram’. Special behaviours
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associated with suitable special regions or ‘loci’ in that phase
diagram will be shown to yield cartoons of four existing
models—Bachelier’s and mine—and thereby throw new light
on those models’ nature. Therefore, this article fulfils a third
role, that of relating BMMT to a segment of the literature.

A single extremely special cartoon, described as ‘Fickian’,
is a deep but non-destructive simplification of the ‘coin-
tossing’ model of financial prices, therefore of the Bachelier
and Wiener form of Brownian motion.

Two less narrowly constrained special cartoons are, again,
deep but non-destructive simplifications of my two early
models of price variation. One, first proposed in Mandelbrot
(1963), used Lévy stable random processes to tackle long-
tailedness (Lévy 1925). Together with elaborations, it is
discussed in part IV of Mandelbrot (1997). The other,
first sketched in Mandelbrot (1965), introduced fractional
Brownian motions to tackle global memory, also called infinite
memory or dependence. It is discussed in many papers
collected in Mandelbrot (2001c), which devotes chapter H30 to
finance. Within the current wider conceptual framework, those
early models are classified as ‘mesofractal’ and ‘unifractal’,
respectively. This article hopes to make clear the relations
between all those different old and new ‘flavours’ of fractality.

The cartoons’ limitations. They are acknowledged as
significant and justify a special discussion in section 8.

1.3. Roughness is, in many sciences, an ill-defined
but fundamental issue that is closely related to
volatility; it was first faced and quantified by fractals

Many sciences arose directly from the desire to describe and
understand some combination of basic messages the brain
receives from the senses. Visual signals led to the notions
of bulk and shape and of brightness and colour, hence to
geometry and optics. The sense of heavy versus light led to
mechanics and the sense of hot versus cold led to the theory of
heat. Proper measures of mass and size go back to prehistory
and temperature, a proper measure of hotness, dates back
to Galileo. Taming the sense of acoustic pitch began with
vibrating strings.

Against this background, the sense of smooth versus rough
suffered from a level of neglect that is noteworthy—the more so
for being seldom, if ever, pointed out. Roughness is ubiquitous,
always concretely relevant, and often essential. Yet, not only
does the theory of heat have no parallel in a theory of roughness,
but temperature itself had no parallel concept until the advent
of fractal geometry.

Even in the inanimate objective and non-controversial
context of metal fractures, roughness was generally measured
by a borrowed expression: the root mean square, r.m.s.,
deviation from an interpolating plane. In other words, the
metallurgists used to proceed exactly like the economists
did with ‘volatility’. However, metallurgists viewed this
measurement as suspect because different regions of a
presumably homogeneous fracture emerged as being of
different ‘r.m.s. volatility’. The same was the case for
different samples that were carefully prepared and later broken
following precisely identical protocols.

As shown in Mandelbrot et al (1984) and confirmed
by every later study, the fractal study of rough surfaces
does not borrow from textbooks of statistics but centres on
a characteristic property called the fractal dimension D; it
provides, for the first time, an invariant measure of roughness.
It often enters through the quantity 3−D, called ‘codimension’
or ‘Hölder exponent’ by mathematicians and has now come to
be called ‘roughness exponent’ by metallurgists.

1.4. The roles exponents play in fractal geometry

The intersections of fracture surfaces by approximating
orthogonal planes are formally identical to the price charts
whose increments are plotted in figure 1. Differential calculus
teaches that when a ‘nice’ function P(t) increases by �P

when time increases by ε, the limitP ′(t) = limε→0(1/ε)[P(t+
ε)− P(t)] defines the derivative which measures the speed of
variation.

Until recently, most sciences took for granted the fact that
derivatives exist. But our cartoons are not nice and have no
positive and finite derivative. This fact is widely known to hold
(almost surely, for almost all t) in the Brownian case. But not
everything is lost. Instead, those functions’ local behaviour
can be studied through the parameters of a relation of the form
dP ∼ F(t)(dt)H(t).

Here, F(t) is called a ‘prefactor’ and the most important
parameter, called the Hölder exponent, is

H(t) = lim
ε→0

log[P(t + ε) − P(t)]/ log ε.

This replacement of ratios of infinitesimals by ratios of
logarithms of infinitesimals is an essential innovation. It was
not directed by trial and error. Neither did its early use in
classical ‘fine’ mathematical analysis suggest thatH and many
variants thereof could become concretely meaningful, quite
the contrary. H became important because of its intimate
connection with certain invariances.

Indeed, fractals are figures invariant under the operations
of dilation and reduction, as described in section 2.1. Those
operations are characterized by invariant quantities, and in the
present application, the most important among those invariants
is H . This is how H became compelling as soon as the
theoretical notion of invariance was injected into finance by
my work.

1.5. Spontaneous resonances of the financial markets

The good fit of the multifractal model raises an endless string
of difficult questions.

Fractals and multifractals are found throughout physics
(Mandelbrot 1999a) and also in many economic fundamentals.
(See, for example, the 1966 paper reproduced as chapter E19
of Mandelbrot 1997.) But do the regularities observed in
price variations simply reflect regularities in the economic
fundamentals? This extremely far-fetched notion would
require hard evidence to be believed.

In a far more likely scenario, price variation results
significantly from the structure of the financial institutions and
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the financial agents’ responses to both the fundamentals and
other agents’ actions.

Physics is skilled at studying the ‘spontaneous resonances’
of ‘black box’ physical systems. The behaviour represented
by the multifractal model may well be closest to ‘spontaneous
resonances of the financial markets’. If this last perspective
proves fruitful, multifractality may provide a new handle on a
perennial and very important practical issue: the structure of
the economy. Better understanding might help improve society
as well as some individual bank accounts.

Additional consequences of multifractality from the
viewpoint of political economy are better considered
elsewhere.

2. A ‘Fickian’ cartoon function in
continuous time constructed by recursive
interpolation
The first term in the title, ‘Fickian’, is best explained in
section 2.6.

2.1. Fractals are geometric shapes that separate into
parts, each of which is a reduced-scale version of the
whole.

This characterization of fractality is a theoretical reformulation
of a down-to-earth bit of market folklore. Indeed, it is widely
asserted that the charts of the price of a stock or currency all
look alike when a market chart is enlarged or reduced so that
it fits some prescribed time and price scales. This implies
that an observer cannot tell which data concern price changes
from week to week, day to day, or hour to hour. This property
defines the charts as fractal curves and many powerful tools of
mathematical and computer analysis become available.

The technical term for this form of close resemblance
between the parts and the whole is self-affinity. This concept is
related to the better-known property of self-similarity, which
is the main theme of Mandelbrot (1982). However, financial
market charts are records of functions, therefore cannot be self-
similar. If we gradually zoom on a graph, the details become
increasingly higher than they are wide—as are the individual
up-and-down price ticks of a stock. Hence, when transforming
a whole into parts the shrinkage ratio must be larger along the
time scale (the horizontal axis) than along the price scale (the
vertical axis). (This kind of reduction can be performed by
office copiers that use lasers.) The geometric relation of the
whole to its parts is said to be one of self-affinity.

2.2. Reliance of the fractal/multifractal models on
criteria of dilation/reduction invariance

Unchanging properties are not given much weight by most
economists and statisticians. However, they are beloved of
physicists and mathematicians like myself, who call them
invariances and are happiest with models that present an
attractive invariance property. A good idea of what I mean
is provided by a simple chart that uses recursion to insert
(interpolate) price changes from time 0 to a later time 1 in

successive steps. The intervals themselves can be interpreted
at will; they may represent a second, hour, day or year.

2.3. The process of recursion in an increasingly
refined grid

As shown by the top panel of figure 2, the process of recursion
begins with a ‘trendline’ called the ‘initiator’. Next, a blue line
called the ‘generator’ replaces the trend-initiator with three
intervals that create a slow up-down-and-up price oscillation.
In the following stage, each of the generator’s three intervals
is interpolated by three shorter ones. One must squeeze
the generator’s horizontal axis (time scale) and the vertical
axis (price scale) in different ratios, whose values will be
discussed in section 2.6. The goal is to fit the horizontal and
vertical boundaries of each interval of the generator. To fit
the middle interval, the generator must be reflected in either
axis. Repeating these steps reproduces the generator’s shape
at increasingly compressed scales.

Only four construction stages are shown in figure 2, but
the same process continues. In theory, it has no end, but in
practice, it makes no sense to interpolate down to time intervals
shorter than those between trading transactions, which may be
of the order of a minute. Each interval of a finite interpolation
eventually ends up with a shape like the whole. This expresses
a scale invariance that is present simply because it was built
in.

2.4. The novelty, versatility and surprising creative
power of simple recursion

Sections 3–6 show that a recursion’s outcome can exhibit a
wealth of structure, and that it is extremely sensitive to the
exact shape of the generator. Generators that might seem
close to one another may generate qualitatively distinct ‘price’
behaviours. This will make it necessary to construct a phase
diagram in which different parts or ‘loci’ lead to different
behaviours. Being sensitive, the construction is also very
versatile: it is general enough to range from the coin-tossing
model’s ‘mildness’ to surrogates of the ‘wild’ and tumultuous
real markets—and even beyond.

This finding is compelling and surprising.
It is essential for the number and exact positions of the

pieces of the generator to be completely specified and kept
fixed. If, on the contrary, the generator fails to be exactly
specified or (worse!) one fiddles with it as the construction
proceeds, the outcome can be anything one wants. But it
becomes pointless.

An analogous construction with a two-interval generator
would not simulate a price that moves up and down. When
the generator consists of many more than three intervals, it
involves many parameters and the surprise provoked by the
versatility of the procedure is psychologically dampened.

2.5. Randomly shuffled grid-bound cartoons

The recursion described in the preceding sections is called
‘grid-bound’, because each recursion stage divides a time
interval into three. This fixed pattern is clearly not part of
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Figure 2. Constructing a ‘Fickian cartoon’ of the idealized
coin-tossing model that underlies modern portfolio theory. The
construction starts with a linear trend (‘the initiator’) and breaks it
repeatedly by following a prescribed ‘generator’. The record of the
increments of this pattern is close to the top line of figure 1,
therefore thoroughly unrealistic.

economic reality and was chosen for its unbeatable simplicity.
Its artificiality and the acknowledged drawbacks described in
section 8 are the main reason for referring to the resulting
constructions as ‘cartoons’. Unfortunately, artefacts remain
visible even after many iterations, especially with symmetric
generators. To achieve a higher level of realism, the next easiest
step is to inject randomness. This is best done in two stages.

Shuffling. The random sequence of the generator’s intervals
is shuffled before each use. Altogether, three intervals allow
the six permutations

1, 2, 3; 1, 3, 2; 2, 1, 3; 2, 3, 1; 3, 1, 2; 3, 2, 1,

of a die, one for each side. Before each interpolation, the die
is thrown and the permutation that comes up is selected. A
symmetric generator allows only three distinct permutations
and shuffling has less effect.

The most desirable proper randomizations. Despite
many virtues, the shuffled versions of all the cartoons we
shall examine in sequence (Fickian, unifractal, mesofractal
and multifractal) are grid-bound, therefore unrealistic.
Fortunately, we shall see that each major category of cartoons
was designed to fit a natural random and grid-free counterpart.

2.6. The ‘Fickian’ square-root rule

Moving from qualitative to quantitative examination, the non-
shuffled figure 2 uses a three-piece generator that is very
special. Indeed, let the width and height of the initiator-trend
define one time unit and one price unit. In figure 2, each
interval height—namely, 2/3, 1/3 or 2/3—is the square-root of
the stick width—namely, 4/9, 1/9 or 4/9.

This being granted, define for each m � 3 the quantities

log (height of the mth generator interval)

log (width of the mth generator interval)
= Hm.

By design, the generator intervals in figure 2 satisfy the
following

Fickian condition: Hk = 1/2 for all k.

An integer-time form of this ‘square-root rule’ is familiar
in elementary statistics. Indeed, the sum of N independent
random variables of zero mean and unit variance has a standard
deviation equal to

√
N . Therefore, the sum is said to ‘disperse’

or ‘diffuse’ like
√
N.

In continuous grid-free time the square-root rule
characterizes the Wiener Brownian motion (WBM) and
‘simple diffusion’, also called ‘Fickian’.

In our grid-bound interpolation, the square-root rule is
non-random and only holds for the time intervals that belong
to some stage k of the recursive generating grid. The result
is a behaviour that is only pseudo-Brownian: close to the
continuous-time WBM, but not identical to it.

3. Non-Fickian three-interval cartoons
and the phase diagram
Fickian diffusion is classical and extraordinarily important
in innumerable fields, but the Brownian model does not fit
financial prices. Fortunately, the square-root does not follow
from the recursive character of our construction, only from the
special form of the generator.

3.1. Symmetric three-interval generators beyond the
Fickian case; the ‘phase diagram’

Indeed, let us preserve the idea behind figure 2 and show that
modifying the Hm suffices to open up a wealth of behaviours
that differ greatly from the Brownian and from one another.
As argued early in this paper, it is essential to keep those
generalizations as simple as possible and capable of being
followed on a simple two-dimensional diagram. It will suffice
to assume that the generator continues to include three intervals
symmetric with respect to the centre of the original box.
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Figure 3. The ‘fundamental phase diagram’ for the symmetric
three-interval generator is drawn on the top left quarter of the unit
square. A generator restricted to three intervals is determined by the
bottom left and top right corner of the square, plus two other points.
Symmetry implies that those points are symmetric with respect to
the centre of the square. If the generated function is to be
oscillating, the generator is determined by a point in the top left
quarter, including its boundary to the right. This diagram is explored
in four successive stages: first the ‘Fickian’ dot, then the curved
‘unifractal locus’ and the straight ‘mesofractal locus’, drawn in
thicker lines starting at the centre of the square. The final and most
important stage of exploration tackles the remaining points in the
upper left quarter; they form the ‘multifractal’ locus, which is not a
point or a curve but a domain.

The coordinates of its first break determine those of the

second by taking complements to 1, hence a three-interval

symmetric generator is fully determined by the positionP of its

first break. This point will be called the ‘generator address’,

and the resulting fundamental ‘phase diagram’ is drawn as

figures 3 and 4.

For curves that oscillate up and down, all the possibilities

are covered by pointsP in the ‘address space’ defined as the top

left quarter of the unit square. Instead of oscillating functions,

the bottom left quarter yields non-decreasing measures that a

later section will use to define multifractal time.

Active actual experimentation is very valuable at this stage

and is accessible to the reader with a moderate knowledge of

computer programming. Playing ‘hands-on’, that reader will

encounter a variety of behaviours that are extremely versatile,

hence justify the attention about to be lavished on three-interval

symmetric generators. Section 3.2 lists rapidly the possibilities

that will be discussed in later sections.
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Figure 4. Two alternative versions of figure 3. The top panel
relabels the loci of figure 3 by the corresponding basic grid-free
functions, when they exist, and indicates when they do not. The
bottom panel refers to my Selecta books, in which background
material concerning all those grid-free models can be found. For
example, ‘M 1997E’ stands for Mandelbrot (1997), which the
references identify as Selecta Volume E.

3.2. Two fundamental but very special loci, called
‘unifractal’ and ‘mesofractal’, and the ‘multifractal’
remainder of the phase diagram

The terms describing the simplest loci in figure 3 are recent or
new.

The mesofractal cartoons will be seen in section 5 to
correspond to my earliest partial improvement on Bachelier’s
work, namely the ‘M 1963’ model built in Mandelbrot (1963)
using the stable random processes of Cauchy and Lévy. Price
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increments according to that model are illustrated by the second
panel of figure 1. In comparison with panel 1 which reports
on Bachelier, panel 2 is less unrealistic, because it shows
many spikes; however, these are isolated against an unchanging
background in which the overall variability of prices remains
constant.

The unifractal cartoons will be seen in section 4 to
correspond to my second improvement on Bachelier, namely
the ‘M 1965’ model I built in Mandelbrot (1965) while
introducing fractional Brownian motion. Price increments
according to that model are illustrated by panel 3 of figure 1.
Compared with the M 1963 model, the strengths and failings
were interchanged because it lacks any precipitous jump.

The mesofractal and unifractal models are interesting but
inadequate, except under certain special market conditions.

Having examined special regions, sections 5 and 7 proceed
to the phase diagram’s remainder. They consist of the
multifractal cartoons which correspond to my current model of
financial price variation, the ‘M1972/97 model’ of fractional
Brownian motion in multifractal trading time.

3.3. Definitions of volatility: the traditional
‘root-mean-square’ and beyond

The coin-tossing economics illustrated in the top panel of
figure 1 is fully specified by a single parameter, the root-
mean-square standard deviation σ . Therefore, volatility is
necessarily an increasing function of σ . It is often σ 2 but the
intervals between percentiles also come to mind. For example,
a strip of total width from −2σ to 2σ contains 95% of all price
changes. If only implicitly, volatility is a relative concept: it
concerns the comparison of the observed fluctuations to an
ideal economy that has achieved equilibrium and involves no
fluctuation at all.

This implicit reference to equilibrium must be elaborated
upon. Is economics more complex than the classical core of
physics? Almost everyone agrees, but the Brownian model
implies the precise contrary. For example, the physical theory
closest to coin-tossing finance is that of a perfect gas in thermal
equilibrium, for which σ 2 is proportional to temperature. But
such a system also depends on either volume or pressure.
Could it really be the case that a perfect gas is more complicated
than economics?

The unifractal model illustrated in panel 3 of figure 1 and
discussed in section 4 is specified by σ and an exponent H .
ThisH measures how much a constant-width ‘snake’ oscillates
along the time axis. H must be included in order to specify
intuitive volatility quantitatively.

In the mesofractal model illustrated in panel 2 of figure 1
and discussed in section 5, the population standard deviation
diverges. However, the equally classical notion of intervals
between percentiles remains meaningful. Hence volatility can
be defined as including the two parameters that determine the
process. One is the width of the horizontal strip containing
95% of ‘price’ changes. The second specifies the variability
of the remaining 5% of large changes, which is ruled by an
exponent α or its inverse, H = 1/α.

4. Unifractal cartoons, non-periodic but
cyclic behaviour and globality
4.1. The exponent H—satisfying 0 < H < 1—and
equations that characterize unifractality

Logically, if not quite so historically, cartoons that deserve to
be called ‘unifractal’ come immediately after the Fickian ones.
Given a single exponent that satisfies 0 < H < 1, unifractality
is defined by the following condition:

Condition of unifractality: Hm = H for every m.

The prefix ‘uni’ refers to the uniqueness of H . Depending
on the context, H = 1/2 may be included or excluded. If
ambiguity threatens, H �= 1/2 may be called ‘non-trivially
unifractal’. (This ambiguity is a perennial issue; real numbers
are special complex numbers and one must often specify that
a number is ‘non-trivially complex’.)

The example of the Fickian ‘square-root’ rule in
section 2.6 proves that one can implement the unifractality
conditions when H = 1/2. For other prescribed values of H ,
the unifractality conditions yield two ‘unifractality equations:’
y = xH and 2y − 1 = (1 − 2x)H .

In particular, x is the unique root of the ‘generating
equation’ 2xH − 1 = (1 − 2x)H , which must be solved
numerically. In turn, this equation yields a single y = xH .

That is, just as in the case H = 1/2, each allowable value of
H is achieved by choosing for the function address P a single
specified point in the address quarter square.

When lumped together, the points P form a ‘locus of
unifractality’ that takes the form of the only curve seen in
figure 3. This curve is, (a) far more restrictive than the whole
allowable quarter square and (b) far less restrictive than the
unique Brownian–Fickian address (4/9, 2/3), which (of course)
it contains.

Alternative unifractality condition, restated in terms of a
quantity θ that will become essential in the multifractal
case discussed in sections 6 and 7. The unifractality
conditions can be rewritten as (2y − 1)1/H = 1 − 2x and x =
y1/H ; eliminating x combines the two conditions into y1/H +
(2y − 1)1/H + y1/H = 1.

This last equation is a property of the sum of the intervals’
absolute heights raised to the same power 1/H . The addends,
namely, �1θ = y1/H ,�2θ = (2y − 1)1/H , and �3θ = y1/H ,

satisfy �1θ + �2θ + �3θ = 1. Therefore, they define an
auxiliary address point of coordinates x and y = �1θ, which
will be called the generator’s ‘time address’. The time address
of a generator fully determines its function address. This
unifractal case yields �1θ = x, therefore the time address
is located on the bisector of our diagram, between two limit
points to be explained in section 4.2., namely, (1/2, 1/2) and
(
√

2 − 1,
√

2 − 1).

4.2. Limit points not included in the locus of
unifractality

The forbidden limit H → 0. It corresponds to y = 1−ε ∼
exp(−ε), that is, 2y−1 = 1−2ε ∼ exp(−2ε) ∼ y2.Hence the
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generating equation written in terms of y1/H = x becomes x2+
2x−1 = 0. It yields the coordinates x = √

2−1 and y = 1 for
the generator address, hence, as announced, x = y = √

2 − 1
for the time address.

The corresponding intervals of the generator have heights
�f = 1,�f = −1 and �f = 1. In order to add to 1,
the correlations between those three increments are not only
negative, but as strongly negative as can be. The limit is
degenerate. However, after an arbitrary number of recursions,
each step in the approximation is equal in absolute value to 1,
which is the increment of the function between any two points
in the construction grid. This property is extreme but important
in a discussion of concentration and asymptotic negligibility
(Mandelbrot 2001d).

The forbidden limit H → 1. It corresponds to a vanishing
middle interval, therefore to a straight generator and a straight
interpolated curve. In this case, price would be totally ruled
by ‘inertia’ and ‘persist’ forever in its motion.

4.3. Two forms of persistence, and cyclic but
non-periodic behaviour

Three subranges of H must be distinguished.

The 0 < H < 1/2 part of the unifractal locus. There is a
negative persistence or antipersistence.

The Fickian H = 1/2. It represents a total absence of
persistence.

The more important 1/2 < H < 1 part of the unifractal
locus. Persistence is positive and increases as H moves from
1/2 to 1.

Cyclic but non-periodic behaviour. Let us now relate the
manifestations of cyclic behaviour and globality as they appear
in graphs of a function f (t) itself, rather than of its increments.
The phenomenon of persistence manifests itself in patterns
of change that are not periodic but perceived by everyone as
‘cyclic’.

As already found, it was observed long ago by Slutzky
that the eye decomposes Brownian motion spontaneously into
many cycles having periods that range from very short to
quite long. As the total duration of the sample is increased,
new cycles appear without end. They correspond to the mere
juxtaposition of random changes, nothing real. To appreciate
this fact, one should rethink the positive overall trend that is
highly visible in figure 2. Over a time space much shorter
than the total time span 1, the trend becomes negligible in
comparison with local fluctuations. Hence, the up–down–up
oscillation represented by the generator will be interpreted as
a slow cycle.

As H increases above 1/2, so does the relative intensity
of this longest period cycle. It also ceases to be meaningless
(à la Slutzky) and becomes increasingly real. While it does
not promise the continuation of a periodic motion, it allows
a certain degree of prediction. A good illustration of what is

happening is provided in a closely related context by Plates 264
and 265 of M 1982FFGN. This is one aspect of the following
property common to all values H �= 1/2: the successive
movements of f (t) are not simply juxtaposed. In effect, they
interact, their interdependence not being short-, but long-range,
or ‘global’.

In any event, unifractal cartoons fail to generate either
a variable volatility or the large spikes of variation that
figure 1 shows to be characteristic of finance. Therefore,
the generalization of Fickian square-root must go beyond
unifractality, as it will in later sections.

4.4. The rule of thumb that there are ‘three cycles in
every sample’, and the Kondriateff long cycles of the
economy

A 1969 study of continuous-time unifractals (the fractional
Gaussian noises) is reprinted in chapter H12 of Mandelbrot
(2001c)). When H is about 3/4, as is often the case, that study
made the following striking observation. In every sample,
the eye sees ‘about three cycles’. This ‘three cycles’ rule
became very important in hydrology and astrophysics, where
it helped certain striking ‘facts’ to be dismissed as spurious
artefacts. It cannot be elaborated here. However, it may
perhaps help, or even suffice, to explain the celebrated, though
highly controversial, slow cycles of the economy. Kondriateff
investigated a century’s worth of data and the slow thirty-odd
years long cycles that he discovered seem real enough, but
must not be accepted without careful study.

4.5. Digression: unifractality for non-symmetric
three-interval generators

Now, the generator is defined by two breaks, (x, y) and (u, v).
Unifractality requires y = xH , 1 − v = (1 −u)H and y − v =
(u − x)H . When (x, y) is on the unifractality locus, there is a
solution u = 1 − x and v = 1 − y. Are there other solutions,
particularly when (x, xH ) is not on the unifractality locus?
The case H = 1/2 can be tackled explicitly. After reductions,
given y, the equation for v is v2 < −v > (y + 1) + y2 = 0.
When 0 < y < 1, there are two real solutions for v. Their
product being y2 and their sum being y+1, only one can satisfy
0 < v < y, and it is easy to check that one does so.

5. Mesofractal cartoons and price
discontinuity
5.1. The locus of discontinuous behaviour

In the quarter square that bounds the phase diagrams in figures 3
and 4, discontinuous functions are associated with the unit
length interval characterized by x = 1/2 and 0 < y < 1.
Aside from the Fickian point, this locus is the simplest. It also
has the oldest roots in finance, insofar as section 5.3 will link
the portion 1/2 < y =< 1/

√
2 with the M 1963 model of

price variation (Mandelbrot 1963, 1967).
Recall the quantitiesHm defined in section 2.6. Mesofrac-

tality is defined as follows:
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Condition of mesofractality: H2 = 0, H1 = H3 �= 0.

The middle interval satisfies H2 = 0, if and only if
x = 1/2; if so, the side intervals—by definition of H̃—
satisfy H1 = H2 = log y/ log(1/2) = H̃ . There are two
separate fractal exponents, not one. But early on H2 = 0 used
to be disregarded, seemingly qualifying this construction as
unifractal. More generally, Mandelbrot (1997) did not discuss
discontinuities separately, but Mandelbrot (1999a) found it
necessary to single them out and coined mesofractal. In the
present very special generator, the exponentsH and H̃ are both
functions of y, hence of each other; but this very peculiar
feature disappears for more general cartoons.

5.2. The distribution of the jump sizes

Continue the recursion. The next stage adds two smaller
discontinuities of size −y(2y − 1). Further iterations keep
adding increasingly high numbers (4, 8, 16 and higher
powers of 2k for k going to infinity) of increasingly smaller
discontinuities of size λ = −yk−1(2y − 1). It follows that,
for small λ, the number of discontinuities of absolute size
> λ−1/H̃ = λ−α .

Section 5.3 will justify the notation 1/H̃ = α.

5.3. The exponent α splits the discontinuity locus
into three portions and subportions, to be handled
separately; relations with the M 1963 model and
reason for the notation α = 1/H̃ .

The portion 0 < y < 1/2. It yields 0 < α < 1 and
corresponds to positive discontinuities hence to increasing
functions. They generate a fractal trading time, a notion that is
better discussed in section 7, as a special case of the multifractal
trading time.

The portion 1/2 < y < 1. It yieldsα > 1, and corresponds
to negative discontinuities, hence to oscillating functions. It
splits in two.

The subportion 1/2 < y < 1/
√

2. It yields 1 < α < 2
and justifies the notation α for H̃ . The reason is that, in that
range of α, the distribution of discontinuities is the same in the
mesofractal cartoons and the L-stable processes used in the M
1963 model.

More precisely, all the jumps are negative here, while in
the M 1963 model of price variation they can take either sign.
A distribution with two long tails can be achieved by using
generators that include a positive and a negative discontinuity;
this requires more than three intervals.

The subportion 1/
√

2 < y < 1, and a diagnosis on why it
is that the L-stable exponent α cannot exceed 2. For all
α, non-random mesofractal cartoons are perfectly acceptable.
Howver, the casesα < 1 and α > 1 differ on a point that seems
to involve mathematical nitpicking but turns out to be essential.
The kth approximation of f (t) alternates jumps and gradual
moves. For α < 1, the sum of moves vanishes asymptotically
for k → ∞, and the sum of jumps tends to 1. Hence, the

function f (t) varies only by positive jumps. For α > 1, the
sum of positive moves exceeds the sum of the negative jumps
by the constant 1. However, taken separately, the sums of
moves and jumps tend, respectively, to ∞ or −∞ as k → ∞.
Therefore, the sum of absolute values of the jumps and moves
diverges to infinity, and the function f (t) is said to be ‘of
unbounded variation’.

Unbounded variation causes no harm as long as the
construction is non-random. But randomization raises a very
subtle issue. Replacing fixed numbers of discontinuities
by Poisson distributed numbers causes a divergence that
recalls the ultraviolet and infrared ‘catastrophes’ in physics.
Physicists know how to ‘renormalize’ away many of those
infinities. In this case, Lévy found, in the 1930s, that infinities
can be eliminated when α < 2, but not when α > 2.

Comment. The complexities surrounding α > 2 contribute
to mismatch between the cartoons and the grid-free processes
they mean to imitate. See section 8.

6. Multifractal cartoons
6.1. Definition

In the phase diagram in figure 3, the loci of unifractal and
mesofractal behaviour are points or curves. If the address is
chosen at random with uniform probability, its probability of
hitting those loci is zero. The overwhelming majority of ad-
dress points remains be examined. They satisfy the following
condition:

Condition of multifractality: H1 = H3 �= H2 �= 0.

One variant of the reason for the prefix ‘multi’, is
that the Hm take a multiplicity of values. That perennial
question resurfaces again: ‘should the Fickian case be called
multifractal?’ One could either call multifractal all the points
in the top left quarter of the address square, or exclude the
unifractal and mesofractal loci.

6.2. Variable volatility, revisited

Return to figure 1 and focus on the five bottom panels. It
was said that they intermix actual data with the best-fitting
multifractal model. Asked to analyse any of those lines without
being informed of ‘which is which’, a coin-tossing economist
would begin by identifying short pieces here and there that vary
sufficiently mildly to almost belong to white Gaussian noise.
These pieces might have been extracted from the first line, then
widened or narrowed by being multiplied by a suitable r.m.s.
volatility σ .

Many models view such complex records as the
increments of a non-stationary random process, namely, of
a Brownian motion whose volatility is defined by σ , but varies
in time. Furthermore, it is tempting to associate those changes
in volatility to changes in market activity.

A similar situation occurring in physics should serve as a
warning. It concerns the notion of variable temperature. The
best approaches are ad hoc and not notable for being either
attractive or effective. I took a totally distinct approach to
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4

Figure 5. Stack of shuffled multifractal cartoons with y = 2/3
therefore H = 1/2 and—from the top down—the following values
of x : 0.2222, 0.3333, 0.3889, 0.4444 (Fickian, starred), 0.4556,
0.4667, 0.4778, and 0.4889. Unconventional but true, all the
increments plotted in the right column are spectrally white.
However, only one line in that column is near-Brownian; it is the
starred Fickian line for x = 4/9.

which we now proceed; it consists of ‘leap-frogging’ over non-
uniform gases, all the way to turbulent fluids.

6.3. The versatility of multifractal variation; in a
non-Gaussian process, the absence of correlation is
compatible with a great amount of structure; this
feature reveals a blind-spot of correlation and
spectral analysis

Figure 5 illustrates a stack of multifractal cartoons that are
shuffled at random before each use. In all cases, the address
point P satisfies 2/3, therefore H = 1/2. The column to the
left is a stack of generators; the middle column, the stack of
processes obtained as in figure 2 but with shuffled generators;
and the column to the right, the stack of the corresponding
increments over identical time-increments �t .

The line marked by a star (�) is the shuffled form of
figure 2. The middle column is a cartoon of Brownian motion
and its increments (right column) are a cartoon of white
Gaussian noise. They look like a sample noise, as expected.

However, H = 1/2 throughout, and this has a surprising
(even shocking) implication. The increments plotted on every
line in this this stack are uncorrelated with one another. That
is, they are ‘spectrally white’. As one moves away from the
star, up or down the stack, one encounters charts that diverge
increasingly from the pseudo-Brownian model. Increasingly,
they exhibit the combination of sharp, spiky price jumps and
persistently large movements that characterize financial prices.

Mathematicians know that whiteness does not express
statistical independence, only absence of correlation. But the

temptation existed to view that distinction as mathematical nit-
picking. The existence of such sharply non-Gaussian white
noises proves that the hasty assimilation of spectral whiteness
to independence was understandable but untenable. White
spectral whiteness is highly significant for Gaussian processes,
but otherwise is a weak characterization of reality.

In the white noises of figure 5, a high level of dependence
is not a mathematical oddity but the inevitable result of self-
affinity of exponent H = 1/2. By and large, points P close
to the Fickian locus of figure 3 will ‘tend’ to produce wiggles
that resemble those of financial markets. As one moves farther
from the centre, the resemblance decreases and eventually the
chart becomes more extreme than any observed reality.

This illustration brings to this old-timer’s mind an old
episode that deserves to be revived because it carries a
serious warning. After the fast Fourier transform became
known, the newly practical spectral analysis was promptly
applied to price change records. An approximately white
spectrum and negligible correlation emerged, and received
varied interpretations. Numerous scholars rushed to view them
as experimental arguments in favour of the Brownian motion or
coin-tossing model. Other scholars, on the contrary, realized
that the data are qualitatively incompatible with independence.
Finding spectral whiteness to be incomprehensible, they
abandoned the spectral tool altogether.

7. Multifractal cartoons reinterpreted as
unifractal cartoons followed in terms of a
trading time
Less mathematically oriented observers describe the panels at
the bottom of figure 1 (both the real data and forgeries) as
corresponding to markets that proceed at different ‘speeds’ at
different times. This description may be very attractive but
remains purely qualitative until ‘speed’ and the process that
controls the variation of speed are quantified. This will be
done now.

7.1. Fundamental compound functions
representation; the ‘baby theorem’

Irresistibly, the question arises, can the overwhelming variety
of white or non-white multifractal cartoons f be organized
usefully? Most fortunately, it can, thanks to a remarkable
representation that I discovered and called ‘baby theorem’. It
begins by classifying the generators according to the values of
H or equivalently of y.

In figure 6, the small ‘window’ near the top left shows
the generators of two functions funi(t) and fmulti(t). One is
unifractal with address coordinates x = xu = 0.457 and
y = 0.603, henceH = 0.646. The other’s address coordinates
are the same y and H , but x = xm = 0.131. This xm is so small
that the function fmulti(t) is very unrealistic in the study of
finance; but an unrealistic xm was needed to achieve a legible
figure.

To transform a unifractal into a multifractal generator, the
vertical axis is left untouched but the right and left intervals of

436



QUANTITATIVE FI N A N C E Scaling in financial prices: III. Cartoon Brownian motions in multifractal time

Figure 6. The small window near the top left shows a unifractal
and a multifractal generator corresponding to two address points
situated on the same horizontal line in the phase space. The body of
the figure illustrates the resulting functions funi(t) and fmulti(t) and
the one-to-one correspondence between them governed by the
change from clock to trading time.

the symmetric unifractal cartoons are shortened horizontally
and provide room for a horizontal lengthening of the middle
piece.

Before examining theoretically the transformation from
funi to fmulti, it is useful to appreciate it intuitively. The body
of figure 6 illustrates the graphs of funi(t) and fmulti(t) obtained
by interpolation using the above two generators. Disregarding
the bold portions, the dotted lines and the arrows, one observes
this: funi(t) proceeds, as already known, in measured up and
down steps while fmulti(t) alternates periods of very fast and
very slow change.

However, the common y and H suffice to establish a
perfect one-to-one ‘match’ between ‘corresponding’ pieces
of two curves. This feature is emphasized by drawing three
matched portions of each curve more boldly. First, towards
the right, between a local minimum and a local maximum, a
gradual rise of the unifractal corresponds to a much faster rise
of the multifractal. Secondly, in the middle, between a local
maximum and the centre of the diagram, a gradual fall of the
unifractal corresponds to a very slow fall of the multifractal—
largely occurring between successive ‘plateaux’ of very slow
variation. Thirdly, between two local minima towards the left,
a symmetric up and down unifractal configuration corresponds
to a fast rise of the multifractal followed by a slow fall which,
once again, proceeds by successive plateaux.

More generally, the fact that the two generators share
a common y insures that our two curves move up or down
through the same values in the same sequence, but not at the
same times.

7.2. Compound functions in multifractal trading
time and the ‘power-law’ multifractal behaviour
∆fmulti = (∆t)H(t)

One would like to be more specific and say that the functions
funi and fmulti proceed at different ‘speeds’, but the fractal
context presents the complication mentioned in section 1.4.
For Brownian motion B(t), the Fickian relation �f ∼ √

�t,

implies that, ‘as a rule’, �f/�t tends to ∞ as �t → 0.
However, section 1.4 announced a non-traditional expression,
log�f/ log�t , that is well-behaved for the WBM B(t). As
�t → 0, it converges (for all practical purposes) to a quantity

called a Hölder exponent. For WBM, it coincides with H =
1/2.

More generally, a unifractal cartoon’s increments in time
�t prove to be of the form�funi(t) ∼ (�t)H ,where the Hölder
exponent H is identical to the constant denoted by the same
letter that characterizes the unifractal.

Multifractal increments are totally different. It remains
possible to write �fmulti(t) ∼ (�t)H(t), but H(t) is no longer
a constant. It oscillates continually and can take any of a
multitude of values. This is one of several alternative reasons
for the prefix ‘multi’ in the term ‘multifractals’.

Fortunately, this variety translates easily into the intuitive
terms that were reported when discussing variable volatility.
The key idea of trading versus clock time has already been
announced. One can reasonably describe funi(t) as proceeding
in a ‘clock time’ that obeys the relentless regularity of physics.
On the contrary, fmulti(t)moves uniformly in its own subjective
‘trading’ time, which—compared to clock time—flows slowly
during some periods and fast during others. Thus, in the
example in figure 6, one can show that the times taken to
draw the generator’s first interval are as follows: our unifractal
funi(t) takes the time 0.457 and our multifractal fmulti(t)

takes the extraordinarily compressed time 0.131. In the
generator’s middle interval, in comparison, the multifractal is
extraordinarily slowed down.

The actual implementation of trading time generalizes the
generating equation y1/H + (2y − 1)1/H + y1/H = 1. In the
unifractal context of section 4.2, this equation was of no special
significance, but here it is essential. Once its root H has
been determined, one defines (as before) the three quantities
y1/H = �1θ; (2y − 1)1/H = �2θ and y1/H = �3θ . As in the
unifractal case, these quantities satisfy �1θ +�2θ +�3θ = 1.
Moreover, �fmulti = (�θ)H as long as �θ is an increment of
θ that belongs to the hierarchy intrinsic to the generator.

In comparison with the unifractal case, the striking novelty
brought by multifractality is that the time address (x, y1/H ) no
longer lies on an interval of the main diagonal of the phase
diagram. Hence, if θ is followed as function of t , it no longer
reduces identically to t itself. Instead, it lies within a horizontal
rectangle that is defined by 0 < x < 1/2 and 0 < y <

√
2−1.

For a given H, the rectangle reduces to a horizontal line.

7.3. ‘Subordination’, an extremely special case of
compounding, in which θ(t) is a random function
with independent increments

Chapter E 21 of Mandelbrot (1997) reproduces a 1967 paper
in which Taylor and I pioneered trading time and took for
θ(t) a process of independent positive L-stable increments of
exponent α/2. Bochner had called it a ‘subordinator’. When
followed in this trading time, Brownian motion reduces to the
L-stable process postulated by the M 1963 model.

More general independent increments in θ(t) lead to
a compound process that has independent increments and
is called subordinated. A 1973 paper by Clark added
lengthy irrelevant mathematics and recommended a different
subordinator θ(t), but preserved independent increments.
Therefore, it also led to a price process with independent
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increments. The same chapter E21 reproduces my sharp
criticism of that work.

Many authors elaborated on Clark without questioning
independence. From their viewpoint, compounding
that allows dependence would be called ‘generalized
subordination’. This usage would blur a major distinction.
Being associated with independent price increments clearly
brands subordination as being unable to account for the obvious
dependence in price records. The virtue of multifractal time is
that it accounts for dependence while preserving the reliance
upon invariances I pioneered in 1963 and proceeds along the
path Taylor and I opened in 1967.

Cartoon multifractal measures link θ and t by the simple
formula �θ = (�t)U(t). The resulting ‘compound function’
is an oscillating unifractal cartoon function of exponent H ,
with the novelty that it proceeds in a trading time that is a
non-oscillating cartoon multifractal function of clock time.
It follows that �fmulti = (�θ)H = (�t)HU(t) = (�t)H(t)

Specifically, when H = 1/2, one has a cartoon of a WBM of
cartoon multifractal time. When H �= 1/2, one has a cartoon
of a fractional Brownian motion of cartoon multifractal time.

7.4. A finer nuance: for fixed H and D, major
differences are associated with the position of
min U (t) with respect to the value that corresponds
to unifractality

The next simplest characteristics of a multifractal cartoon
are minU(t) and maxU(t). Both are very important and
conspicuous: on graphs like those of figure 1 minU(t)

measures the degree of ‘peakedness’ of the peaks of �θ , while
maxU(t) measures the duration and degree of flatness of the
low-lying parts of �θ .

To describe the mathematical situation keep to the Fickian
exponent H = 1/2 and move x away from the unifractal value
x = 4/9, either left towards x = 0, or right towards x =
1/2 − ε, i.e. towards the mesofractal locus of discontinuous
variation. One has 0 � minH(t) < 1 and the value of min
U(t) begins as 1 and tends to 0 in both cases.

In contrast, max U(t) introduces a distinction.

Scenario to the right of the unifractal locus. Below the
starred line in figure 5, maxH(t) has the finite upper bound
log 3/ log 2 ∼ 1.5849. Because of this bound, one expects the
record to include periods where volatility is near constant and
not very small.

Scenario to the left of the unifractal locus. Above
the starred line, maxH(t) is unbounded and may become
arbitrarily large. That is, one expects the record to include
periods where f (t) exhibits almost no volatility.

Concretely, this asymmetry creates a sharp difference that
is visibly vindicated by figure 5. Moving from simulatons to
real data, the visual appearance of financial records favours the
scenario to the left over the right. One needs more exacting
tests than those in Mandelbrot et al (1997) but the variety of
possible behaviours is a major reason for the versatility of the
multifractals.

This versatility is welcome, because the data are complex.
For example, the study of turbulent dissipation may well favour
the second scenario to the left.

To stress the novelty of those predictions, the comparable
figure N1.4 of Mandelbrot (1999a) consisted, in effect, of
always moving to the left of the unifractality locus, and never
to the right.

The above asymmetry between left and right can be
expressed in terms of a theory that warrants a mention here,
but only a very brief one: the variation of θ is ‘less lacunar’ to
the right of x = 4/9 than to the left.

8. Acknowledged limitations of the
cartoons, especially the mesofractal ones,
as compared with the corresponding
continuous time processes
In every case, I started with grid-free continuous-time models.
But when serious difficulties materialized (pedagogical
and/or technical), standbys/surrogates became useful or even
necessary. They also turned out to be of intrinsic interest and
developed in interesting ways. But the cartoons (especially
those with a three-interval symmetric generator) were never
meant to reproduce every feature of the continuous time
models. Of course, neither were the continuous-time processes
meant to be the last word on the variation of financial prices.

The cartoon’s practical virtue is to allow a wide range of
distinct behaviours compatible with a very simple method of
construction. The cartoons’ esthetic virtue is that only a small
part of the phase diagram corresponds to nothing of interest. It
reduces to an interval and a rectangle: {x = 1/2 and 1/

√
2 <

y < 1} and {0 < x < 1/2 and 0 < y <
√

2 − 1}.
The cartoon’s major limitations will now be sketched.

8.1. The path to the cartoons, as restated in deeper
and broader detail

The unifractal and mesofractal cartoons, respectively, are
surrogates for two grid-free models, the M 1965 model based
on fractional Brownian motion and the M 1963 model based
on Lévy stable processes. Unifractal cartoons did not appear
until papers I wrote in 1985 and 1986, which are reproduced
in Mandelbrot (2001c).

For multifractal measures, including multifractal time, the
original 1972 and 1974 papers are reprinted in Mandelbrot
(1999a). A grid-free model came first in 1972, however, it
proved difficult and lacking in versatility. It was replaced in
1974 by cartoons that correspond to the lower left quarter of
figure 3.

The Brownian motion (Wiener or fractional) in
multifractal time was conceived in 1972, as described on p 42
of Mandelbrot (1997). The multifractal cartoons came years
after the fact, as standbys/surrogates. The first investigation
of both BMMT and its cartoons was published in chapter E6
and other early chapters of Mandelbrot (1997). BMMT is
described in free-standing fashion in Mandelbrot et al (1997)
and (as an introduction to tests on actual data) in Calvet and
Fisher (2001), where it is called MMAR.
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8.2. The multifractal cartoons are too constrained to
predict power-law tails; the reason is that they are
the counterpart of very constrained measures called
multinomial

Power-law distributed tails and divergent moments are one of
the most important features of the multifractal model. They
are investigated in Mandelbrot (2001b). However, except in
the mesofractal case—which section 8.3 will show to be a
somewhat peculiar limit—the cartoons fail to predict them.

The reason for this failure is well-understood and would
deserve to be described in detail, but this would take too
long. That reason will only be sketched, being addressed
to the reader who is familiar with a technical aspect of
the multifractal measures whose present status is treated in
Mandelbrot (2001b). A well-known heuristic approach to
multifractals has nothing to say about the tails, but tails are
essential in the three stages I went through in order to introduce
the multifractal measures:

(a) The limit log-normal measures introduced in a paper from
1972 reproduced in Mandelbrot (1999a).

(b) The following sequence of less and less constrained
cascades: multinomial, microcanonical (or conservative)
and canonical, as introduced in papers from 1974
reproduced in Mandelbrot (1999a).

(c) The multifractal products of pulses (MPP) described in
Barral and Mandelbrot (2001).

Power-law tails only appear in least-constrained imple-
mentations, namely, the limit log-normal case, the canonical
cascades and the pulses. The cartoons, in contrast, closely
correspond to the most constrained special called multinomial
cascades.

8.3. In multifractal cartoons, H and the multifractal
time must be chosen together, while the
corresponding continuous time grid-free models
allow H and the multifractal time to be independent
random variables

In particular, the unifractal cartoon oscillation and the
multifractal cartoon time cannot be chosen independently.
Indeed, the address (x, y) of the unifractal function determines
H and restricts the time address of the multifractal time
to have the ordinate y1/H and an abscissa satisfying x >

0, x �= y1/H and x < 1/2. However, those constraints are a
peculiar feature of three-interval symmetric generators. As the
number of intervals in the generator increases, those constraints
change; I expect them to become less demanding.

8.4. Artifactual singular perturbation present in the
mesofractal cartoons

In the mesofractal case, the equation
∑

(interval height) 1/H =
1 can take two forms. When the vertical interval is excluded,
the equation becomes 2y1/H = 1 and the solution is H̃ = 1/α.
When the vertical interval is not excluded, the solution is dif-
ferent from H̃ .

To understand the difference, consider a sequence of
address pointsPk that approximates from the left a mesofractal
address point P with x = 1/2. This approximation is
‘singular’ in the following sense: the properties of the f (t)

corresponding to the limit point P are not the limits of the
properties of the fk(t) corresponding to the point Pk .

The singular nature of this approximation is undesirable
and reflects a broader unfortunate limitation of the cartoon
obtained through symmetric three-interval generators.

8.5. Failure of the mesofractal and unifractal loci to
intersect at the Fickian locus

In continuous time processes, Brownian motion enters in two
ways: as the α = 2 limit case of the Lévy stable process
(LSP) and the H = 1/2 midpoint of the fractional Brownian
motion. In an ideal phase diagram, the α = 2 limit of the
mesofractal cartoons of LSP would coincide with theH = 1/2
midpoint of the unifractal cartoons, thus providing two distinct
interpolations of the Fickian locus. However, this paper’s
generator yields a particular phase diagram for which this
ideal is not achieved. Hence, the same overall behaviour
is represented twice: directly by the point (4/9, 2/3) and
indirectly by the point (1/2, 1/

√
2).

8.6. The potential threat (or promise?) of cartoons
whose values are ‘localized’

Several papers I wrote in 1985 and 1986, all of them reproduced
in part IV of Mandelbrot (2001c), investigate some unifractal
cartoons in detail, and show that for them the concept of
dimension is sharply more complex than for self-similar
fractals.

Particularly relevant are the considerations in the long
illustrated foreword of chapter H24 of Mandelbrot (2001c).
As explained there, important insights concerning the fine
structure of a function are contained in the distribution of its
values over a time interval.

Classical examples: for the line f (t) = at + b the values
of a uniform distribution on any time interval; for a nonlinear
monotone function f (t) having a differentiable inverse t (f ),
the values of f are of density t ′(f ) etc.

Fractal functions are more versatile and can take one of
two very different forms: either smooth with a density, or
multifractal, that is, extremely unsmooth. Seemingly slight
changes in the construction or even its parameters affect
smoothness and lead to ‘dimension anomalies’.

For the symmetric generators examined in this paper, the
specific issues treated in chapter H24 of Mandelbrot (2001c)
are absent. However, mesofractal cartoons inject a different,
very complex issue, which attracted many great minds but
remains confused. The trend maps the unit density on t upon a
unit density onf . The generator of addressP(1/2, y)maps the
uniform distribution of t into a non-uniform distribution whose
density is the sum of two overlapping addends; their respective
densities are 1/2y on [0, y] and 1/2y on [1 − y, 1]. The limit
density obtained if one proceeds by recursion happens to have
been extensively investigated. Depending very delicately on
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y, it was found to be smooth, very unsmooth, or (last time I
checked) unknown.

In continuous-time models those potential complexities do
not arise, and presumably they have no concrete by-products.
If such is the case, they would represent another difference
between the continuous time and cartoon models.

9. Conclusion
This paper would have deserved to be more heavily illustrated,
but most readers can experiment by themselves. The author is
preparing an interactive program.

A conclusion would be needed as well as a discussion
of possible practical fallout from the multifractal model.
However, both would be premature, since this part III is
scheduled to be followed by at least one additional paper, to
be described as part IV (Mandelbrot 2001d). The conclusions
shall find their proper place at the end of this series of papers.
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