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Assumption (A7): E{xt εt} = 0 Assumption (A7): E{xt εt} = 0 
for all t
Linear model for yt

yt = xt'β + εt, t = 1, …, T (or y = Xβ + ε)yt = xt'β + εt, t = 1, …, T (or y = Xβ + ε)

given observations xtk, k =1, …, K, of the regressor variables, error 

term εt
(A7) E{x ε } = 0 for all t, i.e., no contemporary correlation(A7) E{xt εt} = 0 for all t, i.e., no contemporary correlation

� Guaranties unbiasedness and consistency of the OLS estimator

� In reality, (A7) not always fulfilled � In reality, (A7) not always fulfilled 

� E{xt εt} ≠ 0: biased, inconsistent OLS estimator

� Examples of situations with E{xt εt} ≠ 0� Examples of situations with E{xt εt} ≠ 0

� Regressors with measurement errors 

� Regression on the lagged dependent variable with autocorrelated 

error terms

� Endogeneity of regressors

� Simultaneity
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Instrumental VariablesInstrumental Variables

The model is 

yt = xt‘β + εtyt = xt‘β + εt

with V{εi} = σε² and

E{εt xt}  ≠ 0t t

� Instrumental variables zt

1. Exogenous: E{εt zt } = 0: zt uncorrelated with error termt t t

2. Relevant: Cov{xt , zt } ≠ 0: zt correlated with endogenous 

regressors
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IV EstimatorIV Estimator

� Based on the moment conditions 

E{εi zi} = E{(yi – xi‘β) zi} = 0E{εi zi} = E{(yi – xi‘β) zi} = 0

� Solution of corresponding sample moment conditions

1/N Σi(yi – xi‘β) zi = 0 1/N Σi(yi – xi‘β) zi = 0 

IV estimator based on the instruments zt

( ) ( ) ( )1 1ˆ ' 'z x z y Z X Z yβ
− −′= =∑ ∑

Identification requires that the KxK matrix Σtztxt’ = Z’X is finite and 

invertible; instruments z are relevant when this is fulfilled

( ) ( ) ( )ˆ ' 'IV t t t tt t
z x z y Z X Z yβ ′= =∑ ∑

invertible; instruments zt are relevant when this is fulfilled
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IV Estimator: PropertiesIV Estimator: Properties

IV estimator is 

� Consistent� Consistent

� (Asymptotic) covariance matrix

{ } ( )( ) ( )[ ] 112ˆ
−−

∑∑∑ ′′′= xzzzzxV σβ
� Estimated covariance matrix: σ² is substituted by

{ } ( )( ) ( )[ ]2ˆ ∑∑∑ ′′′=
t ttt ttt ttIV xzzzzxV σβ

( )∑
2

ˆ

� The asymptotic distribution of IV estimators, given IID(0, σε²) error 

( )∑ ′−=
t IVttT

xy
2

12 ˆˆ βσ
� The asymptotic distribution of IV estimators, given IID(0, σε²) error 

terms, leads to the approximate distribution

( ))ˆ(ˆ, IVVN ββ
with the estimated covariance matrix

( ))(ˆ, IVVN ββ
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The General CaseThe General Case

R: number of instrument variables and of components of zi

The R moment equations areThe R moment equations are

1. R = K: one unique solution, the IV estimator; identified model

0)ˆ(1 =′−∑ ii IViiN
zxy β

1. R = K: one unique solution, the IV estimator; identified model

( ) 1
1ˆ ( ' ) 'IV i i i ii t

z x z y Z X Z yβ
− −′= =∑ ∑

2. R < K: Z’X has not full rank, is not invertible; infinite many 

solutions fulfill moment equations, but no consistent estimator; 

under-identified or not identified modelunder-identified or not identified model

3. R > K: more instruments than necessary for identification; over-

identified model; a unique solution cannot be obtained such that identified model; a unique solution cannot be obtained such that 

all R sample moment conditions are fulfilled; strategy for 

choosing the estimator among all possible estimators 
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The GIV EstimatorThe GIV Estimator

For R > K, in general, a unique solution of all R sample moment 

conditions cannot be obtained; instead:

Generalized instrumental variable (GIV) estimator
1ˆ ˆ ˆ( )IV X X X yβ −′ ′=

uses best approximations                                 for columns of X

� The GIV estimator can be written as

( )IV X X X yβ ′ ′=
1ˆ ( ' ) 'X Z Z Z Z X−=

ˆ ˆ ˆ ˆ
� The GIV estimator can be written as

� GIV estimator is also called “two stage least squares” (TSLS) 

1 1 1 1ˆ ˆ ˆ ˆ( ( ) ) ( ) ( )IV X Z Z Z Z X X Z Z Z Z y X X X yβ − − − −′ ′ ′ ′ ′ ′ ′ ′= =
� GIV estimator is also called “two stage least squares” (TSLS) 

estimator:

1. First step: regress each column of X on Z

2. Second step: regress y on predictions of X
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GIV Estimator and PropertiesGIV Estimator and Properties

� GIV estimator is consistent

� The asymptotic distribution of the GIV estimator, given IID(0,σε²) � The asymptotic distribution of the GIV estimator, given IID(0,σε²) 

error terms εt, leads to the approximate distribution( ))ˆ(ˆ, IVVN ββ
� The (asymptotic) covariance matrix of is given by 

( ))(, IVVN ββ

{ } ( )( ) ( )[ ] 112ˆ
−−

∑∑∑ ′′′= xzzzzxV σβ
� Estimated covariance matrix: σ² is substituted by 

{ } ( )( ) ( )[ ]2ˆ ∑∑∑ ′′′=
t ttt ttt ttIV xzzzzxV σβ

( )∑ ′
2

ˆ( )∑ ′−=
t IVttT

xy
2

12 ˆˆ βσ
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The Generalized IV EstimatorThe Generalized IV Estimator

For R > K, in general, no unique solution of all R sample moment 

conditions can be obtained; instead:

� The weighted quadratic form in the sample moments 
'

1 1( ) ( ) ( )N i i i N i i iN Ni i
Q y x z W y x zβ β β   ′ ′= − −   ∑ ∑

with a RxR positive definite weighting matrix WN is minimized

� Gives the generalized IV estimator

( ) ( ) ( )N i i i N i i iN Ni i
Q y x z W y x zβ β β   ′ ′= − −   ∑ ∑

� Gives the generalized IV estimator

For each positive definite weighting matrix W , the generalized 

1ˆ ( )IV N NX ZW Z X X ZW Z yβ −′ ′ ′ ′=
� For each positive definite weighting matrix WN, the generalized 

IV estimator is consistent 

� GIV estimator: special case with W opt (see below)� GIV estimator: special case with WN
opt (see below)

For R = K, the matrix Z’X is square and invertible; the IV estimator is 

(Z’X)-1Z’y for any WN(Z’X)-1Z’y for any WN
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Most Efficient IV Estimator Most Efficient IV Estimator 

Weighting matrix WN

� Different weighting matrices result in different consistent � Different weighting matrices result in different consistent 

generalized IV estimators with different covariance matrices

� Optimal weighting matrix:

WN
opt = [1/N(Z’Z)]-1

� Corresponds to the most efficient IV estimator
1 1 1 1ˆ ˆ ˆ ˆ( ( ) ) ( ) ( )X Z Z Z Z X X Z Z Z Z y X X X yβ − − − −′ ′ ′ ′ ′ ′ ′ ′= =

with

1 1 1 1ˆ ˆ ˆ ˆ( ( ) ) ( ) ( )IV X Z Z Z Z X X Z Z Z Z y X X X yβ − − − −′ ′ ′ ′ ′ ′ ′ ′= =
1ˆ ( ' ) 'X Z Z Z Z X−=with

� Coincides with the GIV (or TSLS) estimator

( ' ) 'X Z Z Z Z X=
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Consistency of the Generalized Consistency of the Generalized 
IV EstimatorIV Estimator
With a RxR positive definite weighting matrix WN, minimizing the 

weighted quadratic form in the sample moments 
'

∑ ∑
results in a consistent estimator for β

'
1 1( ) ( ) ( )N i i i N i i iN Ni i

Q y x z W y x zβ β β   ′ ′= − −   ∑ ∑
results in a consistent estimator for β

� Sample moments converge asymptotically to the corresponding 

population moments population moments 

� The population moments are zero for the true parameters

� Minimizing the quadratic loss function in the sample moments � Minimizing the quadratic loss function in the sample moments 

results in solutions which asymptotically coincide with the true 

parameters

This idea is basis of the generalized method of moments estimator
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Generalized Method of Generalized Method of 
Moments (GMM) EstimatorMoments (GMM) Estimator
� GMM generalizes the IV estimation concept

� Estimates of model parameters are derived from moment � Estimates of model parameters are derived from moment 

conditions which are not necessarily linear

� Number of moment conditions at least as large as number of 

unknown parametersunknown parameters
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Generalized Method of Generalized Method of 
Moments (GMM) Estimator
The model is characterized by R moment conditions

E{f(wi, zi, θ)} = 0 E{f(wi, zi, θ)} = 0 

[generalization of E{(yi – xi‘β) zi} = 0]

� f(.): R-vector function� f(.): R-vector function

� wi: vector of observable variables, exogenous or endogenous

� zi: vector of instrumental variables� zi: vector of instrumental variables

� θ: K-vector of unknown parameters

Sample moment conditions

∑
Sample moment conditions

1. R = K: unique solution for θ; if f(.) is nonlinear in θ, numerical 

1( ) ( , , ) 0N i iN i
g f w zθ θ= =∑

1. R = K: unique solution for θ; if f(.) is nonlinear in θ, numerical 

solution might be derived

2. R < K: parameters not identified
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GMM EstimatorGMM Estimator

3. R > K: minimization, wrt θ, of the objective function, i.e., the 
quadratic form 

Q (θ) = g (θ)‘ W g (θ)QN(θ) = gN(θ)‘ WN gN(θ)

WN: symmetric, positive definite weighting matrix

GMM estimator corresponds to the optimal weighting matrix GMM estimator corresponds to the optimal weighting matrix 

the inverse of the covariance matrix of the sample moments,

( ) 1
opt

N i i i i
ˆ ˆW   E{f(w , z , ) f(w , z , ) }θ θ

−
′=

the inverse of the covariance matrix of the sample moments,

and is the most efficient estimator

For nonlinear f(.)

� Numerical optimization algorithms 

� WN depends on θ; iterative optimization
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Example: The Linear ModelExample: The Linear Model

Model: yi = xi‘β + εi with E{εi xi} = 0 and V{εi} = σε²

� Moment or orthogonality conditions:� Moment or orthogonality conditions:

E{εt xt} = E{(yt - xt‘β)xt} = 0

f(.) = (yi - xi‘β)xi, θ = β, instrument variables: xi; moment f(.) = (yi - xi‘β)xi, θ = β, instrument variables: xi; moment 

conditions are exogeneity conditions for xi

� Sample moment conditions:

1/N Σi (yi - xi ‘b) xi = 1/N Σi ei xi = gN(b) = 0

� With W = I, QN(β) = [1/N Σi ei xi ]
2

N i i i

� OLS and GMM estimators coincide, but for the estimators

� OLS: residual sum of squares SN(b) = 1/N Σi ei
2 has its minimum 

� GMM: QN(b) = 0
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Linear Model with E{εt xt}  ≠ 0 Linear Model with E{εt xt}  ≠ 0 

Model yi = xi‘β + εi with V{εi} = σε², E{εi xi}  ≠ 0 and R instrumental 

variables zii

� Moment conditions:

E{εi zi} = E{(yi - xi‘β)zi} = 0i i i i i

� Sample moment conditions:

1/N Σi (yi - xi‘b) zi = gN(b) = 0i i i i N

� Identified case (R = K): the single solution is the IV estimator

bIV = (Z’X)-1 Z’yIV

� Optimal weighting matrix WN
opt = (E{εi

2zizi‘})
-1 is estimated by

( ) 1
21 'opt

N i i iN i
W e z z

−
= ∑

� Generalizes the covariance matrix of the GIV estimator to White‘s 

heteroskedasticity-consistent covariance matrix estimator (HCCME)

( )'N i i iN i
W e z z= ∑

Hackl,  Econometrics, Lecture 6 19

heteroskedasticity-consistent covariance matrix estimator (HCCME)

Jan 7, 2011



Example: Labor DemandExample: Labor Demand

Verbeek’s data set “labour2”: Sample of 569 Belgian companies 

(data from 1996)

� Variables

� labour: total employment (number of employees)

� capital: total fixed assets

� wage: total wage costs per employee (in 1000 EUR)

output: value added (in million EUR)� output: value added (in million EUR)

� Labour demand function

labour = β + β *output + β *capitallabour = β1 + β2*output + β3*capital
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Labor Demand Function: OLS Labor Demand Function: OLS 
EstimationEstimation
In logarithmic transforms: Output from GRETL

Dependent variable : l_LABOR

Heteroskedastic-robust standard errors, variant HC0, 

coefficient   std. error   t-ratio    p-valuecoefficient   std. error   t-ratio    p-value

-------------------------------------------------------------

const            3,01483 0,0566474 53,22     1,81e-222 ***

l_ OUTPUT  0,878061 0,0512008 17,15     2,12e-053 *** l_ OUTPUT  0,878061 0,0512008 17,15     2,12e-053 *** 

l_CAPITAL 0,003699 0,0429567        0,08610      0,9314

Mean dependent var 4,488665   S.D. dependent var 1,171166

Sum squared resid 158,8931   S.E. of regression   0,529839Sum squared resid 158,8931   S.E. of regression   0,529839

R- squared               0,796052   Adjusted R-squared 0,795331

F(2, 129)               768,7963  P-value (F)               4,5e-162

Log-likelihood          -444,4539 Akaike criterion       894,9078

Schwarz criterion      907,9395   Hannan-Quinn 899,9928
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Specification of GMM Specification of GMM 
EstimationEstimation
GRETL: Specification of function and orthogonality conditions for labour

demand model

# initializations go here

matrix X = {const , l_OUTPUT, l_CAPITAL}matrix X = {const , l_OUTPUT, l_CAPITAL}

series e = 0

scalar b1 = 0

scalar b2 = 0

scalar b3 = 0 scalar b3 = 0 

matrix V = I(3)

Gmm e = l_LABOR - b1*const – b2*l_OUTPUT – b3*l_CAPITAL

orthog e; X

weights V

params b1 b2 b3 

end gmmend gmm
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Labor Demand Function: GMM Labor Demand Function: GMM 
EstimationEstimation
In logarithmic transforms: Output from GRETL

Using numerical derivatives

Tolerance = 1,81899e-012

Function evaluations: 44

Evaluations of gradient: 8Evaluations of gradient: 8

Model 8: 1-step GMM, using observations 1-569

e = l_LABOR - b1*const - b2*l_OUTPUT - b3*l_CAPITALe = l_LABOR - b1*const - b2*l_OUTPUT - b3*l_CAPITAL

estimate    std. error   t-ratio     p-value 

--------------------------------------------------------------------------

b1         3,01483      0,0566474    53,22      0,0000    ***b1         3,01483      0,0566474    53,22      0,0000    ***

b2         0,878061     0,0512008    17,15      6,36e-066 ***

b3         0,00369851   0,0429567     0,08610   0,9314

GMM criterion: Q = 1,1394e-031 (TQ = 6,48321e-029)
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Linear Model: MM EstimatorLinear Model: MM Estimator

Model

yi = xi‘β + εiyi = xi‘β + εi

with V{εi} = σε² and E{εi xi}  ≠ 0 and R instrumental variables zi

Over-identified case (R > K): GMM estimator fromOver-identified case (R > K): GMM estimator from

minβ QN(β)= minβ gN(β)’WN gN(β)

� For WN = I, the first order conditions areFor WN = I, the first order conditions are

( )( )
'

1 1 1
( ) ( )

2 ( ) 2 ' ' ' 0N N
N N N N

Q g
g X Z Z y Z X

β β β β
β β

 ∂ ∂= = − = ∂ ∂ 
method of moments estimator

bMM = [(X’Z)(Z’X)]-1 (X’Z)Z’y

β β∂ ∂ 

bMM = [(X’Z)(Z’X)] (X’Z)Z’y

bMM coincides with the IV estimator if R = K
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GMM EstimatorGMM Estimator

Model with R moment conditions

E{f(wi, zi, θ)} = 0 

Sample moment conditions
i i

Sample moment conditions

Over-identified case (R > K): GMM estimator from

1( ) ( , , ) 0N i iN i
g f w zθ θ= =∑

Over-identified case (R > K): GMM estimator from

minθ QN(θ)= minθ gN(θ)’WN gN(θ)

WN: symmetric, positive definite weighting matrixWN: symmetric, positive definite weighting matrix

� The GMM estimator is consistent for any choice of WN

� Optimal weighting matrix

( ) 1
opt ˆ ˆW   E{f(w , z , ) f(w , z , ) }θ θ

−
′=

the inverse of the covariance matrix of the sample moments, 
gives the most efficient estimator

( ) 1
opt

N i i i i
ˆ ˆW   E{f(w , z , ) f(w , z , ) }θ θ

−
′=

gives the most efficient estimator

For nonlinear f(.)

� Numerical optimization algorithms 

W depends of θ; iterative optimization
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GMM Estimator: PropertiesGMM Estimator: Properties

Under weak regularity conditions, the GMM estimator is

� consistent (for any W)

( )−
� consistent (for any W)

� most efficient if W =

� asymptotically normal:

( ) 1
opt

i i i i
ˆ ˆW E{f(w , z , ) f(w , z , ) }θ θ

−
′=

( )1ˆ( ) 0,N N Vθ θ −− →� asymptotically normal:

where V = D Wopt D’ with the KxR matrix of derivatives

( )( ) 0,N N Vθ θ− →

( , , )i if w z
D E

θ∂ =  

The covariance matrix V-1 can be estimated by substituting in D and 

( , , )

'

i if w z
D E

θ
θ

∂ =  ∂ 

Wopt the population moments by sample equivalents evaluated 

at the GMM estimates
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GMM Estimator: CalculationGMM Estimator: Calculation

1. One-step GMM estimator: Choose a positive definite W, e.g., 

W = I, optimization gives      (consistent, but not efficient)
1θ̂

ˆ2. Two-step GMM estimator: use the one-step estimator      to 

estimate V = D WN
opt D‘, repeat optimization with W = V-1; this 

gives 

1θ

θ̂

1θ̂

gives 

3. Iterated GMM estimator: Repeat step 2 until convergence 

If R = K, the GMM estimator is the same for any W, only step 1 is 

2θ̂

If R = K, the GMM estimator is the same for any W, only step 1 is 

needed; the objective function QN(θ) is zero at the minimum

If R > K, step 2 is needed to achieve efficiencyIf R > K, step 2 is needed to achieve efficiency
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Klein‘s Model 1Klein‘s Model 1

Ct = α1 + α2Pt + α3Pt-1 + a4(Wt
p+ Wt

g) + εt1 (consumption)

It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investments)It = β1 + β2Pt + β3Pt-1 + β4Kt-1 + εt2 (investments)

Wt
p = γ1 + γ2Xt + γ3Xt-1 + γ4t + εt3 (private wages and salaries)

Xt = Ct + It + Gtt t t t

Kt = It + Kt-1

Pt = Xt – Wt
p – Ttt t t t

C (consumption), P (profits), Wp (private wages and salaries), Wg (public 

wages and salaries), I (investments), K-1 (capital stock, lagged), X

(production), G (governmental expenditures without wages and  (production), G (governmental expenditures without wages and  

salaries), T (taxes) and t [time (trend)]

Endogenous: C, I, Wp, X, P, K; exogeneous: 1, Wg, G, T, t, P-1, K-1, X-1Endogenous: C, I, W , X, P, K; exogeneous: 1, W , G, T, t, P-1, K-1, X-1
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Early Econometric ModelsEarly Econometric Models

Klein‘s Model

� Aims: � Aims: 

� to forecast the development of 

business fluctuations and 

to study the effects of � to study the effects of 

government economic-political 
policy

Model year eq‘s
� Successful forecasts of

� economic upturn rather than 

a depression after World War II

Model year eq‘s

Tinbergen 1936 24

Klein 1950 6a depression after World War II

� mild recession at the end of 

the Korean War

Klein 1950 6

Klein & Goldberger 1955 20

Brookings 1965 160the Korean War Brookings 1965 160

Brookings Mark II 1972 ~200
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Econometric ModelsEconometric Models

Basis: the multiple linear regression model

� Adaptations of the model

� Dynamic models

� Systems of regression models

Time series models� Time series models

� Further  developments

� Models for panel data� Models for panel data

� Models for spatial data

� Models for limited dependent variables� Models for limited dependent variables
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Dynamic Models: ExamplesDynamic Models: Examples

Demand model: describes the quantity Q demanded of a product as 

a function of its price P and consumers’ income Y

(a) Current price and current income to determine the demand (static 

model):

Q = β + β P + β Y + εQt = β1 + β2Pt + β3Yt + εt
(b) Current price and income of the previous period determine the 

demand (dynamic model):demand (dynamic model):

Qt = β1 + β2Pt + β3Yt-1 + εt
(c) Current demand and prices of the previous period determine the (c) Current demand and prices of the previous period determine the 

demand (dynamic autoregressive model):

Qt = β1 + β2Pt + β3Qt-1 + εtQt = β1 + β2Pt + β3Qt-1 + εt
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Dynamic of ProcessesDynamic of Processes

Static processes: independent variables have a direct effect, the 

adjustment of the dependent variable on the realized values of 

the independent variables is completed within the current period, 

the process seems always to be in equilibrium

Static models may be unsuitable: Static models may be unsuitable: 

(a) Some activities are determined by the past, such as: energy 

consumption depends on past investments into energy-consumption depends on past investments into energy-

consuming systems and equipment

(b) Actors of the economic processes often respond with delay, e.g.,  (b) Actors of the economic processes often respond with delay, e.g.,  

due to the duration of decision-making and procurement 

processes

(c) Expectations: e.g., consumption depends not only on current (c) Expectations: e.g., consumption depends not only on current 

income but also on income expectations in future; modeling of 

income expectation based on past income development

Hackl,  Econometrics, Lecture 6 35

income expectation based on past income development

Jan 7, 2011



Elements of Dynamic ModelsElements of Dynamic Models

1. Lag-structures, distributed lags: describe the delayed effects of 
one or more regressors on the dependent variable; e.g., the 
lag-structure of order s or DL(s) model (DL: distributed lag)lag-structure of order s or DL(s) model (DL: distributed lag)

Yt = α + Σs
i=0βiXt-i + εt

2. Geometric lag-structure, Koyck’s model: infinite lag-structure 2. Geometric lag-structure, Koyck’s model: infinite lag-structure 
with βi = λ0λi

3. ADL-model: autoregressive model with lag-structure, e.g., the 
ADL(1,1)-modelADL(1,1)-model

Yt = α + ϕYt-1 + β0Xt + β1Xt-1 + εt
4. Error-correction model 4. Error-correction model 

∆Yt = - (1-ϕ)(Yt-1 – µ0 – µ1Xt-1) + β0∆ Xt + εt
obtained from the ADL(1,1)-model with µ0 = α/(1-ϕ) und µ1 = obtained from the ADL(1,1)-model with µ0 = α/(1-ϕ) und µ1 = 
(β0+β1)/(1-ϕ)
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The Koyck TransformationThe Koyck Transformation

Transforms the model 

Yt = λ0ΣiλiXt-i + εt
into an autoregressive model (v = ε - λε ):into an autoregressive model (vt = εt - λεt-1):

Yt = λYt-1 + λ0Xt + vt
� The model with infinite lag-structure in X becomes a model� The model with infinite lag-structure in X becomes a model

� with an autoregressive component  λYt-1

� with a single regressor Xt and 

� with autocorrelated error terms � with autocorrelated error terms 

� Econometric applications  
� The partial adjustment model 

Example: Kp
t: planned stock for t; strategy for adapting Kt on K

p
t

Kt – Kt-1 = δ(Kp
t – Kt-1)

� The adaptive expectations model� The adaptive expectations model

Example: Investments determined by expected profit Xe: 

Xe
t+1 = λ Xe

t + (1 - λ) Xt
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ContentsContents

� The IV Estimator

� The GIV Estimator� The GIV Estimator

� The Generalized Method of Moments

� The GMM EstimatorThe GMM Estimator

� Econometric Models

� Dynamic Models
x

� Multi-equation Models x

Jan 7, 2011 Hackl,  Econometrics, Lecture 6 38



Multi-equation ModelsMulti-equation Models

Economic phenomena are usually characterized by the behavior of 
more than one dependent variable

Multi-equation model: the number of equations determines the Multi-equation model: the number of equations determines the 
number of dependent variables which describe the model 

Characteristics of multi-equation models: 

� Types of equations

� Types of variables� Types of variables

� Identifiability
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Types of EquationsTypes of Equations

� Behavioral or structural equations: describe the behavior 
of a dependent variable as a function of explanatory variables 

Definitional identities: define how a variable is defined as the sum of � Definitional identities: define how a variable is defined as the sum of 
other variables, e.g., decomposition of gross domestic product as 
the sum of its consumption componentsthe sum of its consumption components

Example: Klein’s model I: Xt = Ct + It + Gt

� Equilibrium conditions: assume a certain relationship, which can be 
interpreted as an equilibriuminterpreted as an equilibrium

Definitional identities and equilibrium conditions have no error terms
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Types of VariablesTypes of Variables

Specification of a multi-equation model: definition of
� Variables which are explained by the model (endogenous variables)
� Variables which are in addition used in the model� Variables which are in addition used in the model

Number of equations needed in the model: same number as that of the 
endogenous variables in the modelendogenous variables in the model

Explanatory or exogenous variables: uncorrelated with error terms
� strictly exogenous variables: uncorrelated with error terms εt+i (for 

any i)
t+i

any i)
� predetermined variables: uncorrelated with current and future error 

terms (εt+i, i ≥ 0) t+i

Error terms: 
� Uncorrelated over time
� Contemporaneous correlation of error terms of different equations � Contemporaneous correlation of error terms of different equations 

possible
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Identifiability: An ExampleIdentifiability: An Example

(1) Both demand and supply function are

Q = α1 + α2P + ε1 2

Fitted to data gives for both functions the same relationship: 
not distinguishable whether the coefficients of the demand or the 
supply function was estimated!supply function was estimated!

(2) Demand and supply function, respectively, are 

Q = α + α P + α Y + εQ = α1 + α2P + α3Y + ε1
Q = β1 + β2P + ε2

Endogenous: Q, P; exogenous: YEndogenous: Q, P; exogenous: Y

Reduced forms for Q and P are

Q = π11 + π12Y + v111 12 1

P = π21 + π22Y + v2
with parameters πij
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Identifiability: An Example, cont‘dIdentifiability: An Example, cont‘d

The coefficients of the supply function can uniquely be derived from the 
parameters πij:

β = π /πβ2 = π12/π22
β1 = π11 – β2 π21

consistent estimates of π result in consistent estimates for βconsistent estimates of πij result in consistent estimates for βi
For the coefficients of the demand function, such unique relations of the 

πij can not be foundπij
The supply function is identifiable, the demand function is not 

identifiable or under-identified

The conditions for identifiability of the coefficients of a model equation 
are crucial for the applicability of the various estimation procedures
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Econometrics IIEconometrics II

1. ML Estimation and Specification Tests (MV, Ch.6)

2. Models with Limited Dependent Variables (MV, Ch.7)

3. Univariate time series models (MV, Ch.8)

4. Multivariate time series models, part 1 (MV, Ch.9)

5. Multivariate time series models, part 2 (MV, Ch.9)

6. Models Based on Panel Data (MV, Ch.10)
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