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Introduction

Multiple LRM discussed in more detail.
Some proofs as an illustration.
Hypothesis testing – extended methods.
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Basic results

Classical assumptions

1 E (εi) = 0.
2 var (εi) = E

(
ε2i
)
= σ2.

3 cov (εi , εj) = 0 for i 6= j .
4 εi is Normally distributed.
5 X1i , . . . ,Xki are fixed (non-random) variables.
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Basic results

Parameters estimates – two explaining variables

Model:
Yi = α+ β1X1i + β2X2i + εi .

Minimize SSR:

β̂1 =
(
∑

x1iyi)
(∑

x2
2i
)
− (
∑

x2iyi) (
∑

x1i
∑

x2i)(∑
x2
1i
) (∑

x2
2i
)
− (
∑

x1ix2i)
2 ,

β̂2 =
(
∑

x2iyi)
(∑

x2
1i
)
− (
∑

x1iyi) (
∑

x1i
∑

x2i)(∑
x2
1i
) (∑

x2
2i
)
− (
∑

x1ix2i)
2 ,

α̂ = Y − β̂1X 1 − β̂2X 2,

where

yi = Yi − Y ,
x1i = X1i − X 1,

x2i = X2i − X 2.
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Basic results

OLS estimate – error terms variance

Unbiased estimator, σ2:

s2 =
∑
ε̂2i

N − k − 1 ,

where
ε̂i = Yi − α̂− β̂1X1i − . . .− β̂kXki

are OLS residuals.
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Basic results

Estimating variance of parameters estimates – two
regressors

Case k = 2:

var
(
β̂1
)
=

σ2

(1− r2)
∑

x2
1i
,

var
(
β̂2
)
=

σ2

(1− r2)
∑

x2
2i
,

where r is (sample) correlation coefficient between X1 and X2.
In practice – estimates of σ2.
Useful for hypothesis testing.
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Basic results

Test of parameter significance (assuming σ2 is known)

Koop (2008), p. 94.
In practice σ2 is not known ⇒ t-test.

Introduction to econometrics (INEC) IV. Multiple regression model Autumn 2011 9 / 40



Basic results

Measure of model fit

Coefficient of determination:

R2 = 1− SSR
TSS = 1−

∑
ε̂2i∑(

Yi − Y
)2 .

Adding new explanatory variables will always increase R2.
Adjusted R2, R2:

R2
= 1−

SSR
N−k−1

TSS
N−1

= 1− s2

1
N−1

∑(
Yi − Y

)2 .
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Choice of explanatory variables

Omitted variable bias I

True model:
Yi = α+ β1X1i + β2X2i + εi .

OLS estimates:

β̂1 =
(
∑

x1iyi)
(∑

x2
2i
)
− (
∑

x2iyi) (
∑

x1i
∑

x2i)(∑
x2
1i
) (∑

x2
2i
)
− (
∑

x1ix2i)
2 .

Lower-case letters – deviations from means.
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Choice of explanatory variables

Omitted variable bias II

Model:
Yi = α+ β1X1i + εi .

Parameter estimate of β1:

β̃1 =

∑
x1iyi∑
x2
1i
,

β̃1 is biased.
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Choice of explanatory variables

Omitted variable bias – proof

May be shown:

E
(
β̃1
)
= E

(
β1 +

β2
∑

x1ix2i∑
x2
1i

+

∑
x1i (εi − ε)∑

x2
1i

)

= β1 +
β2
∑

x1ix2i∑
x2
1i

.

β̃1 is biased.
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Choice of explanatory variables

Omitted variable bias – comments

Bias does not exist in case β2 = 0 or
∑

x1i x2i∑
x2
1i

.

If β2 = 0 then X2 is not omitted.∑
x1i x2i∑

x2
1i

connected with correlation between X1 and X2 (denoted by r).

Bias does not arise if omitted variable is uncorrelated with included
variabe.
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Choice of explanatory variables

Inclusion of irrelevant explanatory variables

True model: Yi = α+ β1X1i + εi .
Incorrect specification: Yi = α+ β1X1i + β2X2i + εi .
Wrong estimator:

β̃1 =
(
∑

x1iyi)
(∑

x2
2i
)
− (
∑

x2iyi) (
∑

x1i
∑

x2i)(∑
x2
1i
) (∑

x2
2i
)
− (
∑

x1ix2i)
2 .

Correct estimator:
β̂1 =

∑
x1iyi∑
x2
1i
.

If β̃1 unbiased, then using Gauss-Markov theorem
var

(
β̃1
)
> var

(
β̂1
)
.

Including irreevant variables leads to less precise estimates.
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Choice of explanatory variables

Multicollinearity

High or perfect correlation among explanatory variables.
OLS estimator has problem estimating separate marginal effects.
Two explanatory variables:

var
(
β̂1
)
=

σ2

(1− r2)
∑

x2
1i
,

var
(
β̂2
)
=

σ2

(1− r2)
∑

x2
2i
.

Used in hypothesis testing. High multicolinearity → small t-statistic,
wide confidence intervals.

Introduction to econometrics (INEC) IV. Multiple regression model Autumn 2011 17 / 40



Hypothesis testing

Content

1 Basic results

2 Choice of explanatory variables

3 Hypothesis testing
F-test
Likelihood ratio tests

4 Other issues

Introduction to econometrics (INEC) IV. Multiple regression model Autumn 2011 18 / 40



Hypothesis testing

Introduction

General model:

Yi = α+ β1X1i + β2X2i + . . .+ βkXki + εi .

Hypothesis including more parameters.
F -tests and likelihod ratio tests.
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Hypothesis testing F-test
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Hypothesis testing F-test

Basic test

Test R2 = 0 meets the hypothesis:

H0 : β1 = . . . = βk = 0.

not the same as k individual hypothesis H0 : β1 = 0, H0 : β2 = 0 až
H0 : βk = 0.
F -statistics for a model with k explanatory variabes and an intercept:

F =
R2

1− R2
N − k − 1

k .

Assuming null hypothesis is true, F -statistics is distributed as
Fk,N−k−1.
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Hypothesis testing F-test

General tests

Unresticted model:

Yi = α+ β1X1i + β2X2i + β3X3i + εi .

For example:
H0 : β1 = β2 = 0.

Able to include any linear restrictions: aβ1 + bβ2 + cβ3 = d for some
constants a, b, c a d .
Restricted model:

Yi = α+ β3X3i + εi .

Introduction to econometrics (INEC) IV. Multiple regression model Autumn 2011 22 / 40



Hypothesis testing F-test

General tests — examples

Hypothesis:
H0 : β1 = 0, β2 + β3 = 1.

Second restriction ay be written as β2 = 1− β3.
Resticted model:

Yi − X2i = α+ β3 (X3i − X2i) + εi .

Simple LRM with dependent variable Y − X2, with an intercept and
the explaining variable (X3i − X2i).
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Hypothesis testing F-test

General tests – F -test

For inear restrictions; test statistics:

F =
(SSRR − SSRUR) /q
SSRUR/ (N − k − 1) .

SSR is sum of squared residuals, subscripts UR (unresticted model)
and R (restricted model).
Number of restrictions is q.
Intuition: „big“ values of F suggest H0 is not correct.
F is distributed as Fq,N−k−1.
F -statistics using R2 (only for the same dependent variables in both
models):

F =

(
R2

UR − R2
R
)
/q(

1− R2
UR
)
/ (N − k − 1)

.
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Hypothesis testing Likelihood ratio tests
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Hypothesis testing Likelihood ratio tests

Motivace

More complicated than F -test × wider variety of applications.
Likelihood function:

L
(
α, β1, . . . , βk , σ

2
)

=
N∏

i=1

1√
2πσ2

exp
[
− 1
2σ2 (Yi − α− β1X1i − . . .− βkXki)

2
]

=
1

(2πσ2)
N
2
exp

[
− 1
2σ2

N∑
i=1

(Yi − α− β1X1i − . . .− βkXki)
2
]
.
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Hypothesis testing Likelihood ratio tests

Some basic results

ML estimates correspond to OLS estimates: α̂, β̂1,. . . , β̂k .
ML estimate of the error terms variance is biased:

σ̂2 =

∑(
Yi − α̂− β̂1X1i , . . . , β̂kXki

)2
N

=

∑
ε̂2i

N .

Likelihood for unrestricted MLEs:

L
(
α̂U , β̂U

1 , . . . , β̂
U
k , σ̂

2U
)
.

Likelihood evaluated at restricted MLEs:

L
(
α̂R , β̂R

1 , . . . , β̂
R
k , σ̂

2R
)
.
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Hypothesis testing Likelihood ratio tests

Ilustration

Three explaining variables.

H0 : β1 = 0, β2 + β3 = 1.

Restricted model

Yi − X2i = α+ β3 (X3i − X2i) + εi .

OLS estimates → α̂R a β̂R
3 .

Values of β̂R
1 and β̂R

2 ? → restrictions from H0, β̂R
1 and β̂R

2 = 1− β̂R
3 .

Possible noninear restrictions, e.g.: H0 : β1 = β32 ,, β3 = 1
β2
→ in

general H0 : g(β1, . . . , βk) = 0, where g(·) is a set of k noninear
functions.
Non-linear estimates using econometric software.
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Hypothesis testing Likelihood ratio tests

Likelihood ratio test

Likelihood ratio:

λ =
L
(
α̂R , β̂R

1 , . . . , β̂
R
k , σ̂

2R
)

L
(
α̂U , β̂U

1 , . . . , β̂
U
k , σ̂

2U
) .

Test statistics −2 ln(λ).
Statistics is distributed (approximately) as χ2: −2 ln(λ) ∼ χ2q (q is a
number of restrictions in H0).
Intuition: including restrictions leads to a lower likelihood.
Platí: L

(
α̂R , β̂R

1 , . . . , β̂
R
k , σ̂

2R
)
≤ L

(
α̂U , β̂U

1 , . . . , β̂
U
k , σ̂

2U
)
a tedy

0 ≤ λ ≤ 1.
H0 is true ⇒ λ should be near 1 ⇒ test statistics −2 ln(λ) should be
small.
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Hypothesis testing Likelihood ratio tests

Examples

Koop (2008), pp. 107–108.
Figure of N(1, 2).
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Hypothesis testing Likelihood ratio tests

Likelihood function

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

β

L(β=0)

MLE

L(β=−2)

L(β=MLE)

Introduction to econometrics (INEC) IV. Multiple regression model Autumn 2011 31 / 40



Hypothesis testing Likelihood ratio tests

Alternative for LRM

Likelihood function:

L
(
α̂, β̂1, . . . , β̂k , σ̂

2
)

=
1

(2πσ̂2)
N
2
exp

[
− 1
2σ̂2

N∑
i=1

(
Yi − α̂− β̂1X1i − . . .− β̂kXki

)2]
.

Using variance estimates: σ̂2:

L
(
α̂, β̂1, . . . , β̂k , σ̂

2
)
∝ 1

(σ̂2)
N
2
∝ 1

(SSR)
N
2
,

where SSR =
∑
ε̂2i .

Likelihood ratio: λ =

1

(SSRR)
N
2

1

(SSRU)
N
2

=

(
SSRU

SSRR

)N
2

.
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Hypothesis testing Likelihood ratio tests

Wald and Lagrange multiplier tests

Approximations of LR test.

Abraham Wald
(1902–1950)

Joseph-Louis Lagrange
(1736–1813)
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Hypothesis testing Likelihood ratio tests

Wald test

Only unrestricted estimates.
Example: hypothesis H0 : g(α, β1, β2, . . . , βk) = c
ML estimates α̂U , β̂U

1 , . . . , β̂
U
k .

Idea: if H0 is true then unrestricted estimates should meet the
restrictions (approximately).
g(α̂U , β̂U

1 , . . . , β̂
U
k ) near c.
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Hypothesis testing Likelihood ratio tests

Wald test – statistics

Wald statistics:

W =

[
g
(
α̂U , β̂U

1 , . . . , β̂
U
k

)
− c

]2
var

[
g
(
α̂U , β̂U

1 , . . . , β̂
U
k

)] .
In some cases denominator easy to compute, e.g. for
g(α̂U , β̂U

1 , . . . , β̂
U
k ) = β̂U

1 + β̂U
2 :

var
(
β̂U
1 + β̂U

2

)
= var

(
β̂U
1

)
+ var

(
β̂U
2

)
+ 2cov

(
β̂U
1 , β̂

U
2

)
.

Non-linear restrictions → ekonometric software.
Distribution of the test statistics:

W ∼ χ2q,

where q is number of restrictions.
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Hypothesis testing Likelihood ratio tests

Lagrange multiplier test

Only restricted estimates.
Example: unrestricted model, simple LRM, β; restricted model for
H0 : β = c.
β̂R = c.
Motivation: if H0 true, then MLE of restricted model should be close
to unrestricted MLE (in our case, c should be near β̂ (OLS or ML
estimate).
Basic calculus: maximum of likelihood function, first derivative equals
zero (slope).
If H0 true, then derivative of likelihood function evaluated at β̂R

should be close to zero.
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Hypothesis testing Likelihood ratio tests

Lagrange multiplier test – statistics

Test statistics:

LM =

[
d ln L

(
β̂R
)]2

I
(
β̂R
) .

Intuition: how far away from zero does the slope of the likelihood
function become if we impose the restrictions?
Numerator is the direct measure of its size × relative to its
uncertainty.
Denominator LM is related to the variance of the first derivative of
the likelihood function: I (·) (information matrix).
LM statistics is distributed approximately (assymptotically) as:

LM ∼ χ2q,

where q is the number of restrictions in H0.
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Hypothesis testing Likelihood ratio tests

Comparing tests

Likelihood ratio (LR) test, Wald test (W), Lagrange multiplier test
(LM).
Log-likelihood (ln L) as a function of β; βMLE maximum; restriction
g(β) = 0; restricted value βMLE

R .

Zdroj: Kennedy (2008) – A Guide to Econometrics.
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Other issues

Choice of functional form

Koop (2008), pp. 109–115 (including examples).
Non-linearity in regression.
Logarithms of the variables and interpretation of the parameters.
Interaction terms and power of the variables– changing marginal
effects.
How to decide which non-linear form?
Changing the measure of variables – any changes in estimates and
appropriate statistics?
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