Introduction to econometrics

IV. Multiple linear regression model

 2990

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Content

2 [Choice of explanatory variables](#page-10-0)

3 [Hypothesis testing](#page-17-0)

- [F-test](#page-19-0)
- [Likelihood ratio tests](#page-24-0)

[Other issues](#page-38-0)

 QQ

Introduction

- Multiple LRM discussed in more detail.
- Some proofs as an illustration.
- Hypothesis testing extended methods.

イロト イ押ト イヨト イヨト

 2990

Content

- [Choice of explanatory variables](#page-10-0)
- **[Hypothesis testing](#page-17-0)**
	- [F-test](#page-19-0)
	- **.** [Likelihood ratio tests](#page-24-0)

[Other issues](#page-38-0)

G.

 QQ

イロト イ部 トイモ トイモト

Classical assumptions

- $E(\epsilon_i) = 0.$
- **2** var $(\epsilon_i) = E(\epsilon_i^2) = \sigma^2$.
- 3 $cov(\epsilon_i, \epsilon_j) = 0$ for $i \neq j$.
- ϵ_i is Normally distributed.
- \bm{s} X_{1i},\ldots,X_{ki} are fixed (non-random) variables.

KOD KARD KED KED ORA

[Basic results](#page-5-0)

Parameters estimates – two explaining variables

Model:

$$
Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i.
$$

• Minimize SSR:

$$
\widehat{\beta}_1 = \frac{\left(\sum x_{1i}y_i\right)\left(\sum x_{2i}^2\right) - \left(\sum x_{2i}y_i\right)\left(\sum x_{1i} \sum x_{2i}\right)}{\left(\sum x_{1i}^2\right)\left(\sum x_{2i}^2\right) - \left(\sum x_{1i}x_{2i}\right)^2},
$$
\n
$$
\widehat{\beta}_2 = \frac{\left(\sum x_{2i}y_i\right)\left(\sum x_{1i}^2\right) - \left(\sum x_{1i}y_i\right)\left(\sum x_{1i} \sum x_{2i}\right)}{\left(\sum x_{1i}^2\right)\left(\sum x_{2i}^2\right) - \left(\sum x_{1i}x_{2i}\right)^2},
$$
\n
$$
\widehat{\alpha} = \overline{Y} - \widehat{\beta}_1\overline{X}_1 - \widehat{\beta}_2\overline{X}_2,
$$

where

$$
y_i = Y_i - \overline{Y},
$$

\n
$$
x_{1i} = X_{1i} - \overline{X}_1,
$$

\n
$$
x_{2i} = X_{2i} - \overline{X}_2.
$$

Introduction to econometrics (INEC) [IV. Multiple regression model](#page-0-0) Autumn 2011 6 / 40

造

 $A \Box B$ A

OLS estimate – error terms variance

Unbiased estimator, σ^2 :

$$
s^2 = \frac{\sum \widehat{\epsilon}_i^2}{N - k - 1},
$$

where

$$
\widehat{\epsilon}_i = Y_i - \widehat{\alpha} - \widehat{\beta}_1 X_{1i} - \ldots - \widehat{\beta}_k X_{ki}
$$

are OLS residuals.

 η an

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Estimating variance of parameters estimates – two regressors

 \bullet Case $k = 2$

$$
\text{var}\left(\widehat{\beta}_1\right) = \frac{\sigma^2}{(1 - r^2) \sum x_{1i}^2},
$$
\n
$$
\text{var}\left(\widehat{\beta}_2\right) = \frac{\sigma^2}{(1 - r^2) \sum x_{2i}^2},
$$

where r is (sample) correlation coefficient between X_1 and X_2 .

- In practice estimates of σ^2 .
- Useful for hypothesis testing.

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Test of parameter significance (assuming σ^2 is known)

- Koop (2008), p. 94.
- In practice σ^2 is not known \Rightarrow *t*-test.

 QQ

Measure of model fit

• Coefficient of determination:

$$
R^{2} = 1 - \frac{SSR}{TSS} = 1 - \frac{\sum \widehat{\epsilon}_{i}^{2}}{\sum (Y_{i} - \overline{Y})^{2}}.
$$

Adding new explanatory variables will always increase \mathcal{R}^2 . Adjusted R^2 , \overline{R}^2 :

$$
\overline{R}^2 = 1 - \frac{\frac{SSR}{N-k-1}}{\frac{TSS}{N-1}} = 1 - \frac{s^2}{\frac{1}{N-1}\sum_{i} \left(Y_i - \overline{Y}\right)^2}.
$$

Introduction to econometrics (INEC) [IV. Multiple regression model](#page-0-0) Autumn 2011 10 / 40

G.

 QQ

Content

2 [Choice of explanatory variables](#page-10-0)

[Hypothesis testing](#page-17-0)

- [F-test](#page-19-0)
- **•** [Likelihood ratio tests](#page-24-0)

[Other issues](#page-38-0)

G.

イロト イ押ト イヨト イヨト

Omitted variable bias I

o True model:

$$
Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i.
$$

OLS estimates:

$$
\widehat{\beta}_1 = \frac{\left(\sum x_{1i}y_i\right)\left(\sum x_{2i}^2\right) - \left(\sum x_{2i}y_i\right)\left(\sum x_{1i} \sum x_{2i}\right)}{\left(\sum x_{1i}^2\right)\left(\sum x_{2i}^2\right) - \left(\sum x_{1i}x_{2i}\right)^2}.
$$

Lower-case letters – deviations from means.

G.

イロト イ押ト イヨト イヨト

 OQ

Omitted variable bias II

Model:

$$
Y_i = \alpha + \beta_1 X_{1i} + \epsilon_i.
$$

Parameter estimate of *β*1:

$$
\tilde{\beta}_1 = \frac{\sum x_{1i} y_i}{\sum x_{1i}^2},
$$

 $\tilde{\beta}_1$ is biased.

 OQ 画

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Omitted variable bias – proof

May be shown:

$$
E(\tilde{\beta}_1) = E\left(\beta_1 + \frac{\beta_2 \sum x_{1i}x_{2i}}{\sum x_{1i}^2} + \frac{\sum x_{1i}(\epsilon_i - \overline{\epsilon})}{\sum x_{1i}^2}\right)
$$

= $\beta_1 + \frac{\beta_2 \sum x_{1i}x_{2i}}{\sum x_{1i}^2}$.

 $\tilde{\beta}_1$ is biased.

造

 $A \Box B$ A

 299

Omitted variable bias – comments

- Bias does not exist in case $\beta_2 = 0$ or $\frac{\sum x_{1i}x_{2i}}{\sum x_{1i}^2}$.
- If $\beta_2 = 0$ then X_2 is not omitted.
- $\frac{\sum x_1, x_2,}{\sum x_1^2, x_2^2}$ connected with correlation between X_1 and X_2 (denoted by r).
- Bias does not arise if omitted variable is uncorrelated with included variabe.

KED KARD KED KED E VOOR

Inclusion of irrelevant explanatory variables

- True model: $Y_i = \alpha + \beta_1 X_{1i} + \epsilon_i$.
- Incorrect specification: $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$.
- Wrong estimator:

$$
\tilde{\beta}_1 = \frac{\left(\sum x_{1i}y_i\right)\left(\sum x_{2i}^2\right) - \left(\sum x_{2i}y_i\right)\left(\sum x_{1i}\sum x_{2i}\right)}{\left(\sum x_{1i}^2\right)\left(\sum x_{2i}^2\right) - \left(\sum x_{1i}x_{2i}\right)^2}.
$$

• Correct estimator:

$$
\widehat{\beta}_1 = \frac{\sum x_{1i} y_i}{\sum x_{1i}^2}.
$$

- If $\tilde{\beta}_1$ unbiased, then using Gauss-Markov theorem $\mathsf{var}\left(\tilde{\beta}_1\right) > \mathsf{var}\left(\widehat{\beta}_1\right).$
- Including irreevant variables leads to less precise estimates.

 QQQ

Multicollinearity

- High or perfect correlation among explanatory variables.
- OLS estimator has problem estimating separate marginal effects.
- Two explanatory variables:

$$
\operatorname{var}\left(\widehat{\beta}_{1}\right) = \frac{\sigma^{2}}{(1 - r^{2}) \sum x_{1i}^{2}},
$$

$$
\operatorname{var}\left(\widehat{\beta}_{2}\right) = \frac{\sigma^{2}}{(1 - r^{2}) \sum x_{2i}^{2}}.
$$

• Used in hypothesis testing. High multicolinearity \rightarrow small t-statistic, wide confidence intervals.

 $=$ Ω

Content

[Choice of explanatory variables](#page-10-0)

3 [Hypothesis testing](#page-17-0)

- [F-test](#page-19-0)
- [Likelihood ratio tests](#page-24-0)

[Other issues](#page-38-0)

э

イロト イ押ト イヨト イヨト

Introduction

General model:

$$
Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + \epsilon_i.
$$

- Hypothesis including more parameters.
- F-tests and likelihod ratio tests.

G.

イロト イ押ト イヨト イヨト

Content

- [Choice of explanatory variables](#page-10-0)
- 3 [Hypothesis testing](#page-17-0) [F-test](#page-19-0)
	- **•** [Likelihood ratio tests](#page-24-0)

[Other issues](#page-38-0)

э

イロト イ押ト イヨト イヨト

Basic test

Test $R^2=0$ meets the hypothesis:

$$
H_0: \beta_1 = \ldots = \beta_k = 0.
$$

- not the same as k individual hypothesis H_0 : $\beta_1 = 0$, H_0 : $\beta_2 = 0$ až H_0 : $\beta_k = 0$.
- \bullet F-statistics for a model with k explanatory variabes and an intercept:

$$
F=\frac{R^2}{1-R^2}\frac{N-k-1}{k}.
$$

Assuming null hypothesis is true, F-statistics is distributed as $F_{k,N-k-1}$.

KOD KAR KED KED E VAN

General tests

Q Unresticted model:

$$
Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \epsilon_i.
$$

• For example:

$$
H_0: \beta_1=\beta_2=0.
$$

- Able to include any linear restrictions: $a\beta_1 + b\beta_2 + c\beta_3 = d$ for some constants a, b, c a d.
- Restricted model:

$$
Y_i = \alpha + \beta_3 X_{3i} + \epsilon_i.
$$

Introduction to econometrics (INEC) [IV. Multiple regression model](#page-0-0) Autumn 2011 22 / 40

 \equiv Ω

General tests — examples

• Hypothesis:

$$
H_0: \beta_1 = 0, \quad \beta_2 + \beta_3 = 1.
$$

- Second restriction ay be written as $\beta_2 = 1 \beta_3$.
- **e** Resticted model:

$$
Y_i-X_{2i}=\alpha+\beta_3(X_{3i}-X_{2i})+\epsilon_i.
$$

• Simple LRM with dependent variable $Y - X_2$, with an intercept and the explaining variable $(X_{3i} - X_{2i})$.

 $=$ Ω

General tests – F-test

• For inear restrictions: test statistics:

$$
F = \frac{(SSR_R - SSR_{UR})/q}{SSR_{UR}/(N-k-1)}.
$$

- SSR is sum of squared residuals, subscripts UR (unresticted model) and R (restricted model).
- Number of restrictions is q.
- Intuition: "big" values of F suggest H_0 is not correct.
- **•** F is distributed as $F_{a,N-k-1}$.
- F-statistics using R^2 (only for the same dependent variables in both models):

$$
F = \frac{\left(R_{UR}^2 - R_R^2\right)/q}{\left(1 - R_{UR}^2\right)/\left(N - k - 1\right)}.
$$

- 30

 Ω

- ④ → ④ ミト ④ ミト

Content

[Choice of explanatory variables](#page-10-0)

3 [Hypothesis testing](#page-17-0)

- [F-test](#page-19-0)
- [Likelihood ratio tests](#page-24-0)

[Other issues](#page-38-0)

э

 QQ

Motivace

- More complicated than F -test \times wider variety of applications.
- Likelihood function:

$$
L(\alpha, \beta_1, ..., \beta_k, \sigma^2)
$$

=
$$
\prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{1}{2\sigma^2} (Y_i - \alpha - \beta_1 X_{1i} - ... - \beta_k X_{ki})^2 \right]
$$

=
$$
\frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^N (Y_i - \alpha - \beta_1 X_{1i} - ... - \beta_k X_{ki})^2 \right].
$$

G.

 $A \Box B$ A

Some basic results

- ML estimates correspond to OLS estimates: $\widehat{\alpha}, \ \beta_1, \ldots, \ \beta_k$.
. . .
- ML estimate of the error terms variance is biased:

$$
\hat{\sigma}^2 = \frac{\sum (\gamma_i - \hat{\alpha} - \hat{\beta}_1 X_{1i}, \dots, \hat{\beta}_k X_{ki})^2}{N}
$$

$$
= \frac{\sum \hat{\epsilon}_i^2}{N}.
$$

a Likelihood for unrestricted MLEs:

$$
L\left(\widehat{\alpha}^U,\widehat{\beta}_1^U,\ldots,\widehat{\beta}_k^U,\widehat{\sigma}^{2U}\right).
$$

a Likelihood evaluated at restricted MLEs:

$$
L\left(\widehat{\alpha}^R, \widehat{\beta}_1^R, \ldots, \widehat{\beta}_k^R, \widehat{\sigma}^{2R}\right).
$$

G. Ω

Ilustration

• Three explaining variables.

$$
H_0: \beta_1=0, \quad \beta_2+\beta_3=1.
$$

• Restricted model

$$
Y_i-X_{2i}=\alpha+\beta_3(X_{3i}-X_{2i})+\epsilon_i.
$$

- OLS estimates $\rightarrow \widehat{\alpha}^R$ a $\widehat{\beta}_3^R$.
- Values of $\widehat{\beta}_1^R$ and $\widehat{\beta}_2^R$? \to restrictions from H_0 , $\widehat{\beta}_1^R$ and $\widehat{\beta}_2^R = 1 \widehat{\beta}_3^R$.
- Possible noninear restrictions, e.g.: $H_0: \beta_1 = \beta_2^3$, $\beta_3 = \frac{1}{\beta_2} \rightarrow \text{in}$ general H_0 : $g(\beta_1,\ldots,\beta_k)=0$, where $g(\cdot)$ is a set of k noninear functions.
- Non-linear estimates using econometric software.

KID KA KID KID KID KOQO

Likelihood ratio test

a Likelihood ratio:

$$
\lambda = \frac{L\left(\widehat{\alpha}^{R}, \widehat{\beta}_{1}^{R}, \ldots, \widehat{\beta}_{k}^{R}, \widehat{\sigma}^{2R}\right)}{L\left(\widehat{\alpha}^{U}, \widehat{\beta}_{1}^{U}, \ldots, \widehat{\beta}_{k}^{U}, \widehat{\sigma}^{2U}\right)}.
$$

- Test statistics −2 ln(*λ*).
- Statistics is distributed (approximately) as χ^2 : $-2\ln(\lambda) \sim \chi_{\bm{q}}^2$ (\bm{q} is a number of restrictions in H_0).
- **•** Intuition: including restrictions leads to a lower likelihood.
- $\textsf{Platí:} \,\, L\left(\widehat{\alpha}^{\mathsf{\scriptsize{R}}},\widehat{\beta}^{\mathsf{\scriptsize{R}}}_1,\ldots,\widehat{\beta}^{\mathsf{\scriptsize{R}}}_k,\widehat{\sigma}^{2\mathsf{\scriptsize{R}}}\right)\leq L\left(\widehat{\alpha}^{\mathsf{\scriptsize{U}}},\widehat{\beta}^{\mathsf{\scriptsize{U}}}_1,\ldots,\widehat{\beta}^{\mathsf{\scriptsize{U}}}_k,\widehat{\sigma}^{2\mathsf{\scriptsize{U}}}\right) \,\, \textsf{a} \,\, \textsf{tedy}$ $0 < \lambda < 1$.
- \bullet *H*₀ is true \Rightarrow *λ* should be near 1 \Rightarrow test statistics $-2\ln(\lambda)$ should be small.

KED KARD KED KED E VOOR

Examples

- Koop (2008), pp. 107–108.
- Figure of $N(1, 2)$.

 OQ 造

イロト イ部 トイヨ トイヨト

Likelihood function

 298

Alternative for LRM

a Likelihood function:

$$
L(\widehat{\alpha}, \widehat{\beta}_1, \ldots, \widehat{\beta}_k, \widehat{\sigma}^2)
$$

=
$$
\frac{1}{(2\pi \widehat{\sigma}^2)^{\frac{N}{2}}} \exp \left[-\frac{1}{2\widehat{\sigma}^2} \sum_{i=1}^N \left(Y_i - \widehat{\alpha} - \widehat{\beta}_1 X_{1i} - \ldots - \widehat{\beta}_k X_{ki}\right)^2\right].
$$

• Using variance estimates: $\widehat{\sigma^2}$:

$$
L(\widehat{\alpha}, \widehat{\beta}_1, \ldots, \widehat{\beta}_k, \widehat{\sigma}^2) \propto \frac{1}{(\widehat{\sigma}^2)^{\frac{N}{2}}} \propto \frac{1}{(SSR)^{\frac{N}{2}}},
$$

.

where
$$
SSR = \sum \hat{\epsilon}_i^2
$$
.
\n• Likelihood ratio: $\lambda = \frac{\frac{1}{(SSR^R)^{\frac{N}{2}}}}{\frac{1}{(SSR^U)^{\frac{N}{2}}}} = \left(\frac{SSR^U}{SSR^R}\right)^{\frac{N}{2}}$.

G.

 Ω

Wald and Lagrange multiplier tests

Approximations of LR test.

Abraham Wald (1902–1950)

Joseph-Louis Lagrange (1736–1813)

4 **D F**

 Ω

Wald test

- Only unrestricted estimates.
- **•** Example: hypothesis H_0 : $g(\alpha, \beta_1, \beta_2, \dots, \beta_k) = c$
- ML estimates $\widehat{\alpha}^{\textit{U}}, \widehat{\beta}^{\textit{U}}_1, \ldots, \widehat{\beta}^{\textit{U}}_k$.
- \bullet Idea: if H_0 is true then unrestricted estimates should meet the restrictions (approximately).
- $g(\widehat{\alpha}^{U},\widehat{\beta}_{1}^{U},\ldots,\widehat{\beta}_{k}^{U})$ near *c*.

 \overline{AB} \rightarrow \overline{AB} $\$

Wald test – statistics

• Wald statistics:

$$
W = \frac{\left[g\left(\widehat{\alpha}^{U}, \widehat{\beta}_{1}^{U}, \ldots, \widehat{\beta}_{k}^{U}\right) - c\right]^{2}}{\text{var}\left[g\left(\widehat{\alpha}^{U}, \widehat{\beta}_{1}^{U}, \ldots, \widehat{\beta}_{k}^{U}\right)\right]}.
$$

• In some cases denominator easy to compute, e.g. for $g(\hat{\alpha}^U, \hat{\beta}_1^U, \ldots, \hat{\beta}_k^U) = \hat{\beta}_1^U + \hat{\beta}_2^U$

$$
\textit{var}\left(\widehat{\beta}_1^{\mathsf{U}}+\widehat{\beta}_2^{\mathsf{U}}\right)=\textit{var}\left(\widehat{\beta}_1^{\mathsf{U}}\right)+\textit{var}\left(\widehat{\beta}_2^{\mathsf{U}}\right)+2\textit{cov}\left(\widehat{\beta}_1^{\mathsf{U}},\widehat{\beta}_2^{\mathsf{U}}\right).
$$

- \bullet Non-linear restrictions \rightarrow ekonometric software.
- Distribution of the test statistics:

$$
W \sim \chi_q^2
$$

where q is number of restrictions.

Introduction to econometrics (INEC) [IV. Multiple regression model](#page-0-0) Autumn 2011 35 / 40

 \equiv \cap α

Lagrange multiplier test

- Only restricted estimates.
- Example: unrestricted model, simple LRM, *β*; restricted model for H_0 : $\beta = c$.
- $\widehat{\beta}^R = c.$
- Motivation: if H_0 true, then MLE of restricted model should be close to unrestricted MLE (in our case, c should be near ^b*β* (OLS or ML estimate).
- Basic calculus: maximum of likelihood function, first derivative equals zero (slope).
- If H_0 true, then derivative of likelihood function evaluated at $\widehat{\beta}^R$ should be close to zero.

 $=$ Ω

Lagrange multiplier test – statistics

• Test statistics:

$$
LM = \frac{\left[d \ln L\left(\widehat{\beta}^R\right)\right]^2}{I\left(\widehat{\beta}^R\right)}.
$$

- Intuition: how far away from zero does the slope of the likelihood function become if we impose the restrictions?
- Numerator is the direct measure of its size \times relative to its uncertainty.
- \bullet Denominator LM is related to the variance of the first derivative of the likelihood function: $I(\cdot)$ (information matrix).
- LM statistics is distributed approximately (assymptotically) as:

$$
LM \sim \chi_q^2,
$$

where q is the number of restrictions in H_0 [.](#page-35-0)

Introduction to econometrics (INEC) [IV. Multiple regression model](#page-0-0) Autumn 2011 37 / 40

 QQQ

Comparing tests

- Likelihood ratio (LR) test, Wald test (W), Lagrange multiplier test (LM).
- Log-likelihood (ln L) as a function of *β*; *β* MLE maximum; restriction $\mathcal{g}(\beta)=0$; restricted value β^{MLE}_R .

Zdroj: Kennedy (2008) – A Guide to Econometrics.

Introduction to econometrics (INEC) [IV. Multiple regression model](#page-0-0) Autumn 2011 38 / 40

 Ω

Content

[Basic results](#page-3-0)

[Choice of explanatory variables](#page-10-0)

[Hypothesis testing](#page-17-0)

- [F-test](#page-19-0)
- **.** [Likelihood ratio tests](#page-24-0)

[Other issues](#page-38-0)

э

 $A \Box B$ A

Choice of functional form

- Koop (2008), pp. 109–115 (including examples).
- Non-linearity in regression.
- Logarithms of the variables and interpretation of the parameters.
- Interaction terms and power of the variables– changing marginal effects.
- How to decide which non-linear form?
- Changing the measure of variables any changes in estimates and appropriate statistics?

 QQQ