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Goodness-of-fit R²Goodness-of-fit R²

The quality of the model yi = xi'β + εi can be measured by R
2, the 

goodness-of-fit (GoF) statistic

� R2 is the portion of the variance in y that can be explained by the 
linear regression with regressors xk, k=1,…,K

{ } ∑
k

x

{ }
{ } ∑

∑
−−
−−

==
i i

i i

i

i

yyN

yyN

yV

yV
R

2

2

2

)()1/(1

)ˆ()1/(1

ˆ

ˆˆ

� If the model contains an intercept (as usual):  
x
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with Ṽ{ei} = (Σi ei²)/(N-1)
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� Alternatively, R2 can be calculated as

{ }ii yycorrR ˆ,22 =
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Properties of R2Properties of R

� 0 ≤ R2 ≤ 1, if the model contains an intercept 

� R2 = 1: all residuals are zero

� R2 = 0: for all regressors, bk = 0; the model explains nothing

� Comparisons of R2 for two models makes no sense if the 
explained variables are differentexplained variables are different

� R2 cannot decrease if a variable is added

xx
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Example: Individ. Wages, cont’dExample: Individ. Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

xx

only 3,17% of the variation of individual wages p.h. is due to the 
gendergender
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Other GoF MeasuresOther GoF Measures

� For the case of no intercept: Uncentered R2; cannot become 
negative

Uncentered R2 = 1 – Σi ei²/ Σi yi²

� For comparing models: adjusted R2; compensated for added � For comparing models: adjusted R ; compensated for added 
regressor, penalty for increasing K
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for a given model, adj R2 is smaller than R2
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� For other than OLS estimated models

{ }ii yycorr ˆ,2

it coincides with R2 for OLS estimated models

{ }ii yycorr ˆ,
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Individual WagesIndividual Wages

OLS estimated wage equation (Table 2.1, Verbeek)

xx

b1 = 5,147, se(b1) = 0,081: mean wage p.h. for females: 5,15$, 
with std.error of 0,08$

b = 1,166, se(b ) = 0,112b2 = 1,166, se(b2) = 0,112

95% confidence interval for β1: 4,988 ≤ β1 ≤ 5,306
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OLS Estimator: Distributional OLS Estimator: Distributional 
Properties
Under the assumptions (A1) to (A5): 

� The OLS estimator b = (X’X)-1 X’y is normally distributed with mean � The OLS estimator b = (X’X) X’y is normally distributed with mean 
β and covariance matrix V{b} = σ2(X‘X)-1

b ~ N(β, σ2(X’X)-1), bk ~ N(βk, σ
2ckk), k=1,…,Kk k kk

� The statistic
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follows the t-distribution with N-K degrees of freedom (df)
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Testing a Regression Testing a Regression 
Coefficient: t-Test
For testing a restriction wrt a single regression coefficient βk:
� Null hypothesis H0: βk = q� Null hypothesis H0: βk = q
� Alternative HA: βk > q
� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 

under the null hypothesis)

k
k
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t

−=

� tk is a realization of the random variable tN-K, which follows the t-
distribution with N-K degrees of freedom (df = N-K)

)( k

k
bse

t =

k N-K

distribution with N-K degrees of freedom (df = N-K)

� under H0 and 

given the Gauss-Markov assumptions and normality of the errors� given the Gauss-Markov assumptions and normality of the errors

� Reject H0, if the p-value P{tN-K > tk | H0} is small (tk-value is large)
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Normal and t-DistributionNormal and t-Distribution

Standard normal distribution: Z ~ N(0,1)

� Distribution function Φ(z) = P{Z ≤ z}� Distribution function Φ(z) = P{Z ≤ z}

t(df)-distribution

� Distribution function F(t) = P{Tdf ≤ t}

� p-value: P{TN-K > tk | H0} = 1 – FH0(tk)

For growing df, the t-distribution approaches the standard normal 
distribution, t follows asymptotically (N → ∞) the N(0,1)-distributiondistribution, t follows asymptotically (N → ∞) the N(0,1)-distribution

� 0.975-percentiles tdf,0.975 of the t(df)-distribution

df 5 10 20 30 50 100 200 ∞

� 0.975-percentile of the standard normal distribution: z0.975 = 1.96

df 5 10 20 30 50 100 200 ∞

tdf,0.025 2.571 2.228 2.085 2.042 2.009 1.984 1.972 1.96

� 0.975-percentile of the standard normal distribution: z0.975 = 1.96
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OLS Estimators: Asymptotic OLS Estimators: Asymptotic 
DistributionDistribution
If the Gauss-Markov (A1) - (A4) assumptions hold but not the 

normality assumption (A5): 

t-statistic
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� follows asymptotically (N → ∞) the standard normal distribution

In many situations, the unknown exact properties are substituted by 

)( k

k
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In many situations, the unknown exact properties are substituted by 
approximate results (asymptotic theory)

The t-statisticThe t-statistic

� Follows the t-distribution with N-K d.f. 

� Follows approximately the standard normal distribution N(0,1)� Follows approximately the standard normal distribution N(0,1)

The approximation error decreases with increasing sample size N
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Two-sided t-TestTwo-sided t-Test

For testing a restriction wrt a single regression coefficient βk:
� Null hypothesis H0: βk = q� Null hypothesis H0: βk = q
� Alternative HA: βk ≠ q
� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 

under the null hypothesis)

k
k
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−=

� Reject H0, if the p-value P{TN-K > |tk| | H0} is small (|tk|-value is large)
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0 N-K k 0 k
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

Test of null hypothesis H0: β2 = 0 (no gender effect on wages) 
against 

0 2 

against HA: β2 > 0 

t2 = b2/se(b2) = 1.1661/0.1122 = 10.38

Under H , T follows the t-distribution with df = 3294-2 = 3292Under H0, T follows the t-distribution with df = 3294-2 = 3292

p-value = P{T3292 > 10.38 | H0} = 3.7E-25: reject H0!
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation: Output from GRETL

Modell 1: KQ, benutze die Beobachtungen 1-3294Modell 1: KQ, benutze die Beobachtungen 1-3294
Abhängige Variable: WAGE

Koeffizient Std. Fehler t-Quotient P-WertKoeffizient Std. Fehler t-Quotient P-Wert

const 5,14692 0,0812248 63,3664 <0,00001 ***
MALE 1,1661 0,112242 10,3891 <0,00001 ***

Mittel d. abh. Var. 5,757585 Stdabw. d. abh. Var. 3,269186
Summe d. quad. Res. 34076,92 Stdfehler d. Regress. 3,217364
R-Quadrat 0,031746 Korrigiertes R-Quadrat 0,031452R-Quadrat 0,031746 Korrigiertes R-Quadrat 0,031452
F(1, 3292) 107,9338 P-Wert(F) 6,71e-25
Log-Likelihood -8522,228 Akaike-Kriterium 17048,46
Schwarz-Kriterium 17060,66 Hannan-Quinn-Kriterium 17052,82Schwarz-Kriterium 17060,66 Hannan-Quinn-Kriterium 17052,82

p-value for tMALE-test: < 0,00001
„gender has a significant effect on wages p.h“
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Significance TestsSignificance Tests

For testing a restriction wrt a single regression coefficient βk:
� Null hypothesis H0: βk = q� Null hypothesis H0: βk = q
� Alternative HA: βk ≠ q
� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 

under the null hypothesis)

k
k
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� Determine the critical value tN-K,1-α/2 for the significance level α from 

)( k

k
bse

t =

N-K,1-α/2

P{|Tk| > tN-K,1-α/2 | H0} = α
� Reject H0, if |Tk| > tN-K,1-α/20 k N-K,1-α/2

� Typically, α has the value 0.05
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Significance Tests, cont’dSignificance Tests, cont’d

One-sided test :

� Null hypothesis H0: βk = q� Null hypothesis H0: βk = q
� Alternative HA: βk > q (βk < q)
� Test statistic: (computed from the sample with known distribution � Test statistic: (computed from the sample with known distribution 

under the null hypothesis)

k
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� Determine the critical value tN-K,α for the significance level α from 

)( k

k
bse

t =

N-K,α

P{Tk > tN-K,α | H0} = α
� Reject H0, if tk > tN-K,α (tk < -tN-K,α)0 k N-K,α k N-K,α
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Confidence Interval for βkConfidence Interval for βk

Range of values (bkl, bku) for which the null hypothesis on βk is not 
rejected 

bkl = bk - tN-K,1-α/2 se(bk) < βk < bk + tN-K,1-α/2 se(bk) = bkl

� Refers to the significance level α of the test

� For large values of df and α = 0.05 (1.96 ≈ 2)

bk – 2 se(bk) < βk < bk + 2 se(bk)k k k k k

� Confidence level: γ = 1- α
Interpretation:

� A range of values for the true βk that are not unlikely, given the data 
(?)

A range of values for the true β such that 100γ% of all intervals � A range of values for the true βk such that 100γ% of all intervals 
constructed in that way contain the true βk 
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation (Table 2.1, Verbeek)

The confidence interval for the gender wage difference (in USD p.h.)

� confidence level γ = 0.95
1.1661 – 1.96*0.1122 < β2 < 1.1661 + 1.96*0.1122 

β β0.946 < β2 < 1.386  (or 0.94 < β2 < 1.39) 
� γ = 0.99: 0.877 < β2 < 1.455
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Testing a Linear Restriction on Testing a Linear Restriction on 
Regression Coefficients
Linear restriction r’β = q

� Null hypothesis H0: r’β = q� Null hypothesis H0: r’β = q

� Alternative HA: r’β > q

� Test statistic� Test statistic

)'(

'

brse

qbr
t

−=

se(r’b) is the square root of V{r’b} = r’V{b}r 

� Under H0 and (A1)-(A5), t follows the t-distribution with df = N-K

)'( brse

� Under H0 and (A1)-(A5), t follows the t-distribution with df = N-K

GRETL: The option Linear restrictions from Tests on the output 
window of the Model statement Ordinary Least Squares allows to window of the Model statement Ordinary Least Squares allows to 
test linear restrictions on the regression coefficients
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Testing Several Regression Testing Several Regression 
Coefficients: F-test
For testing a restriction wrt more than one, say J with 1<J<K, 

regression coefficients:

� Null hypothesis H0: βk = 0, K-J+1 ≤ k ≤ K

� Alternative HA: for at least one k, K-J+1 ≤ k ≤ K, βk ≠ 0A k

� F-statistic: (computed from the sample, with known distribution 
under the null hypothesis; R0

2 (R1
2): R2 for (un)restricted model)

/)( 22 JRR −

F follows the F-distribution with J and N-K d.f.
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F follows the F-distribution with J and N-K d.f.

� under H0 and given the Gauss-Markov assumptions (A1)-(A4) 
and normality of the εi (A5)and normality of the εi (A5)

� Reject H0, if the p-value P{FJ,N-K > F | H0} is small (F-value is large)

� The test with J = K-1 is a standard test in GRETL� The test with J = K-1 is a standard test in GRETL
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Individual Wages, cont’dIndividual Wages, cont’d

A more general model is

wagei = β1 + β2 malei + β3 schooli + β4 experi + εiwagei = β1 + β2 malei + β3 schooli + β4 experi + εi

β2 measures the difference in expected wages p.h. between males 
and females, given the other regressors fixed, i.e., with the same 
schooling and experience: ceteris paribus conditionschooling and experience: ceteris paribus condition

Have school and exper an explanatory power?

Test of null hypothesis H : β = β = 0 against Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not  true 

� R0
2 = 0.0317

R 2 = 0.1326 � R1
2 = 0.1326 

24.191
2/)0317.01326.0( =

−−
−=F

� p-value = P{F2,3290 > 191.24 | H0} = 2.68E-79

24.191
)43294/()1326.01(

=
−−

=F
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Individual Wages, cont’dIndividual Wages, cont’d

OLS estimated wage equation (Table 2.2, Verbeek)
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Alternatives for Testing Alternatives for Testing 
Several Regression Coefficients
Test again

� H0: βk = 0, K-J+1 ≤ k ≤ K� H0: βk = 0, K-J+1 ≤ k ≤ K

� HA: at least one of these βk ≠ 0
1. The test statistic F can alternatively be calculated as1. The test statistic F can alternatively be calculated as

x)/(

/)(

1

10

KNS

JSS
F

−
−=

� S0 (S1): sum of squared residuals for the (un)restricted model

� F follows under H0 and (A1)-(A5) the F(J,N-K)-distribution

x)/(1 KNS −

� F follows under H0 and (A1)-(A5) the F(J,N-K)-distribution

2. If σ2 is known, the test can be based on 

F = (S0-S1)/σ2F = (S0-S1)/σ
under H0 and (A1)-(A5): Chi-squared distributed with J d.f.

� For large N, s2 is very close to σ2; test with F approximates F-test� For large N, s is very close to σ ; test with F approximates F-test
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Individual Wages, cont’dIndividual Wages, cont’d

A more general model is

wagei = β1 + β2 malei + β3 schooli + β4 experi + εiwagei = β1 + β2 malei + β3 schooli + β4 experi + εi

Have school and exper an explanatory power?

� Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not  true � Test of null hypothesis H0: β3 = β4 = 0 against HA: H0 not  true 

� S0 = 34076.92

� S1 = 30527.87� S1 = 30527.87

F = [(34076.92 - 30527.87)/2]/[30527.87/(3294-4)] = 191.24

Does any regressor contribute to explanation? Does any regressor contribute to explanation? 

� Overall F-test for H0: β2 = … = β4 = 0 against HA: H0 not  true (see 
Table 2.2 or GRETL-output): J=3Table 2.2 or GRETL-output): J=3

F = 167.63, p-value: 4.0E-101
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The General CaseThe General Case

Test of H0: Rβ = q 

Rβ = q: J linear restrictions on coefficients (R: JxK matrix, q: J-vector) Rβ = q: J linear restrictions on coefficients (R: JxK matrix, q: J-vector) 

Example: 


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Wald test: test statistic
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Wald test: test statistic

ξ = (Rb - q)’[RV{b}R’]-1(Rb - q) 

� follows under H0 for large N approximately the Chi-squared � follows under H0 for large N approximately the Chi-squared 
distribution with J d.f. 

� Test based on F = ξ /J is algebraically identical to the F-test with

)/(
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1
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−
−=
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p-value, Size, and Powerp-value, Size, and Power

Type I error: the null hypothesis is rejected, while it is actually true 

� p-value: the probability to commit the type I error� p-value: the probability to commit the type I error

� In experimental situations, the probability of committing the type I 
error can be chosen before applying the test; this probability is the 
significance level α and denoted the size of the testsignificance level α and denoted the size of the test

� In model-building situations, not a decision but learning from data is 
intended; multiple testing is quite usual; use of p-values is more intended; multiple testing is quite usual; use of p-values is more 
appropriate than using a strict α

Type II error: the null hypothesis is not rejected, while it is actually Type II error: the null hypothesis is not rejected, while it is actually 
wrong; the decision is not in favor of the true alternative

� The probability to decide in favor of the true alternative, i.e., not � The probability to decide in favor of the true alternative, i.e., not 
making a type II error, is called the power of the test; depends of 
true parameter values
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p-value, Size, and Power, cont’dp-value, Size, and Power, cont’d

� The smaller the size of the test, the larger is its power (for a given 
sample size)

� The more HA deviates from H0, the larger is the power of a test of a 
given size (given the sample size)

The larger the sample size, the larger is the power of a test of a � The larger the sample size, the larger is the power of a test of a 
given size

Attention! Significance vs relevance
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OLS Estimators: Asymptotic OLS Estimators: Asymptotic 
Properties Properties 
Gauss-Markov assumptions (A1)-(A4) plus the normality assumption 

(A5) are in many situations very restrictive

An alternative are properties derived from asymptotic theory

� Asymptotic results hopefully are sufficiently precise 
approximations for large (but finite) Napproximations for large (but finite) N

� Typically, Monte Carlo simulations are used to assess the quality 
of asymptotic results of asymptotic results 

Asymptotic theory: deals with the case where the sample size N
goes to infinity: N → ∞goes to infinity: N → ∞
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Chebychev’s Inequality Chebychev’s Inequality 

Chebychev’s Inequality: Bound for probability of deviations from its 
mean 

P{|z-E{z}| > rσ} < r-2

for all r>0; true for any distribution with moments E{z} and σ2 = 
V{z}V{z}

For OLS estimator bk: 2

  }  |-bP{|
σδβ kkc<>

for all δ>0; ckk: the k-th diagonal element of (X’X)-1 = (Σi xi xi’)-1
2kk   }  |-bP{|

δ
σδβ kkc<>

for all δ>0; ckk: the k-th diagonal element of (X’X) = (Σi xi xi’)

� For growing N: the elements of Σi xi xi’ increase, V{bk} decreases

� Given (A6) [see next slide], for all δ>0

0}|{|lim =>−∞→ δβkkN bP
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OLS Estimators: ConsistencyOLS Estimators: Consistency

If (A2) from the Gauss-Markov assumptions (uncorrelated xi and εi) 
and the assumption (A6) are fulfilled:

A6 1/N (ΣN
i=1xi xi’) = 1/N (X’X) converges with growing N to 

a finite, nonsingular matrix Σxx

bk converges in probability to βk for N → ∞

Consistency of the OLS estimators b:

� For N → ∞, b converges in probability to β, i.e., the probability 
that b differs from β by a certain amount goes to zero

plim b = β� plimN → ∞ b = β

� The distribution of b collapses in β

Needs no assumptions beyond (A2) and (A6)!Needs no assumptions beyond (A2) and (A6)!
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OLS Estimators: Consistency, OLS Estimators: Consistency, 
cont’d

Consistency of OLS estimators can also be shown to hold under 
weaker assumptions: 

The OLS estimators b are consistent, 

plimN → ∞ b = β,

if the assumptions (A7) and (A6) are fulfilled

x
A7 The error terms have zero mean and are uncorrelated 

Follows from

x
A7 The error terms have zero mean and are uncorrelated 

with each of the regressors: E{xi εi} = 0

Follows from

and 

∑∑
−








+=
i iii ii x

N
xx

N
b εβ 1

'
1

1

and 

plim(b - β) = Σxx
-1E{xi εi}

 NN
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Consistency of s2Consistency of s

The estimator s2 for the error term variance σ2 is consistent, 

plimN → ∞ s
2 = σ2,plimN → ∞ s = σ ,

if the assumptions (A3), (A6), and (A7) are fulfilled
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Consistency: Some PropertiesConsistency: Some Properties

� plim g(b) = g(β)

� if plim s2 = σ2, plim s = σ

� The conditions for consistency are weaker than those for 
unbiasedness
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OLS Estimators: Asymptotic OLS Estimators: Asymptotic 
NormalityNormality
� Distribution of OLS estimators mostly unknown 

� Approximate distribution, based on the asymptotic distributionApproximate distribution, based on the asymptotic distribution

� Most estimators in econometrics follow asymptotically the normal 
distribution

� Asymptotic distribution of the consistent estimator b: distribution 
of 

N1/2(b - β) for N → ∞N1/2(b - β) for N → ∞

� Under the Gauss-Markov assumptions (A1)-(A4) and assumption 
(A6), the OLS estimators b fulfill(A6), the OLS estimators b fulfill

“→” means “is asymptotically distributed as”

( )12,0)( −ΣΝ→− xxbN σβ
“→” means “is asymptotically distributed as”
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OLS Estimators: Approximate OLS Estimators: Approximate 
NormalityNormality
Under the Gauss-Markov assumptions (A1)-(A4) and assumption 

(A6), the OLS estimators b follow approximately the normal 
distributiondistribution

( )( )12,
−

∑ ′Ν
i iixxsβ

The approximate distribution does not make use of assumption (A5), 
i.e., the normality of the error terms!

( )( ), ∑ ′Ν
i iixxsβ

i.e., the normality of the error terms!

Tests of hypotheses on coefficients βk, 
� t-test� t-test

� F-test

can be performed by making use of the approximate normal can be performed by making use of the approximate normal 
distribution
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Assessment of Approximate Assessment of Approximate 
NormalityNormality
Quality of 

� approximate normal distribution of OLS estimatorsapproximate normal distribution of OLS estimators

� p-values of t- and F-tests

� power of tests, confidence intervals, ec.power of tests, confidence intervals, ec.

depends on sample size N and factors related to Gauss-Markov 
assumptions etc.

Monte Carlo studies: simulations that indicate consequences of 
deviations from ideal situations

Example: y = β + β x + ε ; distribution of b under classical Example: yi = β1 + β2xi + εi; distribution of b2 under classical 
assumptions?

� 1) Choose N; 2) generate x , ε , calculate y , i=1,…,N; 3) estimate b� 1) Choose N; 2) generate xi, εi, calculate yi, i=1,…,N; 3) estimate b2

� Repeat steps 1)-3) R times: the R values of b2 allow assessment of 
the distribution of b2the distribution of b2
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� Goodness-of-Fit

� Hypothesis Testing� Hypothesis Testing

� Asymptotic Properties of the OLS estimator

� Multicollinearity� Multicollinearity

� Prediction
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MulticollinearityMulticollinearity

OLS estimators b = (X’X)-1X’y for regression coefficients β require 
that the KxK matrix 

X’X or Σi xi xi’

can be inverted

In real situations, regressors may be correlated, such asIn real situations, regressors may be correlated, such as

� age and experience (measured in years)

� experience and schooling � experience and schooling 

� inflation rate and nominal interest rate 

� common trends of economic time series, e.g., in lag structures � common trends of economic time series, e.g., in lag structures 

Multicollinearity: between the explanatory variables exists 

� an exact linear relationship

� an approximate linear relationship 
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Multicollinearity: ConsequencesMulticollinearity: Consequences

Approximate linear relationship between regressors: 

� When correlations between regressors are high: difficult to 
identify the individual impact of each of the regressors

� Inflated variances 

If x can be approximated by the other regressors, variance of b is � If xk can be approximated by the other regressors, variance of bk is 
inflated; 

� Smaller tk-statistic, reduced power of t-test� Smaller tk-statistic, reduced power of t-test

� Example: yi = β1xi1 + β2xi2 + εi
� with sample variances of X1 and X2 equal 1 and correlation r12,  

 −σ









−
−

−
=

1

1

1

1
}{

12

12

2

12

2

r

r

rN
bV

σ
−− 11 1212

rrN

Oct 14, 2011 Hackl, Econometrics, Lecture 2 41



Exact CollinearityExact Collinearity

Exact linear relationship between regressors: 

� Example: Wage equation

� Regressors male and female in addition to intercept

� Regressor exper defined as exper = age - school - 6

� Σi xi xi’ is not invertible

� Econometric software reports ill-defined matrix Σi xi xi’

GRETL drops regressor� GRETL drops regressor

Remedy:

� Exclude (one of the) regressors � Exclude (one of the) regressors 

� Example: Wage equation

� Drop regressor female, use only regressor male in addition to intercept� Drop regressor female, use only regressor male in addition to intercept

� Alternatively: use female and intercept

� Not good: use of male and female, no interceptNot good: use of male and female, no intercept
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Variance Inflation FactorVariance Inflation Factor

Variance of bk
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� If xk can be approximated by a linear combination of the other 
regressors, Rk

2 is close to 1, the variance inflated xregressors, Rk
2 is close to 1, the variance inflated

Variance inflation factor: VIF(bk) = (1 - Rk
2)-1

Large values for some or all VIFs indicate multicollinearity

x

Large values for some or all VIFs indicate multicollinearity

Warning! Large values for VIF can also have other causes

� Small value of variance of Xk� Small value of variance of Xk

� Small number N of observations
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Other IndicatorsOther Indicators

Large values for some or all variance inflation factors VIF(bk) are an 
indicator for multicollinearity

Other indicators: 

� At least one of the Rk
2, k = 1, …, K, has a large value

� Large values of standard errors se(bk) (low t-statistics), but 
reasonable or good R2 and F-statistic

Effect of adding a regressor on standard errors se(b ) of � Effect of adding a regressor on standard errors se(bk) of 
estimates bk of regressors already in the model: increasing 
values of se(bk) indicate multicollinearityvalues of se(bk) indicate multicollinearity
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The PredictorThe Predictor

Given the relation yi = xi’β + εi
Given estimators b, predictor for Y at x0, i.e., y0 = x0’β + ε0: ŷ0 = x0’bGiven estimators b, predictor for Y at x0, i.e., y0 = x0’β + ε0: ŷ0 = x0’b
Prediction error: f0 = ŷ0 - y0 = x0’(b – β) + ε0
Some properties of ŷ0:Some properties of ŷ0:

� Under assumptions (A1) and (A2), E{b} = β and ŷ0 is an unbiased 
predictor

� Variance of ŷ0

V{ŷ0} = V{x0’b} = x0’ V{b} x0 = σ2 x0’(X’X)-1x0

� Variance of  the prediction error f0
V{f0} = V{x0’(b – β) + ε0} = σ2(1 + x0’(X’X)-1x0)= s²f0

εgiven that ε0 and b are uncorrelated

100γ% prediction interval: ŷ0 – z(1+γ)/2 sf0  ≤ y0 ≤ ŷ0 + z(1+γ)/2 sf0 
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Example: Simple RegressionExample: Simple Regression

Given the relation yi = β1 + xiβ2 + εi
Predictor for Y at x0, i.e., y0 = β1 + x0β2 + ε0: Predictor for Y at x0, i.e., y0 = β1 + x0β2 + ε0: 

ŷ0 = b1 + x0’b2

Variance of  the prediction error 


Variance of  the prediction error 
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Figure: Prediction inter-
vals for various x0‘s 
(indicated as “x”)
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Your HomeworkYour Homework

1. For Verbeek’s data set “WAGES” use GRETL (a) for estimating 
a linear regression model with intercept for WAGES p.h. with 
explanatory variables MALE, SCHOOL, and AGE; (b) interpret explanatory variables MALE, SCHOOL, and AGE; (b) interpret 
the coefficients of the model; (c) test the hypothesis that men 
and women, on average, have the same wage p.h., against the and women, on average, have the same wage p.h., against the 
alternative that women earn less; (d) calculate a 95% 
confidence interval for the wage difference of males and 
females.females.

2. Generate a variable EXPER_B by adding the Binomial random 
variable BE~B(2,0.05) to EXPER; (a) estimate two linear variable BE~B(2,0.05) to EXPER; (a) estimate two linear 
regression models with intercept for WAGES p.h. with 
explanatory variables (i) MALE, SCHOOL, EXPER and AGE, explanatory variables (i) MALE, SCHOOL, EXPER and AGE, 
and (ii) MALE, SCHOOL, EXPER_B and AGE; compare R² of 
the models; (b) compare the VIFs for the variables of the two 
models. models. 
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Your HomeworkYour Homework

3. Show for a linear regression with intercept that 

4. Show that the F-test based on 
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