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Production 1
Motivation

Micro I

• Production

• Production possibility sets and the production function

• Marginal production, marginal rate of substitution and returns to
scale.

MasColell, Chapter 5
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Production 1
Firms (1)

Micro I

• In this section we treat the firm as a black box. We abstract from
ownership, management, organization, etc.

• Assumption: A firm maximizes its profit.

• How can we justify this assumption?
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Production 1
Production Possibility Set (1)

Micro I

• Definition - Production: The process of transforming inputs to
outputs is called production.

• The state of technology restricts what is possible in combining
inputs to produce output (technological feasibility).

• Definition - Production Possibility Set: A set Y ∈ RL

describing possible production plans is called production
possibility set, Y = {y ∈ RL| y is a feasible production plan}.
yi < 0 are called inputs, yi > 0 outputs.
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Production 1
Production Possibility Set (2)

Micro I

• Often the production possibility set is described by a function
F (.) call transformation function. This function has the
property Y = {y ∈ RL|F (y) ≤ 0} and F (y) = 0 if and only if we
are on the boundary of the set Y . {y ∈ RL|F (y) = 0} is called
transformation frontier.

• Definition - Marginal Rate of Transformation: If F (.) is
differentiable and F (ȳ) = 0, then for commodities k and l the
ration

MRTlk(ȳ) =
∂F (ȳ)/∂yl
∂F (ȳ)/∂yk

is called marginal rate of transformation of good l for good k.
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Production 1
Production Possibility Set (3)

Micro I

• If l and k are outputs we observe how output of l increases if k is
decreases.

• With inputs .... In this case the marginal rate of transformation is
called marginal rate of technical substitution.
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Production 1
Production Possibility Set (4)

Micro I

• Assumption and Properties of production possibility sets

P1 Y is non-empty.
P2 Y is closed. I.e. Y includes its boundary, if yn ∈ Y converges

to y then y ∈ Y .
P3 No free lunch. If yl ≥ 0 for l = 1, . . . , L, then y = 0. It is not

possible to produce something from nothing. Therefore
Y ∩Rm

+ = 0 ∈ Y . See Figure 5.B.2, page 131.
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Production 1
Production Possibility Set (5)

Micro I

P4 Possibility of inaction: 0 ∈ Y . This assumption hold at least
ex-ante, before the setup of the firm. If we have entered into
some irrevocable contracts, then a sunk cost might arise.

P5 Free Disposal: New inputs can be acquired without any reduction
of output. If y ∈ Y and y′ ≤ y then y′ ∈ Y . For any y ∈ Y and
x ∈ RL

+, we get y − x ∈ Y . See Figure 5.B.4, page 132.

P6 Irreversibility: If y ∈ Y and y 6= 0, then −y /∈ Y . It is impossible
to reverse a possible production vector. We do not come from
output to input.
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Production 1
Production Possibility Set (6)

Micro I

P7 Nonincreasing returns to scale: If y ∈ Y , then αy ∈ Y for all
α ∈ [0, 1]. I.e. any feasible input-output vector y can be scaled
down. See Figure 5.B.5.

P8 Nondecreasing returns to scale: If y ∈ Y , then αy ∈ Y for any
scale α ≥ 1. I.e. any feasible input-output vector y can be scaled
up. See Figure 5.B.6.

P9 Constant returns to scale: If y ∈ Y , then αy ∈ Y for any scale
α ≥ 0. I.e. any feasible input-output vector y can be scaled up
and down.
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Production 1
Production Possibility Set (7)

Micro I

P10 Additivity - free entry: If y ∈ Y and y′ ∈ Y , then y + y′ ∈ Y .
This implies that ky ∈ Y for any positive integer k.

• Example: Output is an integer. If y and y′ are possible, additivity
means that y + y′ is still possible and the production of y has no
impact on y′ and vice versa. E.g. we have two independent
plants.

• As regards entry: If the aggregate production set is additive, then
unrestricted entry is possible. This is called free entry.
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Production 1
Production Possibility Set (8)

Micro I

P11 Convexity: Y is a convex set. I.e. if y ∈ Y and y′ ∈ Y , then
αy + (1− α)y′ ∈ Y .

• Convexity implies nonincreasing returns to scale.

• We do not increase productivity by using unbalanced input
combinations. If y and y′ produce the same output, then a
convex combination of the correspond inputs must at least
produce an output larger or equal to the output with y and y′.
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Production 1
Production Possibility Set (9)

Micro I

P12 Y is convex cone: Y is a convex cone if for any y, y′ ∈ Y and
constants α, β ≥ 0, αy + βy′ ∈ Y . Conjunction between
convexity and constant returns to scale property.
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Production 1
Production Possibility Set (10)

Micro I

• Proposition[P 5.B.1]: The production set Y is additive and
satisfies the nonincreasing returns to scale property if and only if
it is is convex cone.
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Production 1
Production Possibility Set (11)

Micro I

Proof:

• If Y is a convex cone then Y is additive and satisfies the
nonincreasing returns to scale by the definition of a convex cone.

• We have to show that with additivity and nonincreasing returns
to scale we get αy + βy′ ∈ Y for any y, y′ and α, β > 0: Let
γ = max{α, β} > 0. By additivity γy ∈ Y and γy′ ∈ Y .

• α/γ and β/γ are ≤ 1. Due to nonincreasing returns to scale
αy = (α/γ)γy and βY ′ = (β/γ)γy′ ∈ Y . By additivity
αy + βy′ ∈ Y .
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Production 1
Production Possibility Set (12)

Micro I

• Proposition[P 5.B.2]: For any convex production set Y ⊂ RL

with 0 ∈ Y , there is a constant returns to scale convex
production set Y ′ ∈ RL+1 such that
Y = {y ∈ RL|(y,−1) ∈ Y ′}. Y ′ is called extended production
set.

• Proof: Let Y ′ = {y′ ∈ RL+1|y′ = α(y,−1), y ∈ Y, α ≥ 0}. If
y′ ∈ Y ′, then the first L components are in Y by construction.
Since βy1 + (1− β)y2 ∈ Y we get
β(y1,−1) + (1− β)(y2,−1) ∈ Y ′. αy′ ∈ Y ′ by construction.
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Production 1
Production Function (1)

Micro I

• Often it is sufficient to work with an output q ≥ 0 and inputs
z = (z1, . . . , zn) where zi ≥ 0.

• Definition - Production Function: A function describing the
the relationship between q and z is called production function f .

• Remark: The production functions assigns the maximum of
output q that can be attained to an input vector z.
f(z) = max{q ≥ 0|z ∈ Rm

+}; (output efficient production).
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Production 1
Production Function (2)

Micro I

• Assumption PF on Production Function: The production
function f : Rm

+ → R+ is continuous, strictly increasing and
strictly quasiconcave on Rm

+ ; f(0) = 0.

• Assumption PF’ - Production Function: The production
function f : Rm

+ → R+ is continuous, increasing and
quasiconcave on Rm

+ ; f(0) = 0.

• How can we motivate these assumptions?
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Production 1
Production Function (3)

Micro I

• Considering production functions two approaches are common:
(i) variation one factor, (ii) variation all factors in the same
proportion.

• Definition - Marginal Product: If f is differentiable then
∂f(z)
∂zi

= MPi(z) is called marginal product of the input factor zi.

• By Assumption P5 all marginal products are strictly larger than
zero, with P5’ MPi(z) ≥ 0.

• Definition - Average Product: The fraction f(z)/zi = APi(z)
is called average product of the input factor zi.
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Production 1
Production Function (4)

Micro I

• Definition - Isoquant: The set Q(q) where output is constant is
called y-level isoquant. I.e. Q(q) = {z ≥ 0|f(z) = q}.

• In addition to Q(q) we can define the the contour set
S̄(q) = {z ≥ 0|f(z) ≥ q}. Since f is quasiconcave, this set is
convex ⇒ isoquants are convex curves.
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Production 1
Production Function (5)

Micro I

• In addition, by means of the isoquant we can observe how input
factors can be substituted to remain on the same level of output.

• Definition - Marginal Rate of Technical Substitution:

MRTSij(z) =
MPi
MPj

• The slope of the isoquant is given by −dzjdzi = MPi
MPj

• Discuss: MPi
MPj

> 0 (≥ 0) and the concept of technical efficiency:

To remain on the same level of output at least one input has to
be increased if one input factor has been decreased.
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Production 1
Production Function (6)

Micro I

• In general the MRTS of two input depends on all other inputs
(note that the MPi depends on z).

• In applied work it is often assumed that inputs can be classified,
such that the MRTS within a class is not affected by inputs
outside this class.
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Production 1
Production Function (7)

Micro I

• Definition - Separable Production Function: Suppose that the inputs can

be partitioned into S > 1 classes N1, . . . , NS; N = {1, . . . , n} is an

index set. The production function is called weakly separable if the MRTS

between inputs within the same group is independent of the inputs used in the

other groups:
∂(MPi/MPj)

∂zk
= 0

for all i, j ∈ Ns and k /∈ Ns. For S > 2 it is strongly separable if the

MRTS between two inputs from different groups is independent of all inputs

outside those groups:
∂(MPi/MPj)

∂zk
= 0

for all i ∈ Ns, j ∈ Nt and k /∈ Ns ∪Nt.
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Production 1
Production Function (8)

Micro I

• Since MRTSij is sensitive to the dimension of the
measurements of zi and zj an elasticity can be used.

• Definition - Elasticity of Substitution: For a differentiable
production function the elasticity of substitution between inputs
zi and zj is defined by

σij :=
d(zj/zi)

d(MPi/MPj)
(MPi/MPj)

(zj/zi)
=

d log(zj/zi)
d log(MPi/MPj)

.

• With a quasiconcave production function σij ≥ 0
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Production 1
Production Function (9)

Micro I

• Theorem - Linear Homogeneous Production Functions are
Concave: Let f satisfy Assumption P5’. If f is homogenous of
degree one, then f(z) is concave in z.
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Production 1
Production Function (10)

Micro I

Proof:

• We have to show f(zν) ≥ νf(z1) + (1− ν)f(z2), where
zν = νz1 + (1− ν)z2.

• Step 1: By assumption f(µz) = µf(z) = µy. Then 1 = f(z/y).
I.e. f(z1/y1) = f(z2/y2) = 1. (Set µ = 1/y.)

• Since f(z) is quasiconcave: f(zν) ≥ min{f(z1), f(z2)}.

• Therefore f
(
ν(z1/y1) + (1− ν)(z2/y2)

)
≥ 1.
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Production 1
Production Function (11)

Micro I

Proof:

• Choose ν∗ = y1/(y1 + y2). Then f
(
(z1 + z2)/(y1 + y2)

)
≥ 1.

• By the homogeneity of f we derive:

f
(
z1 + z2

)
≥ y1 + y2 = f(z1) + f(z2) .
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Production 1
Production Function (12)

Micro I

Proof:

• Step 2: Now we show that f(zν) ≥ νf(z1) + (1− ν)f(z2) holds.

• By homogeneity f(νz1) = νf(z1) and
f((1− ν)z2) = (1− ν)f(z2)

• Insert into the above expressions:

f
(
νz1 + (1− ν)z2

)
≥ f(νz1) + f((1− ν)z2)

f(νz1) + f((1− ν)z2) = νf(z1) + (1− ν)f(z2)
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Production 1
Production Function (13)

Micro I

• Another way to look at the properties of production is to alter
inputs proportionally. I.e. zi/zj remains constant.

• Discuss: This analysis is of interest especially for the long run
behavior of a firm.
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Production 1
Production Function (14)

Micro I

• Definition - Returns to Scale. A production function f(z)
exhibits

– Constant returns to scale if f(µz) = µf(z) for µ > 0 and all z.
– Increasing returns to scale if f(µz) > µf(z) for µ > 1 and all
z.

– Decreasing returns to scale if f(µz) < µf(z) for µ > 1 and all
z.
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Production 1
Production Function (15)

Micro I

• With constant returns the scale the production function has to
be homogeneous of degree one.

• Homogeneity larger than one is sufficient for increasing returns to
scale but not necessary.

• Most production function/technologies often exhibit regions with
constant, increasing and decreasing returns to scale.
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Production 1
Production Function (16)

Micro I

• Definition - Local Returns to Scale. The elasticity of of scale
at z is defined by

LRTS(z) := lim
µ→1

d log(f(µz))
d logµ

=
∑n
i=1MPizi
f(z)

.

A production function f(z) exhibits

– local constant returns to scale if LRTS(z) is equal to one.
– local increasing returns to scale if LRTS(z) is larger than one.
– local decreasing returns to scale if LRTS(z) is smaller than

one.

30



Production 2
Profits and Cost (1)

Micro I

• Profit Maximization

• Cost minizitation

• Price taking

• Cost, profit and supply function

MasColell, Chapter 5.C
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Production 2
Profits (1)

Micro I

• Assume that p = (p1, . . . , pL) are larger than zero and fixed
(price taking assumption).

• We assume that firms maximize profits.

• Given an Input-Output vector y, the profit generated by a firm is
p · y.

• We assume that Y is non-empty, closed and free disposal holds.
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Production 2
Profits (2)

Micro I

• Definition: Given the production possibility set Y , we get the
profit maximization problem

max
y

p · y s.t. y ∈ Y.

• If Y can be described by a transformation function F , this
problem reads as follows:

max
y

p · y s.t. F (y) ≤ 0.

• Define π(p) = supy p · y s.t. y ∈ Y .
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Production 2
Profits (3)

Micro I

• Definition - Profit function π(p): The maximum value function
associated with the profit maximization problem is called profit
function. The firm’s supply correspondence y(p) is the set of
profit maximizing vectors {y ∈ Y |p · y = π(p)}.

• The value function π(p) is defined on extended real numbers
(R̄ = R ∪ {−∞,+∞}). The set Sp = {p · y|y ∈ Y } is a subset
of R. {p · y|y ∈ Y } has an upper bound in R̄. For p where Sp is
unbounded (from above) in R we set π(p) =∞.

• If Y is compact a solution (and also the max) for the profit
maximization problem exits. If this is not the case π(p) =∞ is
still possible. The profit function exists by Bergs theorem of the
maximum if the constraint correspondence is continuous.
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Production 2
Profits (4)

Micro I

• Suppose that F (.) is differentiable, then we can formulate the
profit maximization problem as a Kuhn-Tucker problem:

• The Lagrangian is given by: L(y, λ) = p · y − λF (y)

• Then the Kuhn-Tucker conditions are given by:

∂L

∂yl
= pl − λ

∂F (y)
∂yl

≤ 0 ,
∂L

∂yl
yl = 0

∂L

∂λ
= −F (y) ≥ 0

∂L

∂λ
λ = 0
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Production 2
Profits (5)

Micro I

• For those inputs and output different from zero we get:

p = λ∇yF (y)

This implies that

pl
pk

=
∂F/∂yl
∂F/∂yk

= MRTlk.

• Since the left hand side is positive by assumption, the fraction of
the right hand side and λ have to be positive.
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Production 2
Profits (6)

Micro I

• If yl, yk > 0, i.e. both goods are outputs, then yl, yk have to be
chosen such that the fraction of marginal rates of transformation
is equal to the ratio of prices.

• If yl, yk < 0, i.e. both goods are inputs, then yl, yk have to be
chosen such that the fraction of marginal rates of transformation
(= marginal rate of technical substitution) is equal to the
ratio of prices.

• If yl > 0, yk < 0, i.e. yl is an output and yk is an input, then
pl = ∂F/∂yl

∂F/∂yk
pk. Later on we shall observe that ∂F/∂yl

∂F/∂yk
pk is the

marginal cost of good l. See Figure 5.C.1. page 136.
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Production 2
Profits - Single Output Case (1)

Micro I

• Suppose the there is only one output q ≥ 0 and input z ≥ 0. The
relationship between q and z is described by a differentiable
production function. The price of q is p > 0. Input factor prices
are w � 0. We assume that the second order conditions are met.

• The profit maximization problem now reads as follows:

π(p, w) := {max
z,q≥0

pf(z)− w · z s.t. f(z) ≥ q}

• The input factor demand arising from this problem x = x(w, q) is
called input factor demand. The profit function is called well
defined if π(p, w) exists.
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Production 2
Profits - Single Output Case (2)

Micro I

• Is the profit function well defined?

• What happens if f(z) exhibits increasing returns to scale?

• Here pf(µz)− w · µz > pf(z)− w · z or
pf(µz)− w · µz > pµf(z)− w · µz for all µ > 1.

• I.e. the profit can always be increased when increasing µ.

• With constant returns to scale no problem arises when
π(w, p) = 0. Then pf(µz)−w · µz = pµf(z)−w · µz = 0 for all
µ.
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Production 2
Profits - Single Output Case (3)

Micro I

• From these remarks we get the (long run) problem:

max{pq − w · z} s.t f(z) ≥ q

• The Lagrangian is now given by:

L(q, z, λ) = pq − w · z + λ(f(z)− q)

• The marginal product will be abbreviated by MPi = ∂f(z)
∂zi

.
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Production 2
Profits - Single Output Case (4)

Micro I

• Then the Kuhn-Tucker conditions are given by:

∂L

∂y
= p+ λ ≤ 0 ,

∂L

∂q
q = 0

∂L

∂zi
= −wi − λMPi ≤ 0 ,

∂L

∂zi
zi = 0

∂L

∂λ
= f(z)− q ≥ 0 ,

∂L

∂λ
λ = 0
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Production 2
Profits - Single Output Case (5)

Micro I

• This yields:

wi = p
∂f(z)
∂zi

, ∀zi > 0

• Definition - Marginal Revenue Product: p∂f(z)∂zi
.

• For inputs i and j we derive:

∂f(z)/∂zi
∂f(z)/∂zj

=
wi
wj
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Production 2
Profit Function (1)

Micro I

• By means of π(p) we can reconstruct −Y , if −Y is a convex set.

• That is to say: π(p) follows from {maxy p · y s.t. y ∈ Y }, which
is equivalent to {miny − p · y s.t. y ∈ Y } and
{min−y p · (−y) s.t. (−y) ∈ −Y }.

• Remember the concept of a support function: By means of the
support function µX(p) we get by means of {x|p · x ≥ µX(p)} a
dual representation of the closed and convex set X.

• Here −π(p) = µ−Y (p) where µ−Y (p) = miny{p · (−y)|y ∈ Y }
such that −π(p) is a support function of −Y .
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Production 2
Profit Function (2)

Micro I

• Proposition: [5.C.1] Suppose that π(p) is the profit function of
the production set Y and y(p) is the associated supply
correspondence. Assume that Y is closed and satisfies the the
free disposal property. Then

1. π(p) is homogeneous of degree one.
2. π(p) is convex.
3. If Y is convex, then Y = {y ∈ RL|p · y ≤ π(p) , ∀p� 0}
4. y(p) is homogeneous of degree zero.
5. If Y is convex, then y(p) is convex for all p. If Y is strictly

convex, then y(p) is single valued.
6. Hotelling’s Lemma: If y(p̄) consists of a single point, then
π(p) is differentiable at p̄ and ∇π(p̄) = y(p̄).

7. If y is differentiable at p̄, then Dy(p̄) = D2π(p̄) is a symmetric
and positive semidefinite matrix with Dy(p̄)p̄ = 0.
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Production 2
Profit Function (3)

Micro I

Proof:

• π(p) is homogeneous of degree one and y(p) is homogeneous of
degree zero follow from the structure of the optimization
problem. If y ∈ y(p) solves {max p · y s.t. F (y) ≤ 0} then it also
solves α{max p · y s.t. F (y) ≤ 0} and
{maxαp · y s.t. F (y) ≤ 0}, such that y ∈ y(αp) for any α > 0.

• This hold for every y ∈ y(p) ⇒ y(p) is homogeneous of degree
zero and π(p) is homogeneous of degree one by the structure of
the profit equation.
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Production 2
Profit Function (4)

Micro I

Proof:

• π(p) is convex: Consider p1 and p2 and the convex combination
pν. y1, y2 and yν are arbitrary elements of the optimal supply
correspondences.

• We get p1y1 ≥ p1yν and p2y2 ≥ p2yν

• Multiplying the first term with ν and the second with 1− ν,
where ν ∈ [0, 1] results in
νp1y1 + (1− ν)p2y2 ≥ νp1yν + (1− ν)p2y2 ≥ p2yν which implies

νπ(p1) + (1− ν)π(p2) ≥ π(pν)

46



Production 2
Profit Function (5)

Micro I

Proof:

• If Y is convex then Y = {y ∈ RL|p · y ≤ π(p)} for all p� 0: If
Y is convex, closed and free disposal holds, then π(p) provides a
dual description of the production possibility set.
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Production 2
Profit Function (6)

Micro I

Proof:

• If Y is convex then y(p) is a convex, with strict convexity y(p) is
a function: If Y is convex then yν = νy1 + (1− ν)y2 ∈ Y .

• If y1 and y2 solve the PMP for p, then π(p) = p · y1 = p · y2. A
rescaling of the production vectors has to result in
yν = νy1 + (1− ν)y2 where p · yν has to hold.

This follows from p · y1 = p · y2 = π(p)= νπ(p) + (1− ν)π(p)=
νp ·y1+(1−ν)p ·y2= pν ·y1+p(1−ν) ·y2= p(ν ·y1+(1−ν) ·y2).
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Production 2
Profit Function (7)

Micro I

Proof:

• Suppose that yα solves the PMP and Y is strictly convex. yα is
an element of the isoprofit hyperplane {y ∈ Y |p · y = π(p)}.
Suppose that there is another solution y′ solving the PMP. So
y, y′ are elements of this hyperplane. Since y, y′ ∈ Y this implies
that Y cannot be strictly convex.

• Remark by Proposition P 5.F.1, page 150, y(p) cannot be an
interior point of y. Suppose that an interior point y′′ solves the
PMP then π(p) = p · y′′. For any interior point, there is an y
such that y ≥ y′′ and y 6= y′′. Since p� 0 this implies
p · y > p · y′′ such that an interior point cannot be optimal.
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Production 2
Profit Function (8)

Micro I

Proof:

• Hotellings lemma: Follows directly from the duality theorem:
∇pπ(p̄) = y(p̄); (see [P 3.F.1], page 66).

• Property 7: If y(p) and π are differentiable, then
Dy(p̄) = D2π(p). By Young’s theorem this matrix is symmetric,
since π(p) is convex in p the matrix has to be positive
semidefinite (see Theorem M.C.2).

• Dy(p)p = 0 follows from the Euler theorem.

50



Production 2
Profit Function (9)

Micro I

Proof:

• By Hotellings lemma inputs and outputs react in the same
direction as the price change: Output increases is output prices in
increase, while inputs decrease if its prices increase (law of
supply).

• This law holds for any price change (there is no budget
constraint, therefore any form of compensation is not necessary.
We have no wealth effect but only substitution effects).

• We can also show that the law of supply
(p− p′)[y(p)− y(p′)] ≥ 0 holds also for the non-differentiable
case. (We know that p1y1 ≥ p1y for any y1 ∈ y(p1) and
p2y2 ≥ p2y for any y2 ∈ y(p1), sum up ....)
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Production 2
Cost Function (1)

Micro I

• Profit maximization implies cost minimization!

• Production does not tell us anything about the minimal cost to
get output.

• On the other hand side - if the firm is not a price taker in the
output market, we cannot use the profit function, however the
results on the cost function are still valid.

• With increasing returns to scale where the profit function can
only take the values 0 or +∞, the cost function is better
behaved since the output is kept fixed there.
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Production 2
Cost Function (2)

Micro I

• Assume that the input factor prices w � 0 are constant. In
addition we assume that the production function is at least
continuous.

• Definition - Cost: Expenditures to acquire input factors z to
produce output q; i.e. w · z.

• Definition - Cost Minimization Problem (CMP): minz w · z
s.t. f(z) ≥ q. The minimal value function C(w, q) is called cost
function. The optimal input factor choices are called
conditional factor demand correspondence z(w, q).

53



Production 2
Cost Function (3)

Micro I

• Existence: Construct the set {z|f(z) ≥ q}. Under the usual
assumptions on the production function the set is closed. By
compactifying this set by means of {z|f(z) ≥ q, zi ≤ w · z̄/wi}
for some z̄ with f(z̄) = q we can apply the Weierstraß theorem.

• By Bergs theorem of the maximum we get a continuous cost
function C(w, q).
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Production 2
Cost Function (4)

Micro I

• Suppose the f(z) is differentiable and the second order
conditions are met. We z∗ by means of Kuhn-Tucker conditions
for the Lagrangian:

L(x, λ) = w · z + λ(q − f(z))

∂L

∂zi
= wi − λ

∂f(z)
∂zi

= wi − λMPi ≥ 0

∂L

∂zi
zi = 0

∂L

∂λ
= q − f(z) ≤ 0 ,

∂L

∂λ
λ = 0 .
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Production 2
Cost Function (5)

Micro I

• By the no-free-production at least one z > 0 to get q > 0.
Therefore the constraint q ≤ f(z) has to be binding and
∂L/∂λ = 0, such that λ > 0.

• At least one ∂L/∂zi = 0 with zi > 0.

• For all zi > 0 we get: λ = wi/MPi for all i where zi > 0.
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Production 2
Cost Function (6)

Micro I

• By the envelope theorem we observe that:

∂c(w, q)
∂q

=
∂L

∂q
= λ

• Definition - Marginal Cost: LMC(q) = ∂c(w,q)
∂q is called

marginal cost.

• Definition - Average Cost: LAC(q) = c(w,q)
q is called average

cost.
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Production 2
Cost Function (7)

Micro I

• Theorem: Properties of the Cost Function C(w, q): [P 5.C.2]
Suppose that c(w, q) is a cost function of a single output
technology Y with production function f(z) and z(w, q) is the
associated conditional factor demand correspondence. Assume
that Y is closed and satisfies the free disposal property. Then

(i) c(w, q) is homogeneous of degree one and w and
nondecreasing in q.

(ii) Concave in w.
(iii) If the set {z ≥ 0|f(z) ≥ q} is convex for every q, then

Y = {(−z, q)|w · z ≥ c(w, q)} for all w � 0.
(iv) y(w, q) is homogeneous of degree zero in w.
(v) If the set {z ≥ 0|f(z) ≥ q} is convex then z(w, q) is a convex

set, with strict convexity z(w, q) is a function.
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Production 2
Cost Function (8)

Micro I

• Theorem: Properties of the Cost Function C(w, q): [P 5.C.2]
Suppose that c(w, q) is a cost function of a single output
technology Y with production function f(z) and z(w, q) is the
associated conditional factor demand correspondence. Assume
that Y is closed and satisfies the free disposal property. Then

(vi) Shepard’s lemma: If z(w̄, q) consists of a single point, then
c(.) is differentiable with respect to w at w̄ and
∇wc(w̄, q) = z(w̄, q).

(vii) If z(.) is differentiable at w̄ then Dwz(w̄, q) = D2c(w̄, q) is
symmetric and negative semidefinite with Dwu(w̄, q)w̄ = 0.

(viii) If f(.) is homogeneous of degree one, then c(.) and z(.) are
homogeneous of degree one in q.

(ix) If f(.) is concave, then c(.) is a convex function of q (marginal
costs are nondecreasing in q).
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Production 2
Cost Function (9)

Micro I

• By means of the cost function we can restate the PMP:

max
q≥0

pq − C(w, q)

• The first order condition becomes:

p− C(w, q)
∂q

≤ 0

with (p− C(w,q)
∂q ) = 0 if q > 0.
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Production 3
Aggregate Supply and Efficiency

Micro I

• Aggregate Supply

• Joint profit maximization is a result of individual profit
maximization

• Efficient Production

Mas-Colell Chapters 5.D, 5.E
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Production 3
Aggregate Supply (1)

Micro I

• Consider J units (firms, plants) with production sets Y1, . . . , YJ
equipped with profit functions πj(p) and supply correspondences
yj(p), j = 1, . . . , J .

• Definition - Aggregate Supply Correspondence: The sum of
the yj(p) is called aggregate supply correspondence:

y(p) :=

J∑
j

yj(p) = {y ∈ R
L|y =

J∑
j

yj for some yj ∈ yj(p)}, j = 1, . . . , J}

• Definition - Aggregate Production Set: The sum of the
individual Yj is called aggregate production set:

Y =

J∑
j

Yj = {y ∈ R
L|y =

J∑
j

yj for some yj ∈ Y, j = 1, . . . , J}
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Production 3
Aggregate Supply (2)

Micro I

• Proposition The law of supply also holds for the aggregate
supply function.

• Proof: Since (pj − p′j)[yj(p)− yj(p′)] ≥ 0 for all j = 1, . . . , J it
has also to hold for the sum.

• Definition: π∗(p) and y∗(p) are the profit function and the supply
correspondence of the aggregate production set Y .
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Production 3
Aggregate Supply (3)

Micro I

• Prosition[5.E.1] For all p� 0 we have

– π∗(p) =
∑J
j πj(p)

– y∗(p) =
∑J
j yj(p) (= {

∑J
j yj|yj ∈ yj(p)})

• Suppose that prices are fixed, this proposition implies that the
aggregate profit obtained by production of each unit separately is
the same as if we maximize the joint profit.
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Production 3
Aggregate Supply (4)

Micro I

Proof:

• π∗(p) =
∑J
j πj(p): Since π∗ is the maximum value function

obtained from the aggregate maximization problem
π∗(p) ≥ p · (

∑
j yj) =

∑
j p · yj such that π∗ ≥

∑
j πj(p).

• To show equality, note that there are yj in Yj such that
y =

∑
j yj. Then p · y =

∑
j p · yj ≤ πj(p) for all y ∈ Y .
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Production 3
Aggregate Supply (5)

Micro I

Proof:

• y∗(p) =
∑J
j yj(p): Here we have to show that

∑
j yj(p) ⊆ y∗(p)

and y∗(p) ⊆
∑
j yj(p). Consider yj ∈ yj(p), then

p · (
∑
j yj) ≤ πj(p) =

∑
j pyj =

∑
j πj(p) = π∗(p) (the last step

by the first part of [5.E.1]).

• From this argument is follows that
∑
yj ⊂ y∗(p). To get the

second direction we start with y ∈ y∗(p). Then y =
∑
j yj with

yj ∈ Yj. Since p · y = p · (
∑
j ·yj) = π∗(p) and

π∗(p) =
∑J
j πj(p) we get y∗(p) ⊆

∑
j yj(p).
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Production 3
Aggregate Supply (6)

Micro I

• The same aggregation procedure can also be applied to derive
aggregate cost.
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Production 3
Efficiency (1)

Micro I

• We want to check whether or what production plans are wasteful.

• Definition:[D 5.F.1] A production vector is efficient if there is
no y′ ∈ Y such that y′ ≥ y and y′ 6= y.

• There is no way to increase output with given inputs or to
decrease input with given output (sometimes called technical
efficiency).

• Discuss Figure 5.F.1, page 150.
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Production 3
Efficiency (2)

Micro I

• Proposition[P 5.F.1] If y ∈ Y is profit maximizing for some
p� 0, then y is efficient.

• Version of the fundamental theorem of welfare economics. See
Chapter 16.

• It also tells us that a profit maximizing firm does not choose
interior points in the production set.
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Production 3
Efficiency (3)

Micro I

Proof:

• We show this by means of a contradiction: Suppose that there is
a y′ ∈ Y such that y′ 6= y and y′ ≥ y. Because p� 0 we get
p · y′ > p · y, contradicting the assumption that y solves the PMP.

• For interior points suppose that y′′ is the interior. By the same
argument we see that this is neither efficient nor optimal.
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Production 3
Efficiency (4)

Micro I

• This result implies that a firm chooses y in the convex part of Y
(with a differentiable transfer function F () this follows
immediately from the first order conditions; otherwise we choose
0 or ∞).

• The result also holds for nonconvex production sets - see Figure
5.F.2, page 150.

• Generally it is not true that every efficient production vector is
profit maximizing for some p ≥ 0, this only works with convex Y .
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Production 3
Efficiency (6)

Micro I

• Proposition[P 5.F.2] Suppose that Y is convex. Then every
efficient production y ∈ Y is profit maximizing for some p ≥ 0
and p 6= 0.
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Production 3
Efficiency (7)

Micro I

Proof:

• Suppose that y is efficient. Construct the set
Py = {y′ ∈ RL|y′ � y}. This set has to be convex. Since y is
efficient the intersection of Y and Py has to be empty.

• This implies that we can use the separating hyperplane theorem
[T M.G.2], page 948: There is some p 6= 0 such that
p · y′ ≥ p · y′′ for every y′ ∈ Py and y′′ ∈ Y . This implies
p · y′ ≥ p · y for every y′ � y. Therefore, we also must have
p ≥ 0. If some pl < 0 then we could have p · y′ < p · y for some
y′ � y with y′l − yl sufficiently large. This procedure works for
each arbitrary y. p 6= 0.
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Production 3
Efficiency (8)

Micro I

Proof:

• It remains to show the y maximizes the profit: Take an arbitrary
y′′ ∈ Y , y was fixed, p has been derived by the separating
hyperplane theorem. Then p · y′ ≥ p · y′′ for every y′ ∈ Py.
y′ ∈ Py can be chosen arbitrary close to y, such that
p · y ≥ p · y′′ still has to hold. I.e. y maximizes the profit given p.
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Production 4
Objectives of the Firm (1)

Micro I

• Until now we have assumed that the firm maximizes its profit.

• The price vector p was assumed to be fixed.

• We shall see that although preference maximization makes sense
when we consider consumers, this need not hold with profit
maximization with firms.

• Only if p is fixed we can rationalize profit maximization.
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Production 4
Objectives of the Firm (2)

Micro I

• The objectives of a firm should be a result of the objectives of the
owners controlling the firm. That is to say firm owners are also
consumers who look at their preferences. So profit maximization
need not be clear even if the firm is owned by one individual.

• MWG argue (”optimistically”) that the problem of profit
maximization is resolved, when the prices are fixed. This arises
with firms with no market power.

76



Production 4
Objectives of the Firm (3)

Micro I

• Consider a production possibility set Y owned by consumers
i = 1, . . . , I. The consumers own the shares θi, with

∑I
i=1 θi = 1.

y ∈ Y is a production decision. wi is non-profit wealth.

• Consumer i maximizes utility maxxi≥0 u(xi), s.t.
p · xi ≤ wi + θip · y.

• With fixed prices the budget set described by p · xi ≤ wi + θip · y
increases if p · y increases.

• With higher p · y each consumer i is better off. Here maximizing
profits p · y makes sense.
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Production 4
Objectives of the Firm (4)

Micro I

• Problems arise (e.g.) if

– Prices depend on the action taken by the firm.
– Profits are uncertain.
– Firms are not controlled by its owners.
– See also micro-textbook of David Kreps.
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Production 4
Objectives of the Firm (5)

Micro I

• Suppose that the output of a firm is uncertain. It is important to
know whether output is sold before or after uncertainty is
resolved.

• If the goods are sold on a spot market (i.e. after uncertainty is
resolved), then also the owner’s attitude towards risk will play a
role in the output decision. Maybe less risky production plans are
preferred (although the expected profit is lower).

• If there is a futures market the firm can sell the good before
uncertainty is resolved the consumer bears the risk. Profit
maximization can still be optimal.
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Production 4
Objectives of the Firm (6)

Micro I

• Consider a two good economy with good x1 and x2; L = 2,
wi = 0. Suppose that the firm can influence the price of good 1,
p1 = p1(x1). We normalize the price of good 2, such that p2 = 1.
Therefore we only write p1 = p. z units of x2 are used to produce
x1 with production function x1 = f(z). The cost is given by
p2z = z.

• We consider the maximization problem maxxi≥0 u(xi), s.t.
p · xi ≤ wi + θip · y.

Given the above notation p = (p(x1), 1)>, y = (f(z), z)>.
wi = 0 by assumption.
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Production 4
Objectives of the Firm (7)

Micro I

• Assume that the preferences of the owners are such that they are
only interested in good 2.

• The aggregate amount of x2 the consumers can buy is
p(f(z))f(z)− z. Hence, maxxi≥0 u(xi2), s.t.
p · xi ≤ wi + θip · y results in max p(f(z))f(z)− z.
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Production 4
Objectives of the Firm (8)

Micro I

• Assume that the preferences of the owners are such that they
only look at good 1.

• The aggregate amount of x1 the consumers can buy is
f(z)− z/p(f(z)). Then maxxi≥0 u(xi1), s.t. p · xi ≤ wi + θip · y
results in max f(z)− z/p(f(z)).

• We have two different optimization problems - solutions are
different.
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Production 4
Objectives of the Firm (9)

Micro I

• We have considered two extreme cases: all owners prefer (i) good
2, (ii) good 1. There is no unique output decision based on
max p · y.

• If the preferences become heterogeneous things do not become
better.
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