Microeconomics I

[©] Leopold Sögner

Department of Economics and Finance Institute for Advanced Studies Stumpergasse 56 1060 Wien Tel: +43-1-59991 182 soegner@ihs.ac.at http://www.ihs.ac.at/~soegner

September, 2011

Expected Utility Uncertainty (1)

Micro I

- Preferences and Lotteries.
- Von Neumann-Morgenstern Expected Utility Theorem.
- Attitudes towards risk.
- State Dependent Utility, Subjective Utility

MasColell Chapter 6.

Expected Utility Lotteries (1)

- A risky alternative results in one of a number of different events or states of the world, ω_i .
- The events are associated with **consequences** or **outcomes**, z_n . Each z_n involves no uncertainty.
- Outcomes can be money prices, wealth levels, consumption bundles, etc.
- Assume that the set of outcomes is finite. Then $Z = \{z_1, \ldots, z_N\}.$
- E.g. flip a coin: Events $\{H, T\}$ and outcomes $Z = \{-1, 1\}$, with head H or tail T.

Expected Utility Lotteries (2)

- Definition Simple Gamble/Simple Lottery: [D 6.B.1] With the consequences $\{z_1, \ldots, z_N\} \subseteq Z$ and N finite. A simple gamble assigns a probability p_n to each outcome z_n . $p_n \ge 0$ and $\sum_{n=1}^{N} p_n = 1$.
- Notation: $L = (p_1 \circ z_1, \dots, p_N \circ z_N)$ or $L = (p_1, \dots, p_N)$
- Let us fix the set of outcomes Z: Different lotteries correspond to a different set of probabilities.
- **Definition Set of Simple Gambles**: The set of simple gambles on Z is given by

$$\mathbf{L}_{S} = \{(p_{1} \circ z_{1}, \dots, p_{N} \circ z_{N}) | p_{n} \ge 0, \sum_{n=1}^{N} p_{n} = 1\} = \{L | p_{n} \ge 0, \sum_{N=1}^{N} p_{n} = 1\}$$

Expected Utility Lotteries (3)

- Definition Degenerated Lottery: $\tilde{L}^n = (0 \circ z_1, \dots, 1 \circ z_n, \dots, 0 \circ z_N).$
- 'Z \subseteq L_S', since $\tilde{L}^n = (0 \circ z_1, \dots, 1 \circ z_n, \dots, 0 \circ z_N)$ for all *i*;
- If z_1 is the smallest element and z_n the largest one, then also $(\alpha \circ z_1, 0 \circ z_2, \ldots, 0 \circ z_{N-1}, (1-\alpha) \circ z_N) \in L_S.$
- **Remark**: In terms of probability theory, the elements of Z where p > 0 provide the support of the distribution of a random variable z. I.e. a lottery L is a probability distribution.

Expected Utility Lotteries (4)

Micro I

• With N consequences, every simple lottery can be represented by a point in a N-1 dimensional simplex

$$\Delta^{(N-1)} = \{ p \in \mathbf{R}^N_+ | \sum p_n = 1 \} .$$

- At each corner n we have the degenerated case that $p_n = 1$.
- With interior points $p_n > 0$ for all *i*.
- See Ritzberger, p. 36,37, Figures 2.1 and 2.2 or Figure 6.B.1, page 169.
- Equivalent to Machina's triangle; with N = 3; $\{(p_1, p_3) \in [0, 1]^2 | 0 \le 1 p_1 p_3 \le 1\}.$

Expected Utility Lotteries (5)

- The consequences of a lottery need not be a $z \in Z$ but can also be further lottery.
- Definition Compound Lottery: [D 6.B.2] Given K simple lotteries L_k and probabilities α_k ≥ 0 and ∑ α_k = 1, the compound lottery L_C = (α₁ ∘ L₁,..., α_k ∘ L_k,..., α_K ∘ L_K). It is the risky alternative that yields the simple lottery L_k with probability α_k.
- The support of the compound lottery is the union of the supports generating this lotteries.

Expected Utility Lotteries (6)

- Definition Reduced Lottery: For any compound lottery L_C we can construct a reduced lottery/simple gamble $L' \in \mathbf{L}_S$. With the probabilities p^k for each L^k we get $p' = \sum \alpha_k p^k$, such that probabilities for each $z_n \in Z$ are $p'_n = \sum \alpha_k p^k_n$.
- Examples: Example 2.5, Ritzberger p. 37
- A reduced lottery can be expressed by a convex combination of elements of compound lotteries (see Ritzberger, Figure 2.3, page 38). I.e. αp_{l1} + (1 α)p_{l2} = p_{lreduced}.
- **Remark**: This linear structure carries over to von Neumann-Morgenstern decision theory.

Expected Utility von Neumann-Morgenstern Utility (1)

- Here we assume that any decision problem can be expressed by means of a lottery (simple gamble).
- Only the outcomes matter.
- Consumers are able to perform calculations like in probability theory, gambles with the same probability distribution on Z are equivalent.

Expected Utility von Neumann-Morgenstern Utility (2)

- Axiom vNM1 Completeness: For two gambles L₁ and L₂ in L_S either L₁ ≥ L₂, L₂ ≥ L₁ or both.
- Here we assume that a consumer is able to rank also risky alternatives. I.e. Axiom vNM1 is stronger than Axiom 1 under certainty.
- Axiom vNM2 Transitivity: For three gambles L_1 , L_2 and L_3 : $L_1 \succeq L_2$ and $L_2 \succeq L_3$ implies $L_1 \succeq L_3$.

Expected Utility von Neumann-Morgenstern Utility (3)

- Axiom vNM3 Continuity: [D 6.B.3] The preference relation on the space of simple lotteries is continuous if for any L_1, L_2, L_3 the sets $\{\alpha \in [0,1] | \alpha L1 + (1-\alpha)L_2 \succeq L_3\} \subset [0,1]$ and $\{\alpha \in [0,1] | L_3 \succeq \alpha L1 + (1-\alpha)L_2\} \subset [0,1]$ are closed.
- Later we show: for any gambles $L \in \mathbf{L}_S$, there exists some probability α such that $L \sim \alpha \overline{L} + (1 \alpha) \underline{L}$.
- This assumption rules out a lexicographical ordering of preferences (safety first preferences).
- Small changes in the probabilities do not change the ordering of the lotteries.

Expected Utility von Neumann-Morgenstern Utility (4)

- Consider the outcomes $Z = \{1000, 10, death\}$, where $1000 \succ 10 \succ death$. L_1 gives 10 with certainty.
- If vNM3 holds then L_1 can be expressed by means of a linear combination of 1000 and *death*. If there is no $\alpha \in [0, 1]$ fulfilling this requirement vNM3 does not hold.
- vNM3 will rule out Bernoulli utility levels of $\pm\infty$.

Expected Utility von Neumann-Morgenstern Utility (5)

Micro I

• Axiom - Monotonicity: For all probabilities $\alpha, \beta \in [0, 1]$,

$$\alpha \bar{L} + (1 - \alpha) \underline{L} \succeq \beta \bar{L} + (1 - \beta) \underline{L}$$

if and only if $\alpha \geq \beta$.

• Counterexample where this assumption is not met: Safari hunter who prefers an alternative with the bad outcome.

Expected Utility von Neumann-Morgenstern Utility (6)

Micro I

• Axiom vNM4 - Independence, Substitution: For all probabilities L_1 , L_2 and L_3 in \mathbf{L}_S and $\alpha \in [0, 1]$:

$$L_1 \succeq L_2 \Leftrightarrow \alpha L_1 + (1 - \alpha)L_3 \succeq \alpha L_2 + (1 - \alpha)L_3$$
.

- This axiom implies that the preference orderings of the mixtures are independent of the third lottery.
- This axiom has no parallel in consumer theory under certainty.

Expected Utility von Neumann-Morgenstern Utility (7)

Micro I

Example: consider a bundle x¹ consisting of 1 cake and 1 bottle of wine, x² = (3,0); x³ = (3,3). Assume that x¹ ≻ x².

Axiom vNM4 requires that $\alpha x^1 + (1 - \alpha)x^3 \succ \alpha x^2 + (1 - \alpha)x^3$; here $\alpha > 0$.

Expected Utility von Neumann-Morgenstern Utility (8)

- Lemma vNM1-4 imply monotonicity: Moreover, if $L_1 \succeq L_2$ then $\alpha L_1 + (1 - \alpha)L_2 \succeq \beta L_1 + (1 - \beta)L_2$ for arbitrary $\alpha, \beta \in [0, 1]$ where $\alpha \ge \beta$. There is unique γ such that $\gamma L_1 + (1 - \gamma)L_2 \sim L$.
- See steps 2-3 of the vNM existence proof.

Expected Utility von Neumann-Morgenstern Utility (9)

- Definition von Neumann Morgenstern Expect Utility
 Function: [D 6.B.5] A real valued function U : L_S → R has
 expected utility form if there is an assignment of numbers
 (u₁,...,u_N) such that for every lottery L ∈ L_S we have
 U(L) = ∑_{z_n∈Z} p(z_n)u(z_n). A function of this structure is said
 to satisfy the expected utility property- it is called von
 Neumann-Morgenstern utility function.
- Note that this function is linear in the probabilities p_n .
- $u(z_n)$ is called **Bernoulli utility function**.

Expected Utility von Neumann-Morgenstern Utility (10)

Micro I

• Proposition - Linearity of the von Neumann Morgenstern Expect Utility Function: [P 6.B.1] A utility function has expected utility form if and only if it is linear. That is to say:

$$U\left(\sum_{k=1}^{K} \alpha_k L_k\right) = \sum_{k=1}^{K} \alpha_k U(L_k)$$

Expected Utility von Neumann-Morgenstern Utility (11)

Micro I

- Suppose that $U(\sum_{k=1}^{K} \alpha_k L_k) = \sum_{k=1}^{K} \alpha_k U(L_k)$ holds. We have to show that U has expected utility form.
- If U is linear then we can express any lottery L by means of a compound lottery with probabilities $\alpha_n = p_n$ and degenerated lotteries \tilde{L}^n . I.e. $L = \sum p_n \tilde{L}^n$. By linearity we get $U(L) = U(\sum p_n \tilde{L}^n) = \sum p_n U(\tilde{L}^n)$.
- Define $u(z_n) = U(\tilde{L}^n)$. Then $U(L) = U(\sum p_n \tilde{L}^n) = \sum p_n U(\tilde{L}^n) = \sum p_n u(z_n)$. Therefore U(.) has expected utility form.

Expected Utility von Neumann-Morgenstern Utility (12)

Micro I

- Suppose that $U(L) = \sum_{n=1}^{N} p_n u(z_n)$ holds. We have to show that utility is linear.
- Consider a compound lottery $(L_1, \ldots, L_K, \alpha_1, \ldots, \alpha_K)$. Its reduced lottery is $L' = \sum \alpha_k L_k$.
- Then $U(\sum_k \alpha_k L_k) = \sum_n \left(\sum_k \alpha_k p_n^k\right) u(z_n) = \sum_k \alpha_k \left(\sum_n u(z_n) p_n^k\right) = \sum_k \alpha_k U(L_k).$

Expected Utility von Neumann-Morgenstern Utility (13)

Micro I

 Proposition - Existence of a von Neumann Morgenstern Expect Utility Function: [P 6.B.3] If the Axioms vNM 1-4 are satisfied for a preference ordering ≥ on L_S. Then ≥ admits an expected utility representation. I.e. there exists a real valued function u(.) on Z which assigns a real number to each outcome. For any pair of lotteries we get

$$L_1 \succeq L_2 \Leftrightarrow U(L_1) = \sum_{n=1}^N p_{l1}(z_n)u(z_n) \ge U(L_2) = \sum_{n=1}^N p_{l2}(z_n)u(z_n)$$

Expected Utility von Neumann-Morgenstern Utility (14)

Micro I

- Suppose that there is a best and a worst lottery. With a finite set of outcomes this can be easily shown by means of the independence axiom. In addition $\overline{L} \succ \underline{L}$.
- By the definition of \overline{L} and \underline{L} we get: $\overline{L} \succeq L_c \succeq \underline{L}$, $\overline{L} \succeq L_1 \succeq \underline{L}$ and $\overline{L} \succeq L_2 \succeq \underline{L}$.
- We have to show that (i) u(z_n) exists and (ii) that for any compound lottery L_c = βL₁ + (1 − β)L₂ we have U(βL₁ + (1 − β)L₂) = βU(L₁) + (1 − β)U(L₂) (expected utility structure).

Expected Utility von Neumann-Morgenstern Utility (15)

Micro I

Proof:

- Step 1: By the independence Axiom vNM4 we get if $L_1 \succ L_2$ and $\alpha \in (0, 1)$ then $L_1 \succ \alpha L_1 + (1 - \alpha)L_2 \succ L_2$.
- This follows directly from the independence axiom.

 $L_1 \sim \alpha L_1 + (1 - \alpha)L_1 \succ \alpha L_1 + (1 - \alpha)L_2 \succ \alpha L_2 + (1 - \alpha)L_2 = L_2$

Expected Utility von Neumann-Morgenstern Utility (16)

Micro I

- Step 2: Assume $\beta > \alpha$, then (by monotonicity) $\beta \overline{L} + (1 - \beta) \underline{L} \succ \alpha \overline{L} + (1 - \alpha) \underline{L}$ and vice versa.
- Define $\gamma = (\beta \alpha)/(1 \alpha)$; the assumptions imply $\gamma \in [0, 1]$.

Expected Utility von Neumann-Morgenstern Utility (17)

Micro I

Proof:

• Then

$$\beta \bar{L} + (1 - \beta) \underline{L} = \gamma \bar{L} + (1 - \gamma) (\alpha \bar{L} + (1 - \alpha) \underline{L})$$

$$\succ \gamma (\alpha \bar{L} + (1 - \alpha) \underline{L}) + (1 - \gamma) (\alpha \bar{L} + (1 - \alpha) \underline{L})$$

$$\sim \alpha \bar{L} + (1 - \alpha) \underline{L}$$

Expected Utility von Neumann-Morgenstern Utility (18)

Micro I

- Step 2: For the converse we have to show that $\beta \overline{L} + (1 - \beta) \underline{L} \succ \alpha \overline{L} + (1 - \alpha) \underline{L}$ results in $\beta > \alpha$. We show this by means of the contrapositive: If $\beta \not> \alpha$ then $\beta \overline{L} + (1 - \beta) \underline{L} \not> \alpha \overline{L} + (1 - \alpha) \underline{L}$.
- Thus assume $\beta \leq \alpha$, then $\alpha \overline{L} + (1 \alpha) \underline{L} \succeq \beta \overline{L} + (1 \beta) \underline{L}$ follows in the same way as above. If $\alpha = \beta$ indifference follows.

Expected Utility von Neumann-Morgenstern Utility (19)

Micro I

- Step 3: There is a unique α_L such that $L \sim \alpha_L \overline{L} + (1 \alpha_L) \underline{L}$.
- Existence follows from $\overline{L} \succ \underline{L}$ and the continuity axiom. Uniqueness follows from step 2.
- Ad existence: define the sets {α ∈ [0,1]|αL
 + (1 − α)L
 L}

 and {α ∈ [0,1]|L ≥ αL
 + (1 − α)L

 Both sets are closed. Any α
 belongs to at least one of these two sets. Both sets are nonempty.
 Their complements are open and disjoint. The set [0,1] is
 connected ⇒ there is at least one α belonging to both sets.

Expected Utility Connected Sets

- **Definition**: Let X be a topological space. A **separation** of X is a pair U, V of disjoint nonempty open subsets of X whose union is X. The space is said to be **connected**, if there does not exist a separation of X. (see e.g. Munkres, J. Topology, page 148)
- Example: The rationals are not connected.
- Example: [-1,1] is connected, [-1,0] and (0,1] are disjoint and cover X. The first set is not open. Alternatively, if $X = [-1,0) \cup (0,1]$ we would get a separation.

Expected Utility von Neumann-Morgenstern Utility (20)

Micro I

- Step 4: The function $U(L) = \alpha_L$ represents the preference relations \succeq .
- Consider $L_1, L_2 \in \mathbf{L}_S$: If $L_1 \succeq L_2$ then $\alpha_1 \ge \alpha_2$. If $\alpha_1 \ge \alpha_2$ then $L_1 \succeq L_2$ by steps 2-3.
- It remains to show that this utility function has expected utility form.

Expected Utility von Neumann-Morgenstern Utility (21)

Proof:

- Step 5: U(L) is has expected utility form.
- We show that the linear structure also holds for the compound lottery $L_c = \beta L_1 + (1 \beta)L_2$.
- By using the independence we get:

$$\beta L_1 + (1 - \beta) L_2 \sim \beta(\alpha_1 \overline{L} + (1 - \alpha_1) \underline{L}) + (1 - \beta) L_2$$

$$\sim \beta(\alpha_1 \overline{L} + (1 - \alpha_1) \underline{L}) + (1 - \beta)(\alpha_2 \overline{L} + (1 - \alpha_2) \underline{L})$$

$$\sim (\beta \alpha_1 + (1 - \beta) \alpha_2) \overline{L} + (\beta (1 - \alpha_1) + (1 - \beta)(1 - \alpha_2)) \underline{L}$$

• By the rule developed in step 4, this shows that $U(L_c) = U(\beta L_1 + (1 - \beta)L_2) = \beta U(L_1) + (1 - \beta)U(L_2).$

29

Expected Utility von Neumann-Morgenstern Utility (22)

Micro I

 Proposition - von Neumann Morgenstern Expect Utility Function are unique up to Positive Affine Transformations: [P 6.B.2] If U(.) represents the preference ordering ≽, then V represents the same preference ordering if and only if V = α + βU, where β > 0.

Expected Utility von Neumann-Morgenstern Utility (23)

Micro I

- Note that if $V(L) = \alpha + \beta U(L)$, V(L) fulfills the expected utility property.
- We have to show that if U and V represent preferences, then V has to be an affine linear transformation of U.
- If U is constant on \mathbf{L}_S , then V has to be constant. Both functions can only differ by a constant α .

Expected Utility von Neumann-Morgenstern Utility (24)

Micro I

Proof:

• Alternatively, for any $L \in \mathbf{L}_S$ and $\overline{L} \succ \underline{L}$, we get

$$f_1 := \frac{U(L) - U(\underline{L})}{U(\overline{L}) - U(\underline{L})}$$

and

$$f_2 := \frac{V(L) - V(\underline{L})}{V(\overline{L}) - V(\underline{L})}$$
.

- f_1 and f_2 are linear transformations of U and V that satisfy the expected utility property.
- $f_i(\underline{L}) = 0$ and $f_i(\overline{L}) = 1$, for i = 1, 2.

Expected Utility von Neumann-Morgenstern Utility (25)

Micro I

- $L \sim \underline{L}$ then $f_1 = f_2 = 0$; if $L \sim \overline{L}$ then $f_1 = f_2 = 1$.
- By expected utility $U(L) = \gamma U(\overline{L}) + (1 \gamma)U(\underline{L})$ and $V(L) = \gamma V(\overline{L}) + (1 \gamma)V(\underline{L}).$
- If $\overline{L} \succ L \succ \underline{L}$ then there has to exist a unique γ , such that $\underline{L} \prec L \sim \gamma \overline{L} + (1 \gamma) \underline{L} \prec \overline{L}$. Therefore

$$\gamma = \frac{U(L) - U(\underline{L})}{U(\overline{L}) - U(\underline{L})} = \frac{V(L) - V(\underline{L})}{V(\overline{L}) - V(\underline{L})}$$

Expected Utility von Neumann-Morgenstern Utility (26)

Micro I

Proof:

• Then $V(L) = \alpha + \beta U(L)$ where

$$\alpha = V(\underline{L}) - U(\underline{L}) \frac{V(\overline{L}) - V(\underline{L})}{U(\overline{L}) - U(\underline{L})}$$

and

$$\beta = \frac{V(L) - V(\underline{L})}{U(\overline{L}) - U(\underline{L})} \ .$$

Expected Utility von Neumann-Morgenstern Utility (27)

- The idea of expected utility can be extended to a set of distributions F(x) where the expectation of u(x) exists, i.e. $\int u(x)dF(x) < \infty$.
- For technical details see e.g. Robert (1994), The Bayesian Choice and DeGroot, Optimal Statistical Decisions.
- Note that expected utility is a probability weighted combination of Bernoulli utility functions. I.e. the properties of the random variable z, described by the lottery l(z), are separated from the attitudes towards risk.

Expected Utility VNM Indifference Curves (1)

- Indifferences curves are straight lines; see Ritzberger, Figure 2.4, page 41.
- Consider a VNM utility function and two indifferent lotteries L_1 and L_2 . It has to hold that $U(L_1) = U(L_2)$.
- By the expected utility theorem $U(\alpha L_1 + (1 \alpha)L_2) = \alpha U(L_1) + (1 \alpha)U(L_2).$
- If $U(L_1) = U(L_2)$ then $U(\alpha L_1 + (1 \alpha)L_2) = U(L_1) = U(L_2)$ has to hold and the indifferent lotteries is linear combinations of L_1 and L_2 .

Expected Utility VNM Indifference Curves (2)

- Indifference curves are parallel; see Ritzberger, Figure 2.5, 2.6, page 42.
- Consider $L_1 \sim L_2$ and a further lottery $L_3 \succ L_1$ (w.l.g.).
- From $\beta L_1 + (1 \beta)L_3$ and $\beta L_2 + (1 \beta)L_3$ we have received two compound lotteries.
- By construction these lotteries are on a line parallel to the line connecting L_1 and L_2 .

Expected Utility VNM Indifference Curves (3)

- The independence axiom vNM4 implies that $\beta L_1 + (1 \beta)L_3 \sim \beta L_2 + (1 \beta)L_3$ for $\beta \in [0, 1]$.
- Therefore the line connecting the points $\beta L_1 + (1 \beta)L_3$ and $\beta L_2 + (1 \beta)L_3$ is an indifference curve.
- The new indifference curve is a parallel shift of the old curve; by the linear structure of the expected utility function no other indifference curves are possible.

Expected Utility Allais Paradoxon (1)

Lottery	0	1-10	11-99
p_{z}	1/100	10/100	89/100
L_a	50	50	50
L_b	0	250	50
M_a	50	50	0
M_b	0	250	0

Expected Utility Allais Paradoxon (2)

- Most people prefer L_a to L_b and M_b to M_a .
- This is a contradiction to the independence axiom G5.
- Allais paradoxon in the Machina triangle, Gollier, Figure 1.2, page 8.

Expected Utility Allais Paradoxon (3)

- Expected utility theory avoids problems of time inconsistency.
- Agents violating the independence axiom are subject to Dutch book outcomes (violate no money pump assumption).

Expected Utility Allais Paradoxon (4)

- Three lotteries: $L_a \succ L_b$ and $L_a \succ L_c$.
- But $L_d = 0.5L_b + 0.5L_c \succ L_a$.
- Gambler is willing to pay some fee to replace L_a by L_d .

Expected Utility Allais Paradoxon (5)

- After nature moves: L_b or L_c with L_d .
- Now the agents is once again willing to pay a positive amount for receiving L_a
- Gambler starting with L_a and holding at the end L_a has paid two fees!
- Dynamically inconsistent/Time inconsistent.
- Dicuss Figure 1.3, Gollier, page 12.

Expected Utility Risk Attitude (1)

- For the proof of the VNM-utility function we did not place any assumptions on the Bernoulli utility function u(z).
- For applications often a Bernoulli utility function has to be specified.
- In the following we consider $z \in \mathbb{R}^N$ and u'(z) > 0; abbreviate lotteries with money amounts $l \in \mathbf{L}_S$.
- There are interesting interdependences between the Bernoulli utility function and an agent's attitude towards risk.

Expected Utility Risk Attitude (2)

- Consider a nondegenerated lottery *l* ∈ L_S and a degenerated lottery *l̃*. Assume that *E*(*z*) = *z_{l̃}* holds. I.e. the degenerated lottery pays the expectation of *l* for sure.
- **Definition Risk Aversion**: A consumer is risk averse if \tilde{l} is at least of good as l; \tilde{l} is preferred to l in a stronger version.
- **Definition Risk Neutrality**: A consumer is risk neutral if $\tilde{l} \sim l$.
- **Definition Risk Loving**: A consumer is risk loving if l is at least as good as \tilde{l} .

Expected Utility Risk Attitude (3)

Micro I

- By the definition of risk aversion we see that $u(E(z)) \ge E(u(z))$.
- To attain such a relationship **Jensen's inequality** has to hold: If f(z) is a concave function and $z \sim F(z)$ then

$$\int f(z)dF(z) \le f(\int zdF(z)) \; .$$

• For sums this implies:

$$\sum p_z f(z) \le f(\sum p_z z) \; .$$

For strictly concave function, < has to hold, for convex functions we get \geq ; for strictly convex functions >.

Expected Utility Risk Attitude (4)

- For a lottery l where $E(u(z)) < \infty$ and $E(z) < \infty$ we can calculate the amount C where a consumer is indifferent between receiving C for sure and the lottery l. I.e. $l \sim C$ and E(u(z)) = u(C) hold.
- In addition we are able to calculate the maximum amount π an agent is willing to pay for receiving the fixed amount E(z) for sure instead of the lottery l. I.e. $l \sim E(z) \pi$ or $E(u(z)) = u(E(z) \pi)$.

Expected Utility Risk Attitude (5)

- **Definition Certainty Equivalent** [D 6.C.2]: The fixed amount *C* where a consumer is indifferent between *C* an a gamble *l* is called certainty equivalent.
- Definition Risk Premium: The maximum amount π a consumer is willing to pay to exchange the gamble *l* for a sure event with outcome *E*(*z*) is called risk premium.
- Note that C and π depend on the properties of the random variable (described by l) and the attitude towards risk (described by u).

Expected Utility Risk Attitude (6)

- **Remark**: the same analysis can also be performed with risk neutral and risk loving agents.
- Remark: MWG defines a probability premium, which is abbreviated by π in the textbook. Given a degenerated lottery and some ε > 0. The probability-premium π^R is defined as u(l
 ² = (¹/₂ + π^R)u(z + ε) + (¹/₂ π^R)u(z ε). I.e. mean-preserving spreads are considered here.

Expected Utility Risk Attitude (7)

- Proposition Risk Aversion and Bernoulli Utility: Consider an expected utility maximizer with Bernoulli utility function u(.). The following statements are equivalent:
 - The agent is risk averse.
 - u(.) is a (strictly) concave function.
 - $C \leq E(z)$. (< with strict version)
 - $\pi \ge 0$. (> with strict version)

Expected Utility Risk Attitude (8)

Micro I

Proof: (sketch)

- By the definition of risk aversion: for a lottery l where $E(z) = z_{\tilde{l}}$, a risk avers agent $\tilde{l} \succeq l$.
- I.e. $E(u(z)) \leq u(z_{\tilde{l}}) = u(E(z))$ for a VNM utility maximizer.
- (ii) follows from Jensen's inequality.
- (iii) If u(.) is (strictly) concave then $E(u(z)) = u(C) \le u(E(z))$ can only be matched with $C \le E(z)$.
- (iv) With a strictly concave u(.), $E(u(z)) = u(E(z) - \pi) \le u(E(z))$ can only be matched with $\pi \ge 0$.

Expected Utility Arrow Pratt Coefficients (1)

- Using simply the second derivative u''(z) causes problems with affine linear transformations.
- Definition Arrow-Pratt Coefficient of Absolute Risk Aversion: [D 6.C.3] Given a twice differentiable Bernoulli utility function u(.), the coefficient of absolute risk aversion is defined by A(z) = -u''(z)/u'(z).
- Definition Arrow-Pratt Coefficient of Relative Risk Aversion: [D 6.C.5] Given a twice differentiable Bernoulli utility function u(.), the coefficient of relative risk aversion is defined by R(z) = -zu''(z)/u'(z).

Expected Utility Comparative Analysis (1)

- Consider two agents with Bernoulli utility functions u_1 and u_2 . We want to compare their attitudes towards risk.
- **Definition More Risk Averse**: Agent 1 is more risk averse than agent 2, if agent 1 dislikes all lotteries that agent 2 dislikes.
- Define a function $\phi(x) = u_1(u_2^{-1}(x))$. Since $u_2(.)$ is an increasing function this expression is well defined. We, in addition, assume that the first and the second derivatives exist.
- By construction with $x = u_2(z)$ we get: $\phi(x) = u_1(u_2^{-1}(x)) = u_1(u_2^{-1}(u_2(z))) = u_1(z)$. I.e. $\phi(x)$ transforms u_2 into u_1 , such that $u_1(z) = \phi(u_2(z))$.

Expected Utility Comparative Analysis (2)

- **Proposition** More Risk Averse Agents [P 6.C.3]: Assume that the first and second derivatives of the Bernoulli utility functions u_1 and u_2 exist (u' > 0 and u'' < 0). Then the following statements are equivalent:
 - Agent 1 is (strictly) more risk averse than agent 2.
 - u_1 is a (strictly) concave transformation of u_2 .
 - $A_1(z) \ge A_2(z)$ (> for strict) for all z.
 - $C_1 \leq C_2$ and $\pi_1 \geq \pi_2$; (<> for strict).

Expected Utility Comparative Analysis (3)

Micro I

Proof:

- Consider a random variable z described by l and the function ϕ . Consumer 2 is risk averse.
- Step 1 (ii)~ (i): By means of Jensen's inequality we get a concave $\phi()$; (with strict concave we get <)

 $E(u_1(z)) = E(\phi(u_2(z))) \le \phi(E(u_2(z))) \le \phi(u_2(E(z))) = u_1(E(z))$

First $\leq: \phi$ has to be concave to apply Jensen

Expected Utility Comparative Analysis (4)

Micro I

Proof:

Second $\leq: u_2$ has to be concave, since consumer 2 is risk averse.

- Therefore, if agent one is more risk averse, then u_1 has to be (strictly) concave transformation of u_2 .
- The above considerations work in both directions, therefore (i) and (ii) are equivalent.

Expected Utility Comparative Analysis (5)

Micro I

Proof:

• Step 2 (iii)~ (ii): By the definition of ϕ and our assumptions we get

$$u_1'(z) = \frac{d\phi((u_2(z)))}{dz} = \phi'(u_2(z))u_2'(z) .$$

(since $u_1', u_2' > 0 \Rightarrow \phi' > 0$) and

$$u_1''(z) = \phi'(u_2(z))u_2''(z) + \phi''(u_2(z))(u_2'(z))^2$$
.

Expected Utility Comparative Analysis (6)

Micro I

Proof:

• Divide both sides by $-u_1'(z) < 0$ and using $u_1'(z) = \dots$ yields:

$$-\frac{u_1''(z)}{u_1'(z)} = A_1(z) = A_2(z) - \frac{\phi''(u_2(z))}{\phi'(u_2(z))}u_2'(z) .$$

• Since $A_1, A_2 > 0$ due to risk aversion, $\phi' > 0$ and $\phi'' \le 0$ (<) due to its concave shape we get $A_1(z) \ge A_2(z)$ (>) for all z.

Expected Utility Comparative Analysis (7)

Micro I

Proof:

• Step 3 (vi)~ (ii): Jensen's inequality yields (with strictly concave ϕ)

 $u_1(C_1) = E(u_1(z)) = E(\phi(u_2(z)) < \phi(E(u_2(z))) = \phi(u_2(C_2)) = u_1(C_2)$

- Since $u'_1 > 0$ we get $C_1 < C_2$.
- $\pi_1 > \pi_2$ works in the same way.
- The above considerations also work in both directions, therefore (ii) and (iv) are equivalent.

Expected Utility Comparative Analysis (8)

Micro I

Proof:

• Step 4 (vi)~ (ii): Jensen's inequality yields (with strictly concave ϕ)

 $u_1(E(z) - \pi_1) = E(u_1(z)) = E(\phi(u_2(z)) < \phi(E(u_2(z))) = \phi(u_2(E(z) - \pi_2)) = u_1(E(z) - \pi_2)$

• Since $u'_1 > 0$ we get $\pi_1 > \pi_2$.

Expected Utility Stochastic Dominance (1)

- In an application, do we have to specify the Bernoulli utility function?
- Are there some lotteries (distributions) such that F(z) is (strictly) preferred to G(z)?
- E.g. if $X(\omega) > Y(\omega)$ a.s.?
- YES \Rightarrow Concept of stochastic dominance.
- Mascollel, Figure 6.D.1., page 196.

Expected Utility Stochastic Dominance (2)

Definition - First Order Stochastic Dominance: [D 6.D.1] A distribution F(z) first order dominates the distribution G(z) if for every nondecreasing function u : R → R we have

$$\int_{-\infty}^{\infty} u(z) dF(z) \geq \int_{-\infty}^{\infty} u(z) dG(z)$$

• Definition - Second Order Stochastic Dominance: [D 6.D.2] A distribution F(z) second order dominates the distribution G(z)if $E_F(z) = E_G(z)$ and for every nondecreasing concave function $u : \mathbf{R}_+ \to \mathbf{R}$ the inequality $\int_0^\infty u(z) dF(z) \ge \int_0^\infty u(z) dG(z)$ holds.

Expected Utility Stochastic Dominance (3)

- Proposition First Order Stochastic Dominance: [P 6.D.1] F(z) first order dominates the distribution G(z) if and only if $F(z) \leq G(z)$.
- Proposition Second Order Stochastic Dominance: [D
 6.D.2] F(z) second order dominates the distribution G(z) if and only if

$$\int_0^{\bar{z}} F(z)dz \le \int_0^{\bar{z}} G(z)dz \quad \text{ for all } \bar{z} \text{ in } \mathbf{R}^+$$

• **Remark**: I.e. if we can show stochastic dominance we do not have to specify any Bernoulli utility function!

Expected Utility Stochastic Dominance (4)

Micro I

Proof:

- Assume that u is differentiable and $u' \geq 0$
- Step 1: First order, if part: If $F(z) \leq G(z)$ integration by parts yields:

$$\int_{-\infty}^{\infty} u(z)dF(z) - \int_{-\infty}^{\infty} u(z)dG(z)$$

= $u(z)(F(z) - G(z))|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u'(z)(F(z) - G(z))dz$
= $-\int_{-\infty}^{\infty} u'(z)(F(z) - G(z))dz \ge 0$.

• The above inequality holds since the terms inside the integral $(F(z) - G(z)) \le 0 \ a.s.$

Expected Utility Stochastic Dominance (5)

Micro I

Proof:

- Step 2: First order, only if part: If FOSD then $F(z) \le G(z)$ holds. Proof by means of contradiction.
- Assume there is a z̄ such that F(z̄) > G(z̄). z̄ > -∞ by construction. Set u(z) = 0 for z ≤ z̄ and u(z) = 1 for z > z̄. Here we get

$$\int_{-\infty}^{\infty} u(z)dF(z) - \int_{-\infty}^{\infty} u(z)dG(z)$$

= $(1 - F(\bar{z})) - (1 - G(\bar{z})) = -F(\bar{z}) + G(\bar{z}) < 0$

Expected Utility Stochastic Dominance (6)

Micro I

Proof:

- Second Order SD: Assume that u is twice continuously differentiable, such that $u''(z) \leq 0$, w.l.g. u(0) = 0.
- Remark: The equality of means implies:

$$0 = \int_{0}^{\infty} z dF(z) - \int_{0}^{\infty} z dG(z)$$

= $z(F(z) - G(z))|_{0}^{\infty} - \int_{0}^{\infty} (F(z) - G(z)) dz$
= $-\int_{0}^{\infty} (F(z) - G(z)) dz$.

Expected Utility Stochastic Dominance (7)

Micro I

Proof:

• Step 3: Second order, if part: Integration by parts yields:

$$\int_{0}^{\infty} u(z)dF(z) - \int_{0}^{\infty} u(z)dG(z)$$

$$= u(z)(F(z) - G(z))|_{0}^{\infty} - \int_{0}^{\infty} u'(z)(F(z) - G(z))dz$$

$$= -\int_{0}^{\infty} u'(z)(F(z) - G(z))dz$$

$$= -u'(z)\int_{0}^{z} (F(x) - G(x))dx|_{0}^{\infty} - \int_{0}^{\infty} -u''(z)\left(\int_{0}^{z} (F(x) - G(x))dx\right)dz$$

$$= \int_{0}^{\infty} u''(z)\left(\int_{0}^{z} (F(x) - G(x))dx\right)dz \ge 0$$

• Note that $u'' \leq 0$ by assumption.

Expected Utility Stochastic Dominance (8)

Proof:

• Step 4: Second order, only if part: Consider a \overline{z} such that $u(z) = \overline{z}$ for all $z > \overline{z}$ and u(z) = z for all $z \le \overline{z}$. This yields:

$$\begin{split} &\int_{0}^{\infty} u(z)dF(z) - \int_{0}^{\infty} u(z)dG(z) \\ &= \int_{0}^{\bar{z}} zdF(z) - \int_{0}^{\bar{z}} zdG(z) + \bar{z}\left((1 - F(\bar{z})) - (1 - G(\bar{z}))\right) \\ &= z\left(F(z) - G(z)\right)|_{0}^{\bar{z}} - \int_{0}^{\bar{z}} \left(F(z) - G(z)\right)dz - \bar{z}\left(F(\bar{z}) - G(\bar{z})\right) \\ &= -\int_{0}^{\bar{z}} \left(F(z) - G(z)\right)dz < 0 \;. \end{split}$$

Expected Utility Stochastic Dominance (9)

- Definiton Monotone Likelihood Ratio Property: The distributions F(z) and G(z) fulfill, the monotone likelihood rate property if G(z)/F(z) is non-increasing in z.
- For $x \to \infty G(z)/F(z) = 1$ has to hold. This and the fact that G(z)/F(z) is non-increasing implies $G(z)/F(z) \ge 1$ for all z.
- Proposition First Order Stochastic Dominance follows from MLP: MLP results in $F(z) \leq G(z)$.
- **Remark**: If F(z) and G(z) have Lebesgue-densities f(z) and g(z), then $F(z) \leq G(z)$ if the ratio of the densities g(z)/f(z) is non-increasing.

Expected Utility Arrow-Pratt Approximation (1)

- By means of the Arrow-Pratt approximation we can express the risk premium π in terms of the Arrow-Pratt measures of risk.
- Assume that z = w + kx, where w is a fixed constant (e.g. wealth), x is a mean zero random variable and $k \ge 0$. By this assumption the variance of z is given by $V(z) = k^2 V(x) = k^2 E(x^2)$.
- Proposition Arrow-Pratt Risk Premium with respect to Additive risk: If risk is additive, i.e. z = w + kx, then the risk premium π is approximately equal to 0.5A(w)V(z).

Expected Utility Arrow-Pratt Approximation (2)

Micro I

Proof:

- By the definition of the risk premium we have $E(u(z)) = E(u(w + kx)) = u(w \pi(k)).$
- For k = 0 we get $\pi(k) = 0$. For risk averse agents $d\pi(k)/dk \ge 0$.
- Use the definition of the risk premium and take the first derivate with respect to k on both sides:

$$E(xu'(w + kx)) = -\pi'(k)u'(w - \pi(k)) .$$

Expected Utility Arrow-Pratt Approximation (3)

Micro I

Proof:

- For the left hand side we get at k = 0: E(xu'(w + kx)) = u'(w)E(x) = 0 since E(x) = 0 by assumption.
- Matching LHS with RHS results in $\pi'(k) = 0$ at k = 0.

Expected Utility Arrow-Pratt Approximation (4)

Micro I

Proof:

• Taking the second derivative with respect to k yields:

$$E(x^{2}u''(w+kx)) = (\pi'(k))^{2}u''(w-\pi(k)) - \pi''(k)u'(w-\pi(k))$$

• At k = 0 this results in (note that $\pi'(0) = 0$):

$$\pi''(0) = -\frac{u''(w)}{u'(w)}E(x^2)$$

Expected Utility Arrow-Pratt Approximation (5)

Micro I

• A second order Taylor expansion of $\pi(k)$ around k = 0 results in

$$\pi(k) \approx \pi(0) + \pi'(0)k + \frac{\pi''(0)}{2}k^2$$

• Thus

$$\pi(k) \approx 0.5 A(w) E(x^2) k^2$$

• Since E(x) = 0 by assumption, the risk premium is proportional to the variance of x.

Expected Utility Arrow-Pratt Approximation (6)

- For multiplicative risk we can proceed as follows: z = w(1 + kx) where E(x) = 0.
- Proceeding the same way results in:

$$\frac{\pi(k)}{w} \approx -\frac{wu''(w)}{u'(w)}k^2 E(x^2) = 0.5R(w)E(x^2)k^2$$

- Proposition Arrow-Pratt Relative Risk Premium with respect to Multiplicative risk: If risk is multiplicative, i.e. z = w(1 + kx), then the relative risk premium π/w is approximately equal to $0.5R(w)k^2V(x)$.
- Interpretation: Risk premium per monetary unit of wealth.

Expected Utility Decreasing Absolute Risk Aversion (1)

- It is widely believed that the more wealthy an agent, the smaller his/her willingness to pay to escape a given additive risk.
- Definition Decreasing Absolute Risk Aversion: Given additive risk z = w + x, x is a random variable with mean 0. The risk premium is a decreasing function in wealth w.

Expected Utility Decreasing Absolute Risk Aversion (2)

- **Proposition Decreasing Absolute Risk Aversion**: [P 6.C.3] The following statements are equivalent
 - The risk premium is a decreasing function in wealth w.
 - Absolute risk aversion A(w) is decreasing in wealth.
 - -u'(z) is a concave transformation of u. I.e. u' is sufficiently convex.

Expected Utility Decreasing Absolute Risk Aversion (3)

Micro I

Proof: (sketch)

• Step 1, $(i) \sim (iii)$: Consider additive risk and the definition of the risk premium. Treat π as a function of wealth:

$$E(u(w+kx)) = u(w - \pi(w)) .$$

• Taking the first derivative yields:

$$E(1u'(w+kx)) = (1 - \pi'(w))u'(w - \pi(w)) .$$

Expected Utility Decreasing Absolute Risk Aversion (4)

Micro I

Proof: (sketch)

• This yields:

$$\pi'(w) = -\frac{E(1u'(w+kx)) - u'(w-\pi(w))}{u'(w-\pi(w))}$$

- $\pi'(w)$ decreases if $E(1u'(w+kx)) u'(w-\pi(w)) \ge 0$.
- Note that we have proven that if $E(u_2(z)) = u_2(z \pi_2)$ then $E(u_1(z)) \le u_1(z \pi_2)$ if agent 1 were more risk averse.

Expected Utility Decreasing Absolute Risk Aversion (5)

Micro I

Proof: (sketch)

- Here we have the same mathematical structure (see slides on Comparative Analysis): set z = w + kx, $u_1 = -u'$ and $u_2 = u$.
- $\Rightarrow -u'$ is more concave than u such that -u' is a concave transformation of u.

Expected Utility Decreasing Absolute Risk Aversion (6)

Proof: (sketch)

- Step 2, $(iii) \sim (ii)$: Next define $P(w) := -\frac{u'''}{u''}$ which is often called **degree of absolute prudence**.
- From our former theorems we get: P(w) ≥ A(w) has to be fulfilled (see A₁ and A₂).
- Take the first derivative of the Arrow-Pratt measure yields:

$$\begin{aligned} A'(w) &= -\frac{1}{(u'(w))^2} (u'''(w)u'(w) - (u''(w))^2) \\ &= -\frac{u''(w)}{(u'(w))} (u'''(w)/u''(w) - u''(w)/u'(w)) \\ &= \frac{u''(w)}{(u'(w))} (P(w) - A(w)) \end{aligned}$$

Micro I

81

Expected Utility Decreasing Absolute Risk Aversion (7)

Micro I

Proof: (sketch)

- A decreases in wealth if $A'(w) \leq 0$.
- We get $A'(w) \leq 0$ if $P(w) \geq A(w)$.

Expected Utility HARA Utility (1)

- Definition Harmonic Absolute Risk Aversion: A Bernoulli utility function exhibits HARA if its absolute risk tolerance (= inverse of absolute risk aversion) T(z) := 1/A(z) is linear in wealth w.
- I.e. T(z) = -u'(z)/u''(z) is linear in z
- These functions have the form $u(z) = \zeta (\eta + z/\gamma)^{1-\gamma}$.
- Given the domain of z, $\eta + z/\gamma > 0$ has to hold.

Expected Utility HARA Utility (2)

Micro I

• Taking derivatives results in:

$$u'(z) = \zeta \frac{1-\gamma}{\gamma} (\eta + z/\gamma)^{-\gamma}$$
$$u''(z) = -\zeta \frac{1-\gamma}{\gamma} (\eta + z/\gamma)^{-\gamma-1}$$
$$u'''(z) = \zeta \frac{(1-\gamma)(\gamma+1)}{\gamma^2} (\eta + z/\gamma)^{-\gamma-2}$$

Expected Utility HARA Utility (3)

- Risk aversion: $A(z) = (\eta + z/\gamma)^{-1}$
- Risk Tolerance is linear in z: $T(z) = \eta + z/\gamma$
- Absolute Prudence: $P(z) = \frac{\gamma+1}{\gamma} (\eta + z/\gamma)^{-1}$
- Relative Risk Aversion: $R(z) = z (\eta + z/\gamma)^{-1}$

Expected Utility HARA Utility (4)

- With $\eta = 0$, $R(z) = \gamma$: Constant Relative Risk Aversion Utility Function: $u(z) = \log(z)$ for $\gamma = 1$ and $u(z) = \frac{z^{1-\gamma}}{1-\gamma}$ for $\gamma \neq 1$.
- This function exhibits DARA; $A'(z) = -\gamma^2/z^2 < 0$.

Expected Utility HARA Utility (5)

- With $\gamma \to \infty$: Constant Absolute Risk Aversion Utility Function: $A(z) = 1/\eta$.
- Since u''(z) = Au'(z) we get $u(z) = -\exp(-Az)/A$.
- This function exhibits increasing relative risk aversion.

Expected Utility HARA Utility (6)

- With $\gamma = -1$: Quadratic Utility Function:
- This functions requires $z < \eta$, since it is decreasing over η .
- Increasing absolute risk aversion.

Expected Utility State Dependent Utility (1)

- With von Neumann Morgenstern utility theory only the consequences and their corresponding probabilities matter.
- I.e. the underlying cause of the consequence does not play any role.
- If the cause is one's state of health this assumption is unlikely to be fulfilled.
- Example car insurance: Consider fair full cover insurance. Under VNM utility U(l) = pu(w - P) + (1 - p)u(w - P), etc. If however it plays a role whether we have a wealth of w - P in the case of no accident or getting compensated by the insurance company such the wealth is w - P, the agent's preferences depend on the states accident and no accident.

Expected Utility State Dependent Utility (2)

- Definition States: Events ω ∈ Ω causing the consequences z ∈ Z are called states of the world/states of nature. Ω is called set of states (sample space).
- For these states we assume that they
 - Leave no relevant aspect undescribed.
 - Mutually exclusive. At most one state can be obtained.
 - Collectively exhaustive, $\bigcup \omega = \Omega$.
 - ω does not depend on the choice of the decision maker.

Expected Utility State Dependent Utility (3)

- **Definition Uncertainty with State Dependent Utility**: To formulate uncertainty consider the following parts:
 - Set of consequences Z.
 - Set of states Ω .
 - Probability measure π on (Ω, \mathcal{F}) .

Expected Utility State Dependent Utility (4)

- **Remark**: Note that this construction corresponds to the idea of a **random variable**.
- A function g : Ω → Z will be called random variable. With the sigma field *F* generated by this random variable we get the probability measure π. An event is a subset of Ω. If Z ⊆ R^N it is a real valued random variable.
- A random variable assigns to each state ω a consequence $z \in Z$, the preimage is $g^{-1}(z) = \omega$.

Expected Utility States (1)

Micro I

• A random variable f mapping from the set of states into consequences gives rise to a lottery

$$(\pi_1 \circ z_1, \ldots, \pi_n \circ z_n)$$

for finite Ω .

• There is a loss of information when going from the random variable to the lottery/distribution representation. We do not know which state gave rise to a particular consequence.

Expected Utility States (2)

- A random variable z is called measurable if $f^{-1}(z) = \omega \in \mathcal{F}$. I.e. the preimage has to be contained in the sigma field.
- With finitely many states we can define the set $P = \{f^{-1}(\bar{z})\}_{\bar{z}=z\in Z}$ with $f^{-1}(\bar{z}) := \{\omega \in \Omega | f(\omega) = \bar{z}\}$. By construction P is a partition.
- If $f^{-1}(\bar{z}_1) \cap f^{-1}(\bar{z}_2) = \emptyset$ then $z_1 \neq z_2$, $\bigcup_i f^{-1}(z_i) = \Omega$ $f^{-1}(z_i) \neq \emptyset$ by construction.
- Within $f^{-1}(\bar{z}_1)$ the function $f(\omega)$ is constant. $f(\omega) = \bar{z}_1$ for $\omega \in f^{-1}(\bar{z}_1)$.

Expected Utility States (3)

- Example Asset Price: Assume the price of an asset is permitted to move upwards (by $1 + u_t$) for downwards $(1 d_t)$ with probability p and 1 p. The initial price $S_0 = 1$. We consider two periods. To keep the analysis simple assume that $(1 + u_1)(1 + d_2) \neq (1 + d_1)(1 + u_2)$.
- Then ω_1 correspond to the consequence $(1 + u_1)(1 + u_2)$, ω_2 to $(1 + u_1)(1 d_2)$, ω_3 to $(1 d_1)(1 + u_2)$ and ω_4 to $(1 d_1)(1 d_2)$. The sigma field generated by this random variable consists of all subsets of Ω .

Expected Utility States (4)

- At t = 2 the partition P_2 is given by the sets $\omega_1, \ldots, \omega_4$. For each consequence the preimage $f^{-1}(z_i) \in \mathcal{F}$ or P_2 .
- At t = 1 only the subsets (ω₁, ω₂) and (ω₃, ω₄) are measurable with respect to F₁. For t = 0 only the constant S₀ is measurable with respect to the trivial sigma field F₀ = {Ø, Ω}.
- $P_1 = \{(\omega_1, \omega_2), (\omega_3, \omega_4)\}.$

Expected Utility States (5)

- I.e. we get the filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2$.
- The corresponding partitions are P_0 and P_1 . P_2 is finer than P_1 and P_1 is finer than P_0 .

Expected Utility States (6)

- The corresponding partitions are P_0 and P_1 . P_2 is finer than P_1 and P_1 is finer than P_0 .
- The subsets of P₂ are f₂⁻¹(z_i) = ω_i, i = 1,...,4. For P₁ we get the subset f₁⁻¹(z
 _i) = (ω₁, ω₂) for i = 1, 2 and f₁⁻¹(z
 _i) = (ω₃, ω₄) for i = 3, 4. While for P₀ we get Ω.
- Note that $f_2^{-1}(\bar{z}_i) \subseteq f_1^{-1}(\bar{z}_i)$ but not vice versa.

Expected Utility States (7)

- **Example Signals**: Assume that a random variable f maps from Ω to a set of reports/signal R, r are the elements of R.
- H_f is the partition generated by $f^{-1}(r)$, i.e. $H_f = \{f^{-1}(\bar{r})\}_{r \in R}$.
- For two random variables f and g, the events $f^{-1}(\bar{r}_1) \cap g^{-1}(\bar{r}_2) = \{\omega \in \Omega | f(\omega) = \bar{r}_1 \text{ and } g(\omega) = \bar{r}_2\}$ also partition the state space.
- If for every r_1 it happens that $f^{-1}(\bar{r}_1) \subseteq g^{-1}(\bar{r}_2)$ for some \bar{r}_2 , then the addition of g does not result in further information.

Expected Utility States (8)

- Definition Information Partition: A partition on the state space Ω is called information partition, the subsets of this partition are h. For every state ω ∈ Ω: The event/function h(ω) assigning an element of H to each ω ∈ Ω is called information set containing ω (possibility set).
- Note that if $H = \{h_1, \ldots, h_m\}$ then by $h(\omega)$ we are looking for the h_i where ω is contained. I.e. $h(\omega) : \Omega \to H$ or $h(\omega) \to h_i$.
- This assignment satisfies: $\omega \in h(\omega)$ for all $\omega \in \Omega$. If $\omega \neq \omega'$ and $\omega' \in h(\omega)$ then $h(\omega) = h(\omega')$.

Expected Utility States (9)

- **Definition Knowledge**: An event $E \in \Omega$ is known at the state $\omega \in \Omega$ if $h(\omega) \subseteq E$.
- I.e. E is known if anything possible implies it. What is known to the decision maker depends on the state ω .
- See Ritzberger, page 63, Example 2.10.

Expected Utility States (10)

- When a decision maker observes realizations of a random variable she will update her probability assignments on z.
- Call π prior beliefs, and the $\tilde{\pi}$ posterior beliefs.
- A decision maker regards states outside $h(\omega)$ is impossible if $\tilde{\pi}(h(\omega)) = 1$.
- Only $\omega' \in h(\omega)$ are assigned with a positive probability.
- The posterior probability of a set E given $h(\omega)$ is then given by the Bayes theorem: For $\pi(h(\omega)) > 0$

$$\pi(E|h(\omega)) = \frac{\pi(h(\omega) \cap E)}{\pi(h(\omega))}$$

Expected Utility States (11)

- Note that $\pi(E|h(\omega))$ depends on ω and is therefore a random variable.
- For a finite probability space with $z \in Z$ we get:

$$\pi(f^{-1}(z)|h(\omega)) = \frac{\pi(h(\omega)|f^{-1}(z))\pi(f^{-1}(z))}{\sum_{z'\in Z}\pi(h(\omega)|f^{-1}(z'))\pi(f^{-1}(z'))}$$

- Note that $\pi(f^{-1}(z)|h(\omega)) = \pi(z|h(\omega))$ by construction; the denominator above is different from zero.
- For an infinite probability space see textbooks on *Probability theory*.

Expected Utility State Dependent Utility (1)

- With VNM utility theory we have considered the set of simple lotteries L_S over the set of consequences Z. Each lottery l_i corresponds to a probability distribution on Z.
- Assume that Ω has finite states. Define a random variable f mapping from Ω into L_S. Then f(ω) = l_ω for all ω of Ω. I.e. f assigns a simple lottery to each state ω.
- If the probabilities of the states are given by $\pi(\omega)$, we arrive at the compound lotteries $l_{SDU} = \sum \pi(\omega) l_{\omega}$.
- I.e. we have calculated probabilities of compound lotteries.

Expected Utility State Dependent Utility (2)

- The set of l_{SDU} will be called L_{SDU} . Such lotteries are also called **horse lotteries**.
- Note that also convex combinations of l_{SDU} are $\in L_{SDU}$.
- Definition Extended Independence Axiom: The preference relation \succeq satisfies extended independence if for all $l_{SDU}^1, l_{SDU}^2, l_{SDU} \in L_{SDU}$ and $\alpha \in (0, 1)$ we have $l_{SDU}^1 \succeq l_{SDU}$ if and only if $\alpha l_{SDU}^1 + (1 \alpha) l_{SDU}^2 \succeq \alpha l_{SDU} + (1 \alpha) l_{SDU}^2$.

Expected Utility State Dependent Utility (3)

Micro I

• Proposition - Extended Expected Utility/State Dependent Utility: Suppose that Ω is finite and the preference relation \succeq satisfies continuity and in independence on L_{SDU} . Then there exists a real valued function $u: Z \times \Omega \rightarrow \mathbb{R}$ such that

$$l_{SDU}^1 \succeq l_{SDU}^2$$

if and only if

$$\sum_{\omega \in \Omega} \pi(\omega) \sum_{z \in supp(l_{SDU}^1(\omega))} p_{l1}(z|\omega)u(z,\omega) \ge$$
$$\sum_{\omega \in \Omega} \pi(\omega) \sum_{z \in supp(l_{SDU}^2(\omega))} p_{l2}(z|\omega)u(z,\omega) .$$

106

Expected Utility State Dependent Utility (4)

- u is unique up to positive linear transformations.
- Proof: see Ritzberger, page 73.
- If only consequences matter such that $u(z, \omega) = u(z)$ then state dependent utility is equal to VNM utility.

Expected Utility Subjective Utility (1)

- In the above settings we have assumed that $\pi(\omega)$ are objective probabilities.
- In some applications the likelihood of an event is more or less a subjective estimate.
- With subjective probability theory $\pi(\omega)$ are subjective beliefs.
- Here the probability of an event depends on the agent's preferences.

Expected Utility Subjective Utility (2)

Micro I

- Consider an extended expected utility formulation where $u(z,\omega)$ and $\pi(\omega)$ depend on preferences.
- Here we need some way to disentangle the Bernoulli utility function from the probabilities. This requires a further axiom.
- **Definition State Preferences**: Consider the set of simple lotteries L_S (with ω fixed): $L_1 \succeq_{\omega} L_2$ if and only if

$$\sum p_{l1}(\omega)u(z,\omega) \ge \sum p_{l2}(\omega)u(z,\omega) \ .$$

• Axiom - State Uniform Preferences: $\succeq_{\omega} = \succeq_{\omega'}$ for all ω and ω' in Ω .

Expected Utility Subjective Utility (3)

- Claim: With state uniform preferences we get $u(z,\omega) = \pi(\omega)u(z) + \beta(\omega).$
- $L_1 \succeq_{\omega} L_2$ has to be fulfilled for all ω . Therefore $\sum p_{l1}(\omega)u(z,\omega) \ge \sum p_{l2}(\omega)u(z,\omega)$ has to hold for each ω .
- This can only be the case if $\sum p_{l1}(\omega)u(z,\omega)$ is a positive affine of $\sum p_{l1}(\omega')u(z,\omega')$ for arbitrary pairs ω,ω' (transformation properties of VNM utility functions).
- For notational issues and w.l.g. let us consider degenerated lotteries, here $u(z,\omega)$ is PAT of $u(z,\omega')$

Expected Utility Subjective Utility (4)

- Thus, $a(\omega)u(z,\omega) + b(\omega) = a(\omega')u(z,\omega') + b(\omega')$
- W.I.g. use ω_1 as benchmark, Then $a(\omega)u(z,\omega) + b(\omega) = u(z,\omega_1) = u(z).$
- $\Rightarrow u(z,\omega) = (u(z) b(\omega))/a(\omega)$. For all ω , $a(\omega_1) = 1$ and $b(\omega_1) = 0$.
- Thus $u(z,\omega) = \pi(\omega)u(z) + \beta(\omega)$ with $\pi(\omega) = 1/a(\omega)$ and $\beta(\omega) = -b(\omega)/a(\omega)$.

Expected Utility Subjective Utility (6)

- $u(z,\omega) \ge u(z',\omega)$ for all ω holds if $\sum_{\omega} u(z,\omega) \ge \sum_{\omega} u(z',\omega)$ holds and vice versa with $u(z,\omega)$ PAT of $u(z,\omega')$.
- Plug in $(\pi(\omega)u(z) + \beta(\omega))$ results in $\sum_{\omega} u(z, \omega) = \sum_{\omega} \pi(\omega)u(z) + \beta(\omega)$
- The same preferences are represented if we divide all *a* and *b* by the same constant.
- Choose this constant such that $\sum_{\omega} w(\omega) = 1$, then $\sum u(z,\omega) = \sum w(\omega)v(z,\omega)$.

Expected Utility Subjective Utility (7)

- These weights have to correspond to the subjective probabilities to result in an extended expected utility function.
- Limitations see e.g. the **Ellsberg Paradoxon**.

Expected Utility Knight Uncertainty (1)

- Knight distinguished between risk and uncertainty.
- For risk the probabilities are objectively given, for uncertainty not.
- With subjective probability theory uncertainty can be once again expressed by probabilities.
- Non vNM approaches see e.g Gilboa