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Expected Utility
Uncertainty (1)

Micro I

• Preferences and Lotteries.

• Von Neumann-Morgenstern Expected Utility Theorem.

• Attitudes towards risk.

• State Dependent Utility, Subjective Utility

MasColell Chapter 6.

1



Expected Utility
Lotteries (1)

Micro I

• A risky alternative results in one of a number of different events
or states of the world, ωi.

• The events are associated with consequences or outcomes, zn.
Each zn involves no uncertainty.

• Outcomes can be money prices, wealth levels, consumption
bundles, etc.

• Assume that the set of outcomes is finite. Then
Z = {z1, . . . , zN}.

• E.g. flip a coin: Events {H,T} and outcomes Z = {−1, 1}, with
head H or tail T.
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Expected Utility
Lotteries (2)

Micro I

• Definition - Simple Gamble/Simple Lottery: [D 6.B.1] With
the consequences {z1, . . . , zN} ⊆ Z and N finite. A simple
gamble assigns a probability pn to each outcome zn. pn ≥ 0 and∑N
n=1 pn = 1.

• Notation: L = (p1 ◦ z1, . . . , pN ◦ zN) or L = (p1, . . . , pN)

• Let us fix the set of outcomes Z: Different lotteries correspond
to a different set of probabilities.

• Definition - Set of Simple Gambles: The set of simple
gambles on Z is given by

LS = {(p1◦z1, . . . , pN◦zN)|pn ≥ 0 ,

N∑
n=1

pn = 1} = {L|pn ≥ 0 ,

N∑
N=1

pn = 1}
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Expected Utility
Lotteries (3)

Micro I

• Definition - Degenerated Lottery:
L̃n = (0 ◦ z1, . . . , 1 ◦ zn, . . . , 0 ◦ zN).

• ’Z ⊆ LS’, since L̃n = (0 ◦ z1, . . . , 1 ◦ zn, . . . , 0 ◦ zN) for all i;

• If z1 is the smallest element and zn the largest one, then also
(α ◦ z1, 0 ◦ z2, . . . , 0 ◦ zN−1, (1− α) ◦ zN) ∈ LS.

• Remark: In terms of probability theory, the elements of Z where
p > 0 provide the support of the distribution of a random
variable z. I.e. a lottery L is a probability distribution.
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Expected Utility
Lotteries (4)

Micro I

• With N consequences, every simple lottery can be represented by
a point in a N − 1 dimensional simplex

∆(N−1) = {p ∈ RN
+ |
∑

pn = 1} .

• At each corner n we have the degenerated case that pn = 1.

• With interior points pn > 0 for all i.

• See Ritzberger, p. 36,37, Figures 2.1 and 2.2 or Figure 6.B.1,
page 169.

• Equivalent to Machina’s triangle; with N = 3;
{(p1, p3) ∈ [0, 1]2|0 ≤ 1− p1 − p3 ≤ 1}.
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Expected Utility
Lotteries (5)

Micro I

• The consequences of a lottery need not be a z ∈ Z but can also
be further lottery.

• Definition - Compound Lottery:[D 6.B.2] Given K simple
lotteries Lk and probabilities αk ≥ 0 and

∑
αk = 1, the

compound lottery LC = (α1 ◦ L1, . . . , αk ◦ Lk, . . . , αK ◦ LK). It
is the risky alternative that yields the simple lottery Lk with
probability αk.

• The support of the compound lottery is the union of the supports
generating this lotteries.
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Expected Utility
Lotteries (6)

Micro I

• Definition - Reduced Lottery: For any compound lottery LC
we can construct a reduced lottery/simple gamble L′ ∈ LS.
With the probabilities pk for each Lk we get p′ =

∑
αkp

k, such
that probabilities for each zn ∈ Z are p′n =

∑
αkp

k
n.

• Examples: Example 2.5, Ritzberger p. 37

• A reduced lottery can be expressed by a convex combination of
elements of compound lotteries (see Ritzberger, Figure 2.3, page
38). I.e. αpl1 + (1− α)pl2 = plreduced.

• Remark: This linear structure carries over to von
Neumann-Morgenstern decision theory.
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Expected Utility
von Neumann-Morgenstern Utility (1)

Micro I

• Here we assume that any decision problem can be expressed by
means of a lottery (simple gamble).

• Only the outcomes matter.

• Consumers are able to perform calculations like in probability
theory, gambles with the same probability distribution on Z are
equivalent.
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Expected Utility
von Neumann-Morgenstern Utility (2)

Micro I

• Axiom vNM1 - Completeness: For two gambles L1 and L2 in
LS either L1 � L2, L2 � L1 or both.

• Here we assume that a consumer is able to rank also risky
alternatives. I.e. Axiom vNM1 is stronger than Axiom 1 under
certainty.

• Axiom vNM2 - Transitivity: For three gambles L1, L2 and L3:
L1 � L2 and L2 � L3 implies L1 � L3.
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Expected Utility
von Neumann-Morgenstern Utility (3)

Micro I

• Axiom vNM3 - Continuity: [D 6.B.3] The preference relation
on the space of simple lotteries is continuous if for any L1, L2, L3

the sets {α ∈ [0, 1]|αL1 + (1− α)L2 � L3} ⊂ [0, 1] and
{α ∈ [0, 1]|L3 � αL1 + (1− α)L2} ⊂ [0, 1] are closed.

• Later we show: for any gambles L ∈ LS, there exists some
probability α such that L ∼ αL̄+ (1− α)L .

• This assumption rules out a lexicographical ordering of
preferences (safety first preferences).

• Small changes in the probabilities do not change the ordering of
the lotteries.
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Expected Utility
von Neumann-Morgenstern Utility (4)

Micro I

• Consider the outcomes Z = {1000, 10, death}, where
1000 � 10 � death. L1 gives 10 with certainty.

• If vNM3 holds then L1 can be expressed by means of a linear
combination of 1000 and death. If there is no α ∈ [0, 1] fulfilling
this requirement vNM3 does not hold.

• vNM3 will rule out Bernoulli utility levels of ±∞.
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Expected Utility
von Neumann-Morgenstern Utility (5)

Micro I

• Axiom - Monotonicity: For all probabilities α, β ∈ [0, 1],

αL̄+ (1− α)L � βL̄+ (1− β)L

if and only if α ≥ β.

• Counterexample where this assumption is not met: Safari hunter
who prefers an alternative with the bad outcome.
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Expected Utility
von Neumann-Morgenstern Utility (6)

Micro I

• Axiom vNM4 - Independence, Substitution: For all
probabilities L1, L2 and L3 in LS and α ∈ [0, 1]:

L1 � L2 ⇔ αL1 + (1− α)L3 � αL2 + (1− α)L3 .

• This axiom implies that the preference orderings of the mixtures
are independent of the third lottery.

• This axiom has no parallel in consumer theory under certainty.
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Expected Utility
von Neumann-Morgenstern Utility (7)

Micro I

• Example: consider a bundle x1 consisting of 1 cake and 1 bottle
of wine, x2 = (3, 0); x3 = (3, 3). Assume that x1 � x2.

Axiom vNM4 requires that αx1 + (1− α)x3 � αx2 + (1− α)x3;
here α > 0.
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Expected Utility
von Neumann-Morgenstern Utility (8)

Micro I

• Lemma - vNM1-4 imply monotonicity: Moreover, if L1 � L2

then αL1 + (1− α)L2 � βL1 + (1− β)L2 for arbitrary
α, β ∈ [0, 1] where α ≥ β. There is unique γ such that
γL1 + (1− γ)L2 ∼ L.

• See steps 2-3 of the vNM existence proof.

15



Expected Utility
von Neumann-Morgenstern Utility (9)

Micro I

• Definition - von Neumann Morgenstern Expect Utility
Function: [D 6.B.5] A real valued function U : LS → R has
expected utility form if there is an assignment of numbers
(u1, . . . , uN) such that for every lottery L ∈ LS we have
U(L) =

∑
zn∈Z p(zn)u(zn). A function of this structure is said

to satisfy the expected utility property- it is called von
Neumann-Morgenstern utility function.

• Note that this function is linear in the probabilities pn.

• u(zn) is called Bernoulli utility function.
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Expected Utility
von Neumann-Morgenstern Utility (10)

Micro I

• Proposition - Linearity of the von Neumann Morgenstern
Expect Utility Function: [P 6.B.1] A utility function has
expected utility form if and only if it is linear. That is to say:

U

(
K∑
k=1

αkLk

)
=

K∑
k=1

αkU(Lk)
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Expected Utility
von Neumann-Morgenstern Utility (11)

Micro I

Proof:

• Suppose that U(
∑K
k=1αkLk) =

∑K
k=1αkU(Lk) holds. We have

to show that U has expected utility form.

• If U is linear then we can express any lottery L by means of a
compound lottery with probabilities αn = pn and degenerated
lotteries L̃n. I.e. L =

∑
pnL̃

n. By linearity we get
U(L) = U(

∑
pnL̃

n) =
∑
pnU(L̃n).

• Define u(zn) = U(L̃n). Then
U(L) = U(

∑
pnL̃

n) =
∑
pnU(L̃n) =

∑
pnu(zn). Therefore

U(.) has expected utility form.

18



Expected Utility
von Neumann-Morgenstern Utility (12)

Micro I

Proof:

• Suppose that U(L) =
∑N
n=1 pnu(zn) holds. We have to show

that utility is linear.

• Consider a compound lottery (L1, . . . , LK, α1, . . . , αK). Its
reduced lottery is L′ =

∑
αkLk.

• Then U(
∑
k αkLk) =

∑
n

(∑
k αkp

k
n

)
u(zn) =∑

k αk
(∑

n u(zn)pkn
)

=
∑
k αkU(Lk).
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Expected Utility
von Neumann-Morgenstern Utility (13)

Micro I

• Proposition - Existence of a von Neumann Morgenstern
Expect Utility Function: [P 6.B.3] If the Axioms vNM 1-4 are
satisfied for a preference ordering � on LS. Then � admits an
expected utility representation. I.e. there exists a real valued
function u(.) on Z which assigns a real number to each outcome.
For any pair of lotteries we get

L1 � L2 ⇔ U(L1) =
N∑
n=1

pl1(zn)u(zn) ≥ U(L2) =
N∑
n=1

pl2(zn)u(zn) .
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Expected Utility
von Neumann-Morgenstern Utility (14)

Micro I

Proof:

• Suppose that there is a best and a worst lottery. With a finite set
of outcomes this can be easily shown by means of the
independence axiom. In addition L̄ � L.

• By the definition of L̄ and L we get: L̄ � Lc � L, L̄ � L1 � L
and L̄ � L2 � L.

• We have to show that (i) u(zn) exists and (ii) that for any
compound lottery Lc = βL1 + (1− β)L2 we have
U(βL1 + (1− β)L2) = βU(L1) + (1− β)U(L2) (expected utility
structure).
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Expected Utility
von Neumann-Morgenstern Utility (15)

Micro I

Proof:

• Step 1: By the independence Axiom vNM4 we get if L1 � L2

and α ∈ (0, 1) then L1 � αL1 + (1− α)L2 � L2.

• This follows directly from the independence axiom.

L1 ∼ αL1+(1−α)L1 � αL1+(1−α)L2 � αL2+(1−α)L2 = L2
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Expected Utility
von Neumann-Morgenstern Utility (16)

Micro I

Proof:

• Step 2: Assume β > α , then (by monotonicity)
βL̄+ (1− β)L � αL̄+ (1− α)L and vice versa.

• Define γ = (β − α)/(1− α); the assumptions imply γ ∈ [0, 1].
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Expected Utility
von Neumann-Morgenstern Utility (17)

Micro I

Proof:

• Then

βL̄+ (1− β)L = γL̄+ (1− γ)(αL̄+ (1− α)L)

� γ(αL̄+ (1− α)L) + (1− γ)(αL̄+ (1− α)L)

∼ αL̄+ (1− α)L
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Expected Utility
von Neumann-Morgenstern Utility (18)

Micro I

Proof:

• Step 2: For the converse we have to show that
βL̄+ (1− β)L � αL̄+ (1− α)L results in β > α. We show this
by means of the contrapositive: If β 6> α then
βL̄+ (1− β)L 6� αL̄+ (1− α)L.

• Thus assume β ≤ α, then αL̄+ (1− α)L � βL̄+ (1− β)L
follows in the same way as above. If α = β indifference follows.
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Expected Utility
von Neumann-Morgenstern Utility (19)

Micro I

Proof:

• Step 3: There is a unique αL such that L ∼ αLL̄+ (1− αL)L.

• Existence follows from L̄ � L and the continuity axiom.
Uniqueness follows from step 2.

• Ad existence: define the sets {α ∈ [0, 1]|αL̄+ (1− α)L � L}
and {α ∈ [0, 1]|L � αL̄+ (1−α)L}. Both sets are closed. Any α
belongs to at least one of these two sets. Both sets are nonempty.
Their complements are open and disjoint. The set [0, 1] is
connected ⇒ there is at least one α belonging to both sets.
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Expected Utility
Connected Sets

Micro I

• Definition: Let X be a topological space. A separation of X is
a pair U , V of disjoint nonempty open subsets of X whose union
is X. The space is said to be connected, if there does not exist
a separation of X. (see e.g. Munkres, J. Topology, page 148)

• Example: The rationals are not connected.

• Example: [−1, 1] is connected, [−1, 0] and (0, 1] are disjoint and
cover X. The first set is not open. Alternatively, if
X = [−1, 0) ∪ (0, 1] we would get a separation.
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Expected Utility
von Neumann-Morgenstern Utility (20)

Micro I

Proof:

• Step 4: The function U(L) = αL represents the preference
relations �.

• Consider L1, L2 ∈ LS: If L1 � L2 then α1 ≥ α2. If α1 ≥ α2 then
L1 � L2 by steps 2-3.

• It remains to show that this utility function has expected utility
form.
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Expected Utility
von Neumann-Morgenstern Utility (21)

Micro I

Proof:

• Step 5: U(L) is has expected utility form.

• We show that the linear structure also holds for the compound
lottery Lc = βL1 + (1− β)L2.

• By using the independence we get:

βL1 + (1− β)L2 ∼ β(α1L̄+ (1− α1)L) + (1− β)L2

∼ β(α1L̄+ (1− α1)L) + (1− β)(α2L̄+ (1− α2)L)

∼ (βα1 + (1− β)α2)L̄+ (β(1− α1) + (1− β)(1− α2))L

• By the rule developed in step 4, this shows that
U(Lc) = U(βL1 + (1− β)L2) = βU(L1) + (1− β)U(L2).
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Expected Utility
von Neumann-Morgenstern Utility (22)

Micro I

• Proposition - von Neumann Morgenstern Expect Utility
Function are unique up to Positive Affine Transformations:
[P 6.B.2] If U(.) represents the preference ordering �, then V
represents the same preference ordering if and only if
V = α+ βU , where β > 0.
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Expected Utility
von Neumann-Morgenstern Utility (23)

Micro I

Proof:

• Note that if V (L) = α+ βU(L), V (L) fulfills the expected
utility property.

• We have to show that if U and V represent preferences, then V
has to be an affine linear transformation of U .

• If U is constant on LS, then V has to be constant. Both
functions can only differ by a constant α.
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Expected Utility
von Neumann-Morgenstern Utility (24)

Micro I

Proof:

• Alternatively, for any L ∈ LS and L̄ � L, we get

f1 :=
U(L)− U(L)
U(L̄)− U(L)

and

f2 :=
V (L)− V (L)
V (L̄)− V (L)

.

• f1 and f2 are linear transformations of U and V that satisfy the
expected utility property.

• fi(L) = 0 and fi(L̄) = 1, for i = 1, 2.
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Expected Utility
von Neumann-Morgenstern Utility (25)

Micro I

Proof:

• L ∼ L then f1 = f2 = 0; if L ∼ L̄ then f1 = f2 = 1.

• By expected utility U(L) = γU(L̄) + (1− γ)U(L) and
V (L) = γV (L̄) + (1− γ)V (L).

• If L̄ � L � L then there has to exist a unique γ, such that
L ≺ L ∼ γL̄+ (1− γ)L ≺ L̄. Therefore

γ =
U(L)− U(L)
U(L̄)− U(L)

=
V (L)− V (L)
V (L̄)− V (L)
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Expected Utility
von Neumann-Morgenstern Utility (26)

Micro I

Proof:

• Then V (L) = α+ βU(L) where

α = V (L)− U(L)
V (L̄)− V (L)
U(L̄)− U(L)

and

β =
V (L̄)− V (L)
U(L̄)− U(L)

.
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Expected Utility
von Neumann-Morgenstern Utility (27)

Micro I

• The idea of expected utility can be extended to a set of
distributions F (x) where the expectation of u(x) exists, i.e.∫
u(x)dF (x) <∞.

• For technical details see e.g. Robert (1994), The Bayesian Choice
and DeGroot, Optimal Statistical Decisions.

• Note that expected utility is a probability weighted combination
of Bernoulli utility functions. I.e. the properties of the random
variable z, described by the lottery l(z), are separated from the
attitudes towards risk.
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Expected Utility
VNM Indifference Curves (1)

Micro I

• Indifferences curves are straight lines; see Ritzberger, Figure 2.4,
page 41.

• Consider a VNM utility function and two indifferent lotteries L1

and L2. It has to hold that U(L1) = U(L2).

• By the expected utility theorem
U(αL1 + (1− α)L2) = αU(L1) + (1− α)U(L2).

• If U(L1) = U(L2) then U(αL1 + (1− α)L2) = U(L1) = U(L2)
has to hold and the indifferent lotteries is linear combinations of
L1 and L2.
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Expected Utility
VNM Indifference Curves (2)

Micro I

• Indifference curves are parallel; see Ritzberger, Figure 2.5, 2.6,
page 42.

• Consider L1 ∼ L2 and a further lottery L3 � L1 (w.l.g.).

• From βL1 + (1− β)L3 and βL2 + (1− β)L3 we have received
two compound lotteries.

• By construction these lotteries are on a line parallel to the line
connecting L1 and L2.
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Expected Utility
VNM Indifference Curves (3)

Micro I

• The independence axiom vNM4 implies that
βL1 + (1− β)L3 ∼ βL2 + (1− β)L3 for β ∈ [0, 1].

• Therefore the line connecting the points βL1 + (1− β)L3 and
βL2 + (1− β)L3 is an indifference curve.

• The new indifference curve is a parallel shift of the old curve; by
the linear structure of the expected utility function no other
indifference curves are possible.
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Expected Utility
Allais Paradoxon (1)

Micro I

Lottery 0 1-10 11-99
pz 1/100 10/100 89/100
La 50 50 50
Lb 0 250 50
Ma 50 50 0
Mb 0 250 0
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Expected Utility
Allais Paradoxon (2)

Micro I

• Most people prefer La to Lb and Mb to Ma.

• This is a contradiction to the independence axiom G5.

• Allais paradoxon in the Machina triangle, Gollier, Figure 1.2,
page 8.
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Expected Utility
Allais Paradoxon (3)

Micro I

• Expected utility theory avoids problems of time inconsistency.

• Agents violating the independence axiom are subject to Dutch
book outcomes (violate no money pump assumption).
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Expected Utility
Allais Paradoxon (4)

Micro I

• Three lotteries: La � Lb and La � Lc.

• But Ld = 0.5Lb + 0.5Lc � La.

• Gambler is willing to pay some fee to replace La by Ld.
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Expected Utility
Allais Paradoxon (5)

Micro I

• After nature moves: Lb or Lc with Ld.

• Now the agents is once again willing to pay a positive amount for
receiving La

• Gambler starting with La and holding at the end La has paid two
fees!

• Dynamically inconsistent/Time inconsistent.

• Dicuss Figure 1.3, Gollier, page 12.
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Expected Utility
Risk Attitude (1)

Micro I

• For the proof of the VNM-utility function we did not place any
assumptions on the Bernoulli utility function u(z).

• For applications often a Bernoulli utility function has to be
specified.

• In the following we consider z ∈ RN and u′(z) > 0; abbreviate
lotteries with money amounts l ∈ LS.

• There are interesting interdependences between the Bernoulli
utility function and an agent’s attitude towards risk.
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Expected Utility
Risk Attitude (2)

Micro I

• Consider a nondegenerated lottery l ∈ LS and a degenerated
lottery l̃. Assume that E(z) = zl̃ holds. I.e. the degenerated
lottery pays the expectation of l for sure.

• Definition - Risk Aversion: A consumer is risk averse if l̃ is at
least of good as l; l̃ is preferred to l in a stronger version.

• Definition - Risk Neutrality: A consumer is risk neutral if l̃ ∼ l.

• Definition - Risk Loving: A consumer is risk loving if l is at
least as good as l̃.
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Expected Utility
Risk Attitude (3)

Micro I

• By the definition of risk aversion we see that u(E(z)) ≥ E(u(z)).

• To attain such a relationship Jensen’s inequality has to hold: If
f(z) is a concave function and z ∼ F (z) then∫

f(z)dF (z) ≤ f(
∫
zdF (z)) .

• For sums this implies:∑
pzf(z) ≤ f(

∑
pzz) .

For strictly concave function, < has to hold, for convex functions
we get ≥; for strictly convex functions >.
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Expected Utility
Risk Attitude (4)

Micro I

• For a lottery l where E(u(z)) <∞ and E(z) <∞ we can
calculate the amount C where a consumer is indifferent between
receiving C for sure and the lottery l. I.e. l ∼ C and
E(u(z)) = u(C) hold.

• In addition we are able to calculate the maximum amount π an
agent is willing to pay for receiving the fixed amount E(z) for
sure instead of the lottery l. I.e. l ∼ E(z)− π or
E(u(z)) = u(E(z)− π).
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Expected Utility
Risk Attitude (5)

Micro I

• Definition - Certainty Equivalent [D 6.C.2]: The fixed amount
C where a consumer is indifferent between C an a gamble l is
called certainty equivalent.

• Definition - Risk Premium: The maximum amount π a
consumer is willing to pay to exchange the gamble l for a sure
event with outcome E(z) is called risk premium.

• Note that C and π depend on the properties of the random
variable (described by l) and the attitude towards risk (described
by u).
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Expected Utility
Risk Attitude (6)

Micro I

• Remark: the same analysis can also be performed with risk
neutral and risk loving agents.

• Remark: MWG defines a probability premium, which is
abbreviated by π in the textbook. Given a degenerated lottery
and some ε > 0. The probability-premium πR is defined as
u(l̃z) = (1

2 + πR)u(z + ε) + (1
2 − π

R)u(z − ε). I.e.
mean-preserving spreads are considered here.
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Expected Utility
Risk Attitude (7)

Micro I

• Proposition - Risk Aversion and Bernoulli Utility: Consider
an expected utility maximizer with Bernoulli utility function u(.).
The following statements are equivalent:

– The agent is risk averse.
– u(.) is a (strictly) concave function.
– C ≤ E(z). (< with strict version)
– π ≥ 0. (> with strict version)
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Expected Utility
Risk Attitude (8)

Micro I

Proof: (sketch)

• By the definition of risk aversion: for a lottery l where E(z) = zl̃,

a risk avers agent l̃ � l.

• I.e. E(u(z)) ≤ u(zl̃) = u(E(z)) for a VNM utility maximizer.

• (ii) follows from Jensen’s inequality.

• (iii) If u(.) is (strictly) concave then E(u(z)) = u(C) ≤ u(E(z))
can only be matched with C ≤ E(z).

• (iv) With a strictly concave u(.),
E(u(z)) = u(E(z)− π) ≤ u(E(z)) can only be matched with
π ≥ 0.
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Expected Utility
Arrow Pratt Coefficients (1)

Micro I

• Using simply the second derivative u′′(z) causes problems with
affine linear transformations.

• Definition - Arrow-Pratt Coefficient of Absolute Risk
Aversion: [D 6.C.3] Given a twice differentiable Bernoulli utility
function u(.), the coefficient of absolute risk aversion is defined
by A(z) = −u′′(z)/u′(z).

• Definition - Arrow-Pratt Coefficient of Relative Risk
Aversion: [D 6.C.5] Given a twice differentiable Bernoulli utility
function u(.), the coefficient of relative risk aversion is defined by
R(z) = −zu′′(z)/u′(z).
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Expected Utility
Comparative Analysis (1)

Micro I

• Consider two agents with Bernoulli utility functions u1 and u2.
We want to compare their attitudes towards risk.

• Definition - More Risk Averse: Agent 1 is more risk averse
than agent 2, if agent 1 dislikes all lotteries that agent 2 dislikes.

• Define a function φ(x) = u1(u−1
2 (x)). Since u2(.) is an

increasing function this expression is well defined. We, in
addition, assume that the first and the second derivatives exist.

• By construction with x = u2(z) we get:
φ(x) = u1(u−1

2 (x)) = u1(u−1
2 (u2(z))) = u1(z). I.e. φ(x)

transforms u2 into u1, such that u1(z) = φ(u2(z)).
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Expected Utility
Comparative Analysis (2)

Micro I

• Proposition - More Risk Averse Agents [P 6.C.3]: Assume
that the first and second derivatives of the Bernoulli utility
functions u1 and u2 exist (u′ > 0 and u′′ < 0). Then the
following statements are equivalent:

– Agent 1 is (strictly) more risk averse than agent 2.
– u1 is a (strictly) concave transformation of u2.
– A1(z) ≥ A2(z) (> for strict) for all z.
– C1 ≤ C2 and π1 ≥ π2; (<> for strict).
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Expected Utility
Comparative Analysis (3)

Micro I

Proof:

• Consider a random variable z described by l and the function φ.
Consumer 2 is risk averse.

• Step 1 (ii)∼ (i): By means of Jensen’s inequality we get a
concave φ(); (with strict concave we get <)

E(u1(z)) = E(φ(u2(z)) ≤ φ(E(u2(z))) ≤ φ(u2(E(z))) = u1(E(z))

First ≤: φ has to be concave to apply Jensen
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Expected Utility
Comparative Analysis (4)

Micro I

Proof:

Second ≤: u2 has to be concave, since consumer 2 is risk averse.

• Therefore, if agent one is more risk averse, then u1 has to be
(strictly) concave transformation of u2.

• The above considerations work in both directions, therefore (i)
and (ii) are equivalent.
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Expected Utility
Comparative Analysis (5)

Micro I

Proof:

• Step 2 (iii)∼ (ii): By the definition of φ and our assumptions we
get

u′1(z) =
dφ((u2(z)))

dz
= φ′(u2(z))u′2(z) .

(since u′1, u
′
2 > 0 ⇒ φ′ > 0) and

u′′1(z) = φ′(u2(z))u′′2(z) + φ′′(u2(z))(u′2(z))2 .
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Expected Utility
Comparative Analysis (6)

Micro I

Proof:

• Divide both sides by −u′1(z) < 0 and using u′1(z) = ... yields:

−u
′′
1(z)
u′1(z)

= A1(z) = A2(z)− φ
′′(u2(z))
φ′(u2(z))

u′2(z) .

• Since A1, A2 > 0 due to risk aversion, φ′ > 0 and φ′′ ≤ 0 (<)
due to its concave shape we get A1(z) ≥ A2(z) (>) for all z.
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Expected Utility
Comparative Analysis (7)

Micro I

Proof:

• Step 3 (vi)∼ (ii): Jensen’s inequality yields (with strictly concave
φ)

u1(C1) = E(u1(z)) = E(φ(u2(z)) < φ(E(u2(z))) = φ(u2(C2)) = u1(C2)

• Since u′1 > 0 we get C1 < C2.

• π1 > π2 works in the same way.

• The above considerations also work in both directions, therefore
(ii) and (iv) are equivalent.
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Expected Utility
Comparative Analysis (8)

Micro I

Proof:

• Step 4 (vi)∼ (ii): Jensen’s inequality yields (with strictly concave
φ)

u1(E(z)−π1) = E(u1(z)) = E(φ(u2(z)) < φ(E(u2(z))) = φ(u2(E(z)−π2)) = u1(E(z)−π2)

• Since u′1 > 0 we get π1 > π2.
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Expected Utility
Stochastic Dominance (1)

Micro I

• In an application, do we have to specify the Bernoulli utility
function?

• Are there some lotteries (distributions) such that F (z) is
(strictly) preferred to G(z)?

• E.g. if X(ω) > Y (ω) a.s.?

• YES ⇒ Concept of stochastic dominance.

• Mascollel, Figure 6.D.1., page 196.
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Expected Utility
Stochastic Dominance (2)

Micro I

• Definition - First Order Stochastic Dominance: [D 6.D.1] A
distribution F (z) first order dominates the distribution G(z) if
for every nondecreasing function u : R→ R we have∫ ∞

−∞
u(z)dF (z) ≥

∫ ∞
−∞

u(z)dG(z).

• Definition - Second Order Stochastic Dominance: [D 6.D.2]
A distribution F (z) second order dominates the distribution G(z)
if EF (z) = EG(z) and for every nondecreasing concave function
u : R+ → R the inequality

∫∞
0
u(z)dF (z) ≥

∫∞
0
u(z)dG(z)

holds.
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Expected Utility
Stochastic Dominance (3)

Micro I

• Proposition - First Order Stochastic Dominance: [P 6.D.1]
F (z) first order dominates the distribution G(z) if and only if
F (z) ≤ G(z).

• Proposition - Second Order Stochastic Dominance: [D
6.D.2] F (z) second order dominates the distribution G(z) if and
only if ∫ z̄

0

F (z)dz ≤
∫ z̄

0

G(z)dz for all z̄ in R+ .

• Remark: I.e. if we can show stochastic dominance we do not
have to specify any Bernoulli utility function!
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Expected Utility
Stochastic Dominance (4)

Micro I

Proof:

• Assume that u is differentiable and u′ ≥ 0

• Step 1: First order, if part: If F (z) ≤ G(z) integration by parts
yields: ∫ ∞

−∞
u(z)dF (z)−

∫ ∞
−∞

u(z)dG(z)

= u(z)(F (z)−G(z))|∞−∞ −
∫ ∞
−∞

u
′
(z)(F (z)−G(z))dz

= −
∫ ∞
−∞

u
′
(z)(F (z)−G(z))dz ≥ 0 .

• The above inequality holds since the terms inside the integral
(F (z)−G(z)) ≤ 0 a.s..
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Expected Utility
Stochastic Dominance (5)

Micro I

Proof:

• Step 2: First order, only if part: If FOSD then F (z) ≤ G(z)
holds. Proof by means of contradiction.

• Assume there is a z̄ such that F (z̄) > G(z̄). z̄ > −∞ by
construction. Set u(z) = 0 for z ≤ z̄ and u(z) = 1 for z > z̄.
Here we get∫ ∞

−∞
u(z)dF (z)−

∫ ∞
−∞

u(z)dG(z)

= (1− F (z̄))− (1−G(z̄)) = −F (z̄) +G(z̄) < 0
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Expected Utility
Stochastic Dominance (6)

Micro I

Proof:

• Second Order SD: Assume that u is twice continuously
differentiable, such that u′′(z) ≤ 0, w.l.g. u(0) = 0.

• Remark: The equality of means implies:

0 =
∫ ∞

0

zdF (z)−
∫ ∞

0

zdG(z)

= z(F (z)−G(z))|∞0 −
∫ ∞

0

(F (z)−G(z))dz

= −
∫ ∞

0

(F (z)−G(z))dz .
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Expected Utility
Stochastic Dominance (7)

Micro I

Proof:

• Step 3: Second order, if part: Integration by parts yields:∫ ∞
0

u(z)dF (z)−
∫ ∞

0
u(z)dG(z)

= u(z)(F (z)−G(z))|∞0 −
∫ ∞

0
u
′
(z)(F (z)−G(z))dz

= −
∫ ∞

0
u
′
(z)(F (z)−G(z))dz

= −u′(z)
∫ z

0
(F (x)−G(x))dx|∞0 −

∫ ∞
0
−u′′(z)

(∫ z

0
(F (x)−G(x))dx

)
dz

=

∫ ∞
0

u
′′
(z)

(∫ z

0
(F (x)−G(x))dx

)
dz ≥ 0

• Note that u′′ ≤ 0 by assumption.
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Expected Utility
Stochastic Dominance (8)

Micro I

Proof:

• Step 4: Second order, only if part: Consider a z̄ such that
u(z) = z̄ for all z > z̄ and u(z) = z for all z ≤ z̄. This yields:

∫ ∞
0

u(z)dF (z)−
∫ ∞

0

u(z)dG(z)

=
∫ z̄

0

zdF (z)−
∫ z̄

0

zdG(z) + z̄ ((1− F (z̄))− (1−G(z̄)))

= z (F (z)−G(z)) |z̄0 −
∫ z̄

0

(F (z)−G(z)) dz − z̄ (F (z̄)−G(z̄))

= −
∫ z̄

0

(F (z)−G(z)) dz < 0 .
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Expected Utility
Stochastic Dominance (9)

Micro I

• Definiton - Monotone Likelihood Ratio Property: The
distributions F (z) and G(z) fulfill, the monotone likelihood rate
property if G(z)/F (z) is non-increasing in z.

• For x→∞ G(z)/F (z) = 1 has to hold. This and the fact that
G(z)/F (z) is non-increasing implies G(z)/F (z) ≥ 1 for all z.

• Proposition - First Order Stochastic Dominance follows
from MLP: MLP results in F (z) ≤ G(z).

• Remark: If F (z) and G(z) have Lebesgue-densities f(z) and
g(z), then F (z) ≤ G(z) if the ratio of the densities g(z)/f(z) is
non-increasing.
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Expected Utility
Arrow-Pratt Approximation (1)

Micro I

• By means of the Arrow-Pratt approximation we can express the
risk premium π in terms of the Arrow-Pratt measures of risk.

• Assume that z = w + kx, where w is a fixed constant (e.g.
wealth), x is a mean zero random variable and k ≥ 0. By this
assumption the variance of z is given by
V (z) = k2V (x) = k2E(x2).

• Proposition - Arrow-Pratt Risk Premium with respect to
Additive risk: If risk is additive, i.e. z = w + kx, then the risk
premium π is approximately equal to 0.5A(w)V (z).
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Expected Utility
Arrow-Pratt Approximation (2)

Micro I

Proof:

• By the definition of the risk premium we have
E(u(z)) = E(u(w + kx)) = u(w − π(k)).

• For k = 0 we get π(k) = 0. For risk averse agents dπ(k)/dk ≥ 0.

• Use the definition of the risk premium and take the first derivate
with respect to k on both sides:

E(xu′(w + kx)) = −π′(k)u′(w − π(k)) .
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Expected Utility
Arrow-Pratt Approximation (3)

Micro I

Proof:

• For the left hand side we get at k = 0:
E(xu′(w + kx)) = u′(w)E(x) = 0 since E(x) = 0 by
assumption.

• Matching LHS with RHS results in π′(k) = 0 at k = 0.
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Expected Utility
Arrow-Pratt Approximation (4)

Micro I

Proof:

• Taking the second derivative with respect to k yields:

E(x2u′′(w + kx)) = (π′(k))2u′′(w − π(k))− π′′(k)u′(w − π(k))

• At k = 0 this results in (note that π′(0) = 0):

π′′(0) = −u
′′(w)
u′(w)

E(x2)
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Expected Utility
Arrow-Pratt Approximation (5)

Micro I

• A second order Taylor expansion of π(k) around k = 0 results in

π(k) ≈ π(0) + π′(0)k +
π′′(0)

2
k2

• Thus
π(k) ≈ 0.5A(w)E(x2)k2

• Since E(x) = 0 by assumption, the risk premium is proportional
to the variance of x.
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Expected Utility
Arrow-Pratt Approximation (6)

Micro I

• For multiplicative risk we can proceed as follows: z = w(1 + kx)
where E(x) = 0.

• Proceeding the same way results in:

π(k)
w
≈ −wu

′′(w)
u′(w)

k2E(x2) = 0.5R(w)E(x2)k2

• Proposition - Arrow-Pratt Relative Risk Premium with
respect to Multiplicative risk: If risk is multiplicative, i.e.
z = w(1 + kx), then the relative risk premium π/w is
approximately equal to 0.5R(w)k2V (x).

• Interpretation: Risk premium per monetary unit of wealth.
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Expected Utility
Decreasing Absolute Risk Aversion (1)

Micro I

• It is widely believed that the more wealthy an agent, the smaller
his/her willingness to pay to escape a given additive risk.

• Definition - Decreasing Absolute Risk Aversion: Given
additive risk z = w+ x, x is a random variable with mean 0. The
risk premium is a decreasing function in wealth w.
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Expected Utility
Decreasing Absolute Risk Aversion (2)

Micro I

• Proposition - Decreasing Absolute Risk Aversion: [P 6.C.3]
The following statements are equivalent

– The risk premium is a decreasing function in wealth w.
– Absolute risk aversion A(w) is decreasing in wealth.
– −u′(z) is a concave transformation of u. I.e. u′ is sufficiently

convex.
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Expected Utility
Decreasing Absolute Risk Aversion (3)

Micro I

Proof: (sketch)

• Step 1, (i) ∼ (iii): Consider additive risk and the definition of
the risk premium. Treat π as a function of wealth:

E(u(w + kx)) = u(w − π(w)) .

• Taking the first derivative yields:

E(1u′(w + kx)) = (1− π′(w))u′(w − π(w)) .
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Expected Utility
Decreasing Absolute Risk Aversion (4)

Micro I

Proof: (sketch)

• This yields:

π′(w) = −E(1u′(w + kx))− u′(w − π(w))
u′(w − π(w))

.

• π′(w) decreases if E(1u′(w + kx))− u′(w − π(w)) ≥ 0.

• Note that we have proven that if E(u2(z)) = u2(z − π2) then
E(u1(z)) ≤ u1(z − π2) if agent 1 were more risk averse.
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Expected Utility
Decreasing Absolute Risk Aversion (5)

Micro I

Proof: (sketch)

• Here we have the same mathematical structure (see slides on
Comparative Analysis): set z = w + kx, u1 = −u′ and u2 = u.

• ⇒ −u′ is more concave than u such that −u′ is a concave
transformation of u.
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Expected Utility
Decreasing Absolute Risk Aversion (6)

Micro I

Proof: (sketch)

• Step 2, (iii) ∼ (ii): Next define P (w) := −u
′′′

u′′ which is often
called degree of absolute prudence.

• From our former theorems we get: P (w) ≥ A(w) has to be
fulfilled (see A1 and A2).

• Take the first derivative of the Arrow-Pratt measure yields:

A
′
(w) = −

1

(u′(w))2
(u
′′′

(w)u
′
(w)− (u

′′
(w))

2
)

= −
u′′(w)

(u′(w))
(u
′′′

(w)/u
′′
(w)− u′′(w)/u

′
(w))

=
u′′(w)

(u′(w))
(P (w)− A(w))
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Expected Utility
Decreasing Absolute Risk Aversion (7)

Micro I

Proof: (sketch)

• A decreases in wealth if A′(w) ≤ 0.

• We get A′(w) ≤ 0 if P (w) ≥ A(w).
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Expected Utility
HARA Utility (1)

Micro I

• Definition - Harmonic Absolute Risk Aversion: A Bernoulli
utility function exhibits HARA if its absolute risk tolerance (=
inverse of absolute risk aversion) T (z) := 1/A(z) is linear in
wealth w.

• I.e. T (z) = −u′(z)/u′′(z) is linear in z

• These functions have the form u(z) = ζ (η + z/γ)1−γ.

• Given the domain of z, η + z/γ > 0 has to hold.
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Expected Utility
HARA Utility (2)

Micro I

• Taking derivatives results in:

u′(z) = ζ
1− γ
γ

(η + z/γ)−γ

u′′(z) = −ζ1− γ
γ

(η + z/γ)−γ−1

u′′′(z) = ζ
(1− γ)(γ + 1)

γ2
(η + z/γ)−γ−2
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Expected Utility
HARA Utility (3)

Micro I

• Risk aversion: A(z) = (η + z/γ)−1

• Risk Tolerance is linear in z: T (z) = η + z/γ

• Absolute Prudence: P (z) = γ+1
γ (η + z/γ)−1

• Relative Risk Aversion: R(z) = z (η + z/γ)−1
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Expected Utility
HARA Utility (4)

Micro I

• With η = 0, R(z) = γ: Constant Relative Risk Aversion

Utility Function: u(z) = log(z) for γ = 1 and u(z) = z1−γ

1−γ for
γ 6= 1.

• This function exhibits DARA; A′(z) = −γ2/z2 < 0.
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Expected Utility
HARA Utility (5)

Micro I

• With γ →∞: Constant Absolute Risk Aversion Utility
Function: A(z) = 1/η.

• Since u′′(z) = Au′(z) we get u(z) = − exp(−Az)/A.

• This function exhibits increasing relative risk aversion.
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Expected Utility
HARA Utility (6)

Micro I

• With γ = −1: Quadratic Utility Function:

• This functions requires z < η, since it is decreasing over η.

• Increasing absolute risk aversion.
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Expected Utility
State Dependent Utility (1)

Micro I

• With von Neumann Morgenstern utility theory only the
consequences and their corresponding probabilities matter.

• I.e. the underlying cause of the consequence does not play any
role.

• If the cause is one’s state of health this assumption is unlikely to
be fulfilled.

• Example car insurance: Consider fair full cover insurance. Under
VNM utility U(l) = pu(w − P ) + (1− p)u(w − P ), etc. If
however it plays a role whether we have a wealth of w − P in the
case of no accident or getting compensated by the insurance
company such the wealth is w − P , the agent’s preferences
depend on the states accident and no accident.
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Expected Utility
State Dependent Utility (2)

Micro I

• Definition - States: Events ω ∈ Ω causing the consequences
z ∈ Z are called states of the world/states of nature. Ω is called
set of states (sample space).

• For these states we assume that they

– Leave no relevant aspect undescribed.
– Mutually exclusive. At most one state can be obtained.
– Collectively exhaustive,

⋃
ω = Ω.

– ω does not depend on the choice of the decision maker.
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Expected Utility
State Dependent Utility (3)

Micro I

• Definition - Uncertainty with State Dependent Utility: To
formulate uncertainty consider the following parts:

– Set of consequences Z.
– Set of states Ω.
– Probability measure π on (Ω,F).
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Expected Utility
State Dependent Utility (4)

Micro I

• Remark: Note that this construction corresponds to the idea of a
random variable.

• A function g : Ω→ Z will be called random variable. With the
sigma field F generated by this random variable we get the
probability measure π. An event is a subset of Ω. If Z ⊆ RN it is
a real valued random variable.

• A random variable assigns to each state ω a consequence z ∈ Z,
the preimage is g−1(z) = ω.
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Expected Utility
States (1)

Micro I

• A random variable f mapping from the set of states into
consequences gives rise to a lottery

(π1 ◦ z1, . . . , πn ◦ zn)

for finite Ω.

• There is a loss of information when going from the random
variable to the lottery/distribution representation. We do not
know which state gave rise to a particular consequence.
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Expected Utility
States (2)

Micro I

• A random variable z is called measurable if f−1(z) = ω ∈ F . I.e.
the preimage has to be contained in the sigma field.

• With finitely many states we can define the set
P = {f−1(z̄)}z̄=z∈Z with f−1(z̄) := {ω ∈ Ω|f (ω) = z̄}. By
construction P is a partition.

• If f−1(z̄1) ∩ f−1(z̄2) = ∅ then z1 6= z2 ,
⋃
i f
−1(zi) = Ω

f−1(zi) 6= ∅ by construction.

• Within f−1(z̄1) the function f (ω) is constant. f (ω) = z̄1 for
ω ∈ f−1(z̄1).
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Expected Utility
States (3)

Micro I

• Example - Asset Price: Assume the price of an asset is
permitted to move upwards (by 1 + ut) for downwards (1− dt)
with probability p and 1− p. The initial price S0 = 1. We
consider two periods. To keep the analysis simple assume that
(1 + u1)(1 + d2) 6= (1 + d1)(1 + u2).

• Then ω1 correspond to the consequence (1 + u1)(1 + u2), ω2 to
(1 + u1)(1− d2), ω3 to (1− d1)(1 + u2) and ω4 to
(1− d1)(1− d2). The sigma field generated by this random
variable consists of all subsets of Ω.
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Expected Utility
States (4)

Micro I

• At t = 2 the partition P2 is given by the sets ω1, . . . , ω4. For
each consequence the preimage f−1(zi) ∈ F or P2.

• At t = 1 only the subsets (ω1, ω2) and (ω3, ω4) are measurable
with respect to F1. For t = 0 only the constant S0 is measurable
with respect to the trivial sigma field F0 = {∅,Ω}.

• P1 = {(ω1, ω2), (ω3, ω4)}.
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Expected Utility
States (5)

Micro I

• I.e. we get the filtration F0 ⊆ F1 ⊆ F2.

• The corresponding partitions are P0 and P1. P2 is finer than P1

and P1 is finer than P0.
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Expected Utility
States (6)

Micro I

• The corresponding partitions are P0 and P1. P2 is finer than P1

and P1 is finer than P0.

• The subsets of P2 are f−1
2 (zi) = ωi, i = 1, . . . , 4. For P1 we get

the subset f−1
1 (z̄i) = (ω1, ω2) for i = 1, 2 and f−1

1 (z̄i) = (ω3, ω4)
for i = 3, 4 . While for P0 we get Ω.

• Note that f−1
2 (z̄i) ⊆ f−1

1 (z̄i) but not vice versa.
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Expected Utility
States (7)

Micro I

• Example - Signals: Assume that a random variable f maps
from Ω to a set of reports/signal R, r are the elements of R.

• Hf is the partition generated by f−1(r), i.e. Hf = {f−1(r̄)}r∈R.

• For two random variables f and g, the events
f−1(r̄1) ∩ g−1(r̄2) = {ω ∈ Ω|f(ω) = r̄1 and g(ω) = r̄2} also
partition the state space.

• If for every r1 it happens that f−1(r̄1) ⊆ g−1(r̄2) for some r̄2,
then the addition of g does not result in further information.
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Expected Utility
States (8)

Micro I

• Definition - Information Partition: A partition on the state
space Ω is called information partition, the subsets of this
partition are h. For every state ω ∈ Ω: The event/function h(ω)
assigning an element of H to each ω ∈ Ω is called information
set containing ω (possibility set).

• Note that if H = {h1, . . . , hm} then by h(ω) we are looking for
the hi where ω is contained. I.e. h(ω) : Ω→ H or h(ω)→ hi.

• This assignment satisfies: ω ∈ h(ω) for all ω ∈ Ω. If ω 6= ω′ and
ω′ ∈ h(ω) then h(ω) = h(ω′).
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Expected Utility
States (9)

Micro I

• Definition - Knowledge: An event E ∈ Ω is known at the state
ω ∈ Ω if h(ω) ⊆ E.

• I.e. E is known if anything possible implies it. What is known to
the decision maker depends on the state ω.

• See Ritzberger, page 63, Example 2.10.
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Expected Utility
States (10)

Micro I

• When a decision maker observes realizations of a random variable
she will update her probability assignments on z.

• Call π prior beliefs, and the π̃ posterior beliefs.

• A decision maker regards states outside h(ω) is impossible if
π̃(h(ω)) = 1.

• Only ω′ ∈ h(ω) are assigned with a positive probability.

• The posterior probability of a set E given h(ω) is then given by
the Bayes theorem: For π(h(ω)) > 0)

π(E|h(ω)) =
π(h(ω) ∩ E)
π(h(ω))
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Expected Utility
States (11)

Micro I

• Note that π(E|h(ω)) depends on ω and is therefore a random
variable.

• For a finite probability space with z ∈ Z we get:

π(f−1(z)|h(ω)) =
π(h(ω)|f−1(z))π(f−1(z))∑

z′∈Z π(h(ω)|f−1(z′))π(f−1(z′))

• Note that π(f−1(z)|h(ω)) = π(z|h(ω)) by construction; the
denominator above is different from zero.

• For an infinite probability space see textbooks on Probability
theory.
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Expected Utility
State Dependent Utility (1)

Micro I

• With VNM utility theory we have considered the set of simple
lotteries LS over the set of consequences Z. Each lottery li
corresponds to a probability distribution on Z.

• Assume that Ω has finite states. Define a random variable f
mapping from Ω into LS. Then f(ω) = lω for all ω of Ω. I.e. f
assigns a simple lottery to each state ω.

• If the probabilities of the states are given by π(ω), we arrive at
the compound lotteries lSDU =

∑
π(ω)lω.

• I.e. we have calculated probabilities of compound lotteries.
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Expected Utility
State Dependent Utility (2)

Micro I

• The set of lSDU will be called LSDU . Such lotteries are also
called horse lotteries.

• Note that also convex combinations of lSDU are ∈ LSDU .

• Definition - Extended Independence Axiom: The preference
relation � satisfies extended independence if for all
l1SDU , l

2
SDU , lSDU ∈ LSDU and α ∈ (0, 1) we have l1SDU � lSDU

if and only if αl1SDU + (1− α)l2SDU � αlSDU + (1− α)l2SDU .
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Expected Utility
State Dependent Utility (3)

Micro I

• Proposition - Extended Expected Utility/State Dependent
Utility: Suppose that Ω is finite and the preference relation �
satisfies continuity and in independence on LSDU . Then there
exists a real valued function u : Z × Ω→ R such that

l1SDU � l2SDU

if and only if ∑
ω∈Ω

π(ω)
∑

z∈supp(l1
SDU

(ω))

pl1(z|ω)u(z, ω) ≥

∑
ω∈Ω

π(ω)
∑

z∈supp(l2
SDU

(ω))

pl2(z|ω)u(z, ω) .

106



Expected Utility
State Dependent Utility (4)

Micro I

• u is unique up to positive linear transformations.

• Proof: see Ritzberger, page 73.

• If only consequences matter such that u(z, ω) = u(z) then state
dependent utility is equal to VNM utility.
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Expected Utility
Subjective Utility (1)

Micro I

• In the above settings we have assumed that π(ω) are objective
probabilities.

• In some applications the likelihood of an event is more or less a
subjective estimate.

• With subjective probability theory π(ω) are subjective beliefs.

• Here the probability of an event depends on the agent’s
preferences.
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Expected Utility
Subjective Utility (2)

Micro I

• Consider an extended expected utility formulation where u(z, ω)
and π(ω) depend on preferences.

• Here we need some way to disentangle the Bernoulli utility
function from the probabilities. This requires a further axiom.

• Definition - State Preferences: Consider the set of simple
lotteries LS (with ω fixed): L1 �ω L2 if and only if∑

pl1(ω)u(z, ω) ≥
∑

pl2(ω)u(z, ω) .

• Axiom - State Uniform Preferences: �ω=�ω′ for all ω and ω′

in Ω.
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Expected Utility
Subjective Utility (3)

Micro I

• Claim: With state uniform preferences we get
u(z, ω) = π(ω)u(z) + β(ω).

• L1 �ω L2 has to be fulfilled for all ω. Therefore∑
pl1(ω)u(z, ω) ≥

∑
pl2(ω)u(z, ω) has to hold for each ω.

• This can only be the case if
∑
pl1(ω)u(z, ω) is a positive affine

of
∑
pl1(ω′)u(z, ω′) for arbitrary pairs ω, ω′ (transformation

properties of VNM utility functions).

• For notational issues and w.l.g. let us consider degenerated
lotteries, here u(z, ω) is PAT of u(z, ω′)
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Expected Utility
Subjective Utility (4)

Micro I

• Thus, a(ω)u(z, ω) + b(ω) = a(ω′)u(z, ω′) + b(ω′)

• W.l.g. use ω1 as benchmark, Then
a(ω)u(z, ω) + b(ω) = u(z, ω1) = u(z).

• ⇒ u(z, ω) = (u(z)− b(ω))/a(ω). For all ω, a(ω1) = 1 and
b(ω1) = 0.

• Thus u(z, ω) = π(ω)u(z) + β(ω) with π(ω) = 1/a(ω) and
β(ω) = −b(ω)/a(ω).
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Expected Utility
Subjective Utility (6)

Micro I

• u(z, ω) ≥ u(z′, ω) for all ω holds if
∑
ω u(z, ω) ≥

∑
ω u(z′, ω)

holds and vice versa with u(z, ω) PAT of u(z, ω′).

• Plug in (π(ω)u(z) + β(ω)) results in∑
ω u(z, ω) =

∑
ω π(ω)u(z) + β(ω)

• The same preferences are represented if we divide all a and b by
the same constant.

• Choose this constant such that
∑
ω w(ω) = 1, then∑

u(z, ω) =
∑
w(ω)v(z, ω).
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Expected Utility
Subjective Utility (7)

Micro I

• These weights have to correspond to the subjective probabilities
to result in an extended expected utility function.

• Proposition - Subjective Expected Utility: Suppose that the
preference relation � satisfies continuity and in independence on
LSDU . Assume that these preferences are state uniform. Then
there exists subjective probabilities and an extended expected
utility function representing these preferences.

• Limitations see e.g. the Ellsberg Paradoxon.
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Expected Utility
Knight Uncertainty (1)

Micro I

• Knight distinguished between risk and uncertainty.

• For risk the probabilities are objectively given, for uncertainty not.

• With subjective probability theory uncertainty can be once again
expressed by probabilities.

• Non - vNM approaches see e.g Gilboa
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