INTERMEDIATE

MICROECONOMICS HALR, VARIAN

- $\bigstar x \succ y$: x is preferred strictly to y.
- ♦ x ~ y: x and y are equally preferred.
- ♦ x ≿ y: x is preferred at least as much as is y.

◆ Completeness: For any two bundles x and y it is always possible to state either that

or that

$$x \geq y$$

$$y \geq x$$
.

◆ Reflexivity: Any bundle x is always at least as preferred as itself; i.e.

 $x \succeq x$.

◆ Transitivity: If x is at least as preferred as y, and y is at least as preferred as z, then x is at least as preferred as z; i.e.

 $x \succeq y$ and $y \succeq z \implies x \succeq z$.

Utility Functions

- ◆ A preference relation that is complete, reflexive, transitive and continuous can be represented by a continuous utility function.
- ◆ Continuity means that small changes to a consumption bundle cause only small changes to the preference

level

Utility Functions

♦ A utility function U(x) represents a preference relation ≿ if and only if:

$$x' \succ x''$$
 $U(x') > U(x'')$
 $x' \prec x''$
 $U(x') < U(x'')$
 $U(x'') = U(x'')$.

© 2010 W. W. Norton & Company, Inc.

Utility Functions

- Utility is an ordinal (i.e. ordering) concept.
- ◆ E.g. if U(x) = 6 and U(y) = 2 then bundle x is strictly preferred to bundle y. But x is not preferred three times as much as is y.

- **♦** Consider the bundles (4,1), (2,3) and (2,2).
- ♦ Suppose (2,3) > (4,1) ~ (2,2).
- ◆ Assign to these bundles any numbers that preserve the preference ordering;
 e.g. U(2,3) = 6 > U(4,1) = U(2,2) = 4.
- **♦** Call these numbers utility levels.

- ◆ An indifference curve contains equally preferred bundles.
- **♦** Equal preference ⇒ same utility level.
- ◆ Therefore, all bundles in an indifference curve have the same utility level.

W. Norton & Company, Inc.

- ♦ So the bundles (4,1) and (2,2) are in the indiff. curve with utility level $U \equiv 4$
- ♦ But the bundle (2,3) is in the indiff. curve with utility level $U \equiv 6$.
- ♦ On an indifference curve diagram, this preference information looks as follows:

◆ Another way to visualize this same information is to plot the utility level on a vertical axis.

Utility Functions & Indiff. Curves 3D plot of consumption & utility levels for 3 bundles

◆ This 3D visualization of preferences can be made more informative by adding into it the two indifference curves.

◆ Comparing more bundles will create a larger collection of all indifference curves and a better description of the consumer's preferences.

◆ As before, this can be visualized in 3D by plotting each indifference curve at the height of its utility index.

- ◆ Comparing all possible consumption bundles gives the complete collection of the consumer's indifference curves, each with its assigned utility level.
- ◆ This complete collection of indifference curves completely represents the consumer's preferences.

© 2010 W. W. Norton & Company, Inc.

Utility Functions & Indiff. Curves

Utility Functions & Indiff. Curves

- ◆ The collection of all indifference curves for a given preference relation is an indifference map.
- **♦** An indifference map is equivalent to a utility function; each is the other.

- ◆ There is no unique utility function representation of a preference relation.
- **♦** Suppose U(x₁,x₂) = x₁x₂ represents a preference relation.
- ◆ Again consider the bundles (4,1),
 (2,3) and (2,2).

© 2010 W. W. Norton & Company, Inc.

$$\bullet U(x_1,x_2) = x_1x_2$$
, so

$$U(2,3) = 6 > U(4,1) = U(2,2) = 4;$$

that is, $(2,3) > (4,1) \sim (2,2)$.

- $\bullet U(x_1,x_2) = x_1x_2$ (2,3) \succ (4,1) \sim (2,2).
- ♦ Define $V = U^2$.

- $\bullet U(x_1,x_2) = x_1x_2$ (2,3) \succ (4,1) \sim (2,2).
- ◆ Define V = U².
- ♦ Then $V(x_1,x_2) = x_1^2x_2^2$ and V(2,3) = 36 > V(4,1) = V(2,2) = 16 so again $(2,3) > (4,1) \sim (2,2)$.
- ♦ V preserves the same order as U and so represents the same preferences.

- $\bullet U(x_1,x_2) = x_1x_2$ (2,3) \succ (4,1) \sim (2,2).
- **◆** Define W = 2U + 10.

- $\bullet U(x_1,x_2) = x_1x_2$ (2,3) \succ (4,1) \sim (2,2).
- **◆** Define W = 2U + 10.
- ♦ Then $W(x_1,x_2) = 2x_1x_2+10$ so W(2,3) = 22 > W(4,1) = W(2,2) = 18. Again, $(2,3) > (4,1) \sim (2,2)$.
- ♦ W preserves the same order as U and V and so represents the same preferences.

- ♦ If
 - U is a utility function that represents a preference relation ≿ and
 - f is a strictly increasing function,
- ♦ then V = f(U) is also a utility function representing \succeq .

Goods, Bads and Neutrals

- ◆ A good is a commodity unit which increases utility (gives a more preferred bundle).
- ◆ A bad is a commodity unit which decreases utility (gives a less preferred bundle).
- ◆ A neutral is a commodity unit which does not change utility (gives an equally preferred bundle).

Goods, Bads and Neutrals

Some Other Utility Functions and Their Indifference Curves

♦ Instead of $U(x_1,x_2) = x_1x_2$ consider

$$V(x_1,x_2) = x_1 + x_2.$$

What do the indifference curves for this "perfect substitution" utility function look like?

Perfect Substitution Indifference Curves

© 2010 W. W. Norton & Company, Inc.

Perfect Substitution Indifference Curves

All are linear and parallel.

© 2010 W. W. Norton & Company, Inc.

Some Other Utility Functions and Their Indifference Curves

♦ Instead of $U(x_1,x_2) = x_1x_2$ or $V(x_1,x_2) = x_1 + x_2$, consider

$$W(x_1,x_2) = min\{x_1,x_2\}.$$

What do the indifference curves for this "perfect complementarity" utility function look like?

Perfect Complementarity Indifference Curves

© 2010 W. W. Norton & Company, Inc.

52

Perfect Complementarity Indifference Curves

All are right-angled with vertices on a ray

© 20 from the origin.

Some Other Utility Functions and Their Indifference Curves

♦ A utility function of the form

$$U(x_1,x_2) = f(x_1) + x_2$$

is linear in just x₂ and is called quasilinear.

$$\bullet E.g.$$
 $U(x_1,x_2) = 2x_1^{1/2} + x_2.$

Quasi-linear Indifference Curves Each curve is a vertically shifted X_2 copy of the others. © 2010 W. W. Norton & Company, Inc. 55

Some Other Utility Functions and Their Indifference Curves

♦ Any utility function of the form

$$U(x_1,x_2) = x_1^a x_2^b$$

with a > 0 and b > 0 is called a Cobb-Douglas utility function.

♦ E.g.
$$U(x_1,x_2) = x_1^{1/2} x_2^{1/2}$$
 (a = b = 1/2)
 $V(x_1,x_2) = x_1 x_2^{3}$ (a = 1, b =

3)

© 2010 W. W. Norton & Company, Inc.

Cobb-Douglas Indifference X_2 Curves All curves are hyperbolic, asymptoting to, but never touching any axis. © 2010 W. W. Norton & Company, Inc. **57**

- **♦ Marginal means "incremental".**
- ◆ The marginal utility of commodity i is the rate-of-change of total utility as the quantity of commodity i consumed changes; i.e.

 \bullet E.g. if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$M U_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2} x_1^{-1/2} x_2^2$$

♦ *E.g.* if
$$U(x_1,x_2) = x_1^{1/2} x_2^2$$
 then

$$M \ U_1 = \frac{\partial \ U}{\partial x_1} = \frac{1}{2} x_1^{-1/2} x_2^2$$

 \bullet *E.g.* if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$M \ U _{2} = \frac{\partial \ U}{\partial \ x_{2}} = 2 x_{1}^{1/2} x_{2}$$

♦ *E.g.* if
$$U(x_1,x_2) = x_1^{1/2} x_2^2$$
 then

$$M U_2 = \frac{\partial U}{\partial x_2} = 2 x_1^{1/2} x_2$$

 \bullet So, if $U(x_1,x_2) = x_1^{1/2} x_2^2$ then

$$M U_1 = \frac{\partial U}{\partial x_1} = \frac{1}{2} x_1^{-1/2} x_2^2$$

$$M \ U _{2} = \frac{\partial \ U}{\partial x_{2}} = 2 x_{1}^{1/2} x_{2}$$

Marginal Utilities and Marginal Rates-of-Substitution

The general equation for an indifference curve is
 U(x₁,x₂) ≡ k, a constant.
 Totally differentiating this identity gives

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

64

Marginal Utilities and Marginal Rates-of-Substitution

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

rearranged is

$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1$$

Marginal Utilities and Marginal Rates-of-Substitution

And
$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1$$

rearranged is

$$\frac{d x_2}{d x_1} = - \frac{\partial U / \partial x_1}{\partial U / \partial x_2}.$$

This is the MRS.

Marg. Utilities & Marg. Rates-of-Substitution; An example

♦ Suppose $U(x_1,x_2) = x_1x_2$. Then

$$\frac{\partial U}{\partial x_1} = (1)(x_2) = x_2$$

$$\frac{\partial U}{\partial x_2} = (x_1)(1) = x_1$$

so
$$MRS = \frac{dx_2}{dx_1} = -\frac{\partial U}{\partial U} \frac{\partial x_1}{\partial x_2} = -\frac{x_2}{x_1}$$
.

Marg. Utilities & Marg. Rates-of-Substitution; An example

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

♦ A quasi-linear utility function is of the form $U(x_1,x_2) = f(x_1) + x_2$.

$$\frac{\partial U}{\partial x_1} = f'(x_1) \qquad \frac{\partial U}{\partial x_2} = 1$$

so
$$MRS = \frac{d x_2}{d x_1} = -\frac{\partial U}{\partial U} \frac{\partial x_1}{\partial x_2} = -f'(x_1).$$

Marg. Rates-of-Substitution for Quasi-linear Utility Functions

♦ MRS = - $f'(x_1)$ does not depend upon x_2 so the slope of indifference curves for a quasi-linear utility function is constant along any line for which x_1 is constant. What does that make the indifference map for a quasi-linear utility function look like?

W. Norton & Company, Inc.

MRS = Each curve is a vertically $f(x_1)$ shifted copy of the others.

MRS = $f(x_1)$ MRS = $f(x_1)$ MRS is a

MRS is a constant along any line for which x_1 is constant.

© 2010 W. W. Norton & Company, Inc.

Monotonic Transformations & Marginal Rates-of-Substitution

- ◆ Applying a monotonic transformation to a utility function representing a preference relation simply creates another utility function representing the same preference relation.
- ♦ What happens to marginal rates-ofsubstitution when a monotonic transformation is applied?

Monotonic Transformations & Marginal Rates-of-Substitution

- ♦ For $U(x_1,x_2) = x_1x_2$ the MRS = $-x_2/x_1$.
- ♦ Create V = U²; *i.e.* $V(x_1,x_2) = x_1^2x_2^2$. What is the MRS for V?

$$M R S = -\frac{\partial V}{\partial V} / \frac{\partial x_1}{\partial x_2} = -\frac{2 x_1 x_2^2}{2 x_1^2 x_2} = -\frac{x_2}{x_1}$$

which is the same as the MRS for U.

Monotonic Transformations & Marginal Rates-of-Substitution

♦ More generally, if V = f(U) where f is a strictly increasing function, then

$$MRS = -\frac{\partial V}{\partial V} \frac{\partial x_1}{\partial x_2} = -\frac{f'(U) \times \partial U}{f'(U) \times \partial U} \frac{\partial x_1}{\partial x_2}$$
$$= -\frac{\partial U}{\partial U} \frac{\partial x_1}{\partial x_2}.$$

So MRS is unchanged by a positive monotonic transformation.