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Laspeyres criticized this formula by showing that the index generally changed
even if all prices remained constant (i.e. PD does not satisfy an identity test to
use modern terminology). An even more effective criticism of PD is that it is
not invariant to changes in the units of measurement (whereas PL is invariant).
Laspeyres did not write any further papers on index number theory. He wrote
papers on economic history, the history of economic thought and on topical
economic issues of his time; see Rinne [1981].
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Chapter 5
INDEX NUMBERS*

W.E. Diewert

The index number problem may be phrased as follows. Suppose we have
price data pi ≡ (pi

1, . . . , p
i
N ) and quantity data xi ≡ (xi

1, . . . , x
i
N ) on N com-

modities that pertain to economic unit i or that pertain to the same economic
unit at time period i for i = 1, 2, . . . , I . The index number problem is to find I
numbers P i and I numbers X i such that

(1) P iX i = pi · xi ≡
∑N

n=1
pi

nxi
n for i = 1, . . . , I.

P i is the price index for period i (or unit i) and X i is the corresponding quantity
index. P i is supposed to be representative of all of the prices pi

n, n = 1, . . . , N
in some sense, while X i is to be similarly representative of the quantities xi

n,
n = 1, . . . , N . In what precise sense P i and X i represent the individual prices
and quantities is not immediately evident and it is this ambiguity which leads
to different approaches to index number theory. Note that we require that the
product of the price and quantity indexes, P iX i, equals the actual period (or
unit) i net expenditures on the N commodities, pi · xi. Thus if the P i are
determined, then the X i may be implicitly determined using equations (1), or
vice versa.

Each individual consumes the services of thousands of commodities over a
year and most producers utilize and/or produce thousands of individual prod-
ucts and services. Index numbers are used to reduce and summarize this over-
whelming abundance of microeconomic information. Hence index numbers in-
trude themselves on virtually every empirical investigation in economics.

Index number theory splits naturally into two divisions, depending on
the size of I . If I = 2, so that there are data for only two time periods or two
economic units, then we are in the realm of bilateral index number theory while
if I > 2, then we are in the realm of multilateral indexes. Bilateral approaches
are considered in Sections 1–5 below and multilateral approaches are considered
in Sections 6–10.

*First published in The New Palgrave: A Dictionary of Economics, Vol. 2,
J. Eatwell, M. Milgate and P. Newman (eds.), The Macmillan Press, 1987, pp.
767–780.
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The four main approaches to index number theory are: (i) statistical
(Section 1), (ii) test or axiomatic (Sections 2 and 9), (iii) microeconomic which
relies on the assumption of maximizing or minimizing behavior (Sections 3, 4
and 5), and (iv) neostatistical (Section 10).

1. Statistical Approaches

Let I = 2 and consider the following formula for P 2/P 1 due originally to Dutot
[1738]:

(2) P 2/P 1 =
(∑N

n=1
p2

n/N

)/ (∑N

n=1
p1

n/N

)
.

Thus the average level of prices in say period 2 relative to period 1 is set equal to
the arithmetic average of the period 2 prices divided by the arithmetic average
of the period 1 prices. The right hand side of (2) is called an index number
formula.

Given an index number formula, we may solve the aggregation problem
(1) as follows: set P 2 equal to the index number formula and determine P 1,
X1 and X2 by:

(3) P 1 = 1, X1 = p1 · x1 and X2 = p2 · x2/P 2.

Setting P 1 = 1 is regarded as an arbitrary normalization; any other convenient
normalization such as P 1 = 100 could be chosen, in which case X1 ≡ p1 ·x1/P 1,
P 2 ≡ (P 2/P 1)P 1 and X2 ≡ p2 · x2/P 2, where P 2/P 1 is the index number
formula.

Rather than taking P 2/P 1 to be a ratio of average prices, Carli [1764]
suggested taking an average of the price ratios as follows:

(4) P 2/P 1 =
∑N

n=1
(p2

n/p1
n)/N.

The average of the price ratios in (4) is an arithmetic average. Jevons [1865]
suggested using a geometric average:

(5) P 2/P 1 =
N∏

n=1

(p2
n/p1

n)1/N .

Once the ratio P 2/P 1 has been determined by (4) or (5), P 1, X1 and X2

may be determined using (3). But which of the three alternative formulae for
P 2/P 1 should we use?

Walsh [1901] criticized the use of the Dutot formula (2) on the grounds
that the index was not invariant to changes in the units of measurement. This
criticism was a telling one, and virtually nobody uses formula (2) at present.
However, formulae (4) and (5) are invariant to changes in the units of measure-
ment, so we must still discriminate between them.

Jevons argued that changes in the quantity of money between the two
periods would lead to proportional changes in all prices except for random
errors. In particular, Jevons argued that the price ratios, p2

n/p1
n, would be

independently and symmetrically distributed around a common mean. If this
distribution happened to be the normal distribution, then the maximum like-
lihood estimator for the common mean leads to the index number formula (4).
If the ratios p2

n/p1
n happened to be log normally distributed, then statistical

considerations would lead us to the index number formula (5).
Bowley [1928] attacked the use of both (4) and (5) on two grounds. First,

from an empirical point of view, he showed that price ratios were not sym-
metrically distributed about a common mean and their logarithms also failed
to be symmetrically distributed. Secondly, from a theoretical point of view,
he argued that it was unlikely that prices or price ratios were independently
distributed. Keynes [1930] developed Bowley’s second objection in more detail;
he argued that changes in the money supply would not affect all prices at the
same time. Moreover, real disturbances in the economy could cause one set
of prices to differ in a systematic way from other prices, depending on various
elasticities of substitution and complementarity. In other words, prices are not
randomly distributed, but are systematically related to each other through the
general equilibrium of the economy.

The above criticisms led to a movement away from the use of unweighted
averages of price ratios to represent price movements independently of quantity
movements. Walsh [1901] and others suggested that the quantity observations
xi

n that were associated with the individual price observations pi
n should be

used as weights in the price index formula.
Scrope [1833] suggested the following formula:

(6) P 2/P 1 = p2 · x/p1 · x

where x ≡ (x1, . . . , xN ) was a somewhat vaguely specified quantity vector which
was used to weight the price vectors p1 and p2 as in (6).

Laspeyres [1871] recommended that x be set equal to x1, the period 1
quantity vector, while Paasche [1874] suggested that x be set equal to x2, the
period 2 quantity vector. This led to the following formulae:

P 2/P 1 = p2 · x1/p1 · x1 ≡ PL(p1, p2, x1, x2);(7)
P 2/P 1 = p2 · x2/p1 · x2 ≡ PP (p1, p2, x1, x2).(8)
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Note that we are now following custom in the index number literature by defin-
ing an index number formula to be a function P (p1, p2, x1, x2) of the price and
quantity vectors that pertain to the two observations or time periods under con-
sideration: PL defines the Laspeyres price index while PP defines the Paasche
price index.

Pigou [1912] and Irving Fisher [1922] advocated taking a geometric mean
of the Paasche and Laspeyres indexes and the resulting formula has come to
be known as the Fisher ideal price index PF :

(9) P 2/P 1 = [PLPP ]1/2 ≡ PF (p1, p2, x1, x2).

Rather than taking a geometric average of (7) and (8), Walsh [1901] [1921]
advocated using formula (6) where the weight vector x was chosen to be the
vector of geometric means of the two quantity vectors:

P 2/P 1 =
∑N

n=1
p2

n(x1
nx2

n)1/2
/ ∑N

n=1
p1

n(x1
nx2

n)1/2

≡ PW (p1, p2, x1, x2).(10)

Törnqvist [1936] advocated a weighted geometric mean of the price ratios
of the following form:

(11) P 2/P 1 =
N∏

n=1

(p2
n/p1

n)sn ≡ PT (p1, p2, x1, x2)

where sn ≡ (1/2)(p1
nx1

n/p1 ·x1)+(1/2)(p2
nx2

n/p2 ·x2) is the average expenditure
share on good n for n = 1, . . . , N .

It turns out that formulae (7), (8), (9) and (11) are the most widely used
formulae for a price index. However, at this point, we have no way of justifying
their popularity. Walsh [1901] and Fisher [1922] present scores of functional
forms for price indexes — on what basis are we to choose one as being better
than the other?

This question leads us to discuss the test or axiomatic approach to index
number theory.

2. The Test Approach to Bilateral Indexes

Consider P (p1, p2, x1, x2), a function of the N period i prices, pi ≡ (pi
1, . . . , p

i
N),

and the N period i quantities, xi ≡ (xi
1, . . . , x

i
N ) for i = 1, 2. The price index P

is supposed to represent the level of prices in period 2 relative to period 1. What

properties or tests should such an index number formula satisfy? The following
nine tests (or closely related variants) have been considered in the literature.

BT1: Identity Test: P (p1, p2, αx1, βx2) = 1 for all numbers α > 0, β > 0
if p1 = p2 and x1 = x2.

BT2: Proportionality Test: P (p1, αp2, x1, x2) = αP (p1, p2, x1, x2) for
α > 0.

BT3: Invariance to Changes in Scale Test: P (αp1, αp2, βx1, γx2) =
P (p1, p2, x1, x2) for all α > 0, β > 0 and γ > 0.

BT4: Invariance to Changes in Units (Commensurability) Test:

P (α1p
1
1, . . . , αNp1

N ; α1p
2
1, . . . , αNp2

N ;
α−1

1 x1
1, · · · , α−1

N x1
N ; α−1

1 x2
1, . . . , α

−1
N x2

N )
= P (p1, p2, x1, x2) for α1 > 0, . . . , αN > 0.

BT5: Symmetric Treatment of Countries or Time (Country or Time Re-
versal) Test: P (p2, p1, x2, x1) = 1/P (p1, p2, x1, x2).

BT6: Symmetric Treatment of Commodities (Commodity Reversal) Test:
P (p̃1, p̃2, x̃1, x̃2) = P (p1, p2, x1, x2) where p̃i denotes a permutation of the el-
ements of the vector pi and x̃i denotes the same permutation of the elements
of xi, i = 1, 2.

BT7: Monotonicity Test: P (p1, p2, x1, x2) ≤ P (p1, p3, x1, x2) if p2 ≤ p3;
i.e., if p2

n ≤ p3
n for n = 1, . . . , N .

BT8: Mean Value Test: minn{p2
n/p1

n} ≤ P (p1, p2, x1, x2) ≤ maxn{p2
n/p1

n}.
BT9: Circularity Test: P (p1, p2, x1, x2)P (p2, p3, x2, x3) = P (p1, p3, x1, x3).
Tests BT1 and BT3 may be found in Vartia [1985] who calls BT3 the

strong monetary unit test. Test BT2 may be found in Walsh [1901], tests BT2
and BT4 are in Fisher [1911], tests BT5 and BT6 are in Fisher [1922], tests
BT8 and a stronger version of BT7 are in Eichhorn and Voeller [1976] and test
BT9 may be traced back to Westergaard [1890].

BT1 may be interpreted as follows: if prices and quantities are all equal
in the two periods (or for the two regions under consideration), then the price
index should be unity. This equality should still hold even if all quantities in
period 1 are multiplied by the same number α and all quantities in period 2
are multiplied by the same β.

BT2 means if all period 2 prices are multiplied by α, then the new price
index should equal α times the old price index.

Tests BT3–BT6 are invariance or symmetry tests. BT3 says that the price
index should remain unchanged when each price in both periods is multiplied
by the same number α and when quantities in period 1(2) are all multiplied
by α(β). BT4 says that the index should remain unchanged if each good is
measured in different units. BT5 says that if we interchange the role of periods 1
and 2 in our price index, then the new price index should equal the reciprocal
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of the original index. BT6 says that the index number formula should treat all
commodities in an evenhanded way: no commodity can be singled out to play
an asymmetric role. For example, suppose P (p1, p2, x1, x2) ≡ p2

1/p1
1. Then for

N ≥ 2, this formula, which equals the price ratio for commodity 1 only, fails
BT6.

BT7 says that if period 2 prices increase in any manner, then the price
index cannot decrease.

BT8 says that the price index should lie between the smallest and largest
price ratios over all commodities.

BT9 is a transitivity test which looks beyond the case of only two periods
or countries. BT9 says that if we have price and quantity data for three time
periods, then the product of the price index going from period 1 to period 2
times the price index going from period 2 to 3 should equal the price index
going from period 1 to 3 directly.

All of the above tests seem to be reasonable and desirable.
If N = 1 so that there is only one commodity, then BT1 and BT2 imply

that P (p1, p2, x1, x2) must equal p2
1/p1

1 and, of course, this index formula will
satisfy all of the remaining tests.

In the general N commodity case (assuming that all prices and quantities
are positive), which tests are satisfied by the index number formulae defined in
the previous section?

It can be shown that the Dutot index (2) satisfies all tests except BT4
(but this is a fatal flaw), the Carli index (4) fails only BT5 and BT9, the Jevons
geometric index (5) satisfies all tests, the Laspeyres and Paasche indexes defined
by (7) and (8) fail BT5 and BT9, the Fisher and Walsh indexes (9) and (10)
fail only BT9, and the Törnqvist index fails BT7 and BT9. Thus from the
viewpoint of the test approach, it would appear that the geometric index is
best.

The above conclusion is not warranted since our list of desirable tests
is incomplete. We shall consider an additional two tests where the geometric
index receives a failing grade.

Consider an index number formula that utilizes positive price and quan-
tity information for N commodities, P N (p1, p2, x1, x2) say. Now consider the
same functional form that uses information on only the first N − 1 commodi-
ties, P N−1 say. Then we may want the index number formula to satisfy the
following property:

(12) lim
x1

N
→0,x2

N
→0

P N(p1, p2, x1, x2)

= P N−1(p1
1, . . . , p

1
N−1, p

2
1, . . . , p

2
N−1, x

1
1, . . . , x

1
N−1, x

2
1, . . . , x

2
N−1).

Thus as the quantity of commodity N tends to 0 in both periods (and
thus commodity N becomes irrelevant), the N commodity price index tends to

the N − 1 commodity price index, where the prices and quantities of good N
have been deleted from the formula. This might be called the irrelevance of
tiny commodities test, test BT10. Obviously, this test only makes sense if
the basic index number formula P satisfies BT6, so that all commodities are
treated symmetrically. The geometric price index (5) fails test BT10 as do
the other unweighted formulae (2) and (4). However, the quantity weighted
price indexes, (7)–(11), all pass this test. Thus from the viewpoint of passing
tests, the Fisher and Walsh indexes, (9) and (10), now look just as good as the
geometric index (5).

There is another reason for not preferring the geometric price index. Re-
call our basic aggregation problem (1). It is clear that we can interchange
the role of prices and quantities in the two periods and define a quantity in-
dex Q(p1, p2, x1, x2) in much the same way that we defined the price index
P (p1, p2, x1, x2). We set P 2/P 1 = P (p1, p2, x1, x2) and we may set X2/X1 =
Q(p1, p2, x1, x2). From (1), we deduce that the product of the price and quan-
tity indexes should equal the value ratio for the two periods; i.e. P and Q
should satisfy the following product test due to Fisher [1911] but named by
Frisch [1930]:

(13) P (p1, p2, x1, x2)Q(p1, p2, x1, x2) = p2 · x2/p1 · x1.

However, rather than defining Q independently of P , (13) may be rearranged
to yield a definition of Q in terms of P . The resulting quantity index is called
the implicit quantity index that corresponds to P . If we define the implicit
quantity index, QG say, which corresponds to the geometric price index (5)
and consider the quantity counterparts to tests BT1–BT9 above (BT10 does
not have a sensible quantity counterpart), we find that QG fails the quantity
counterpart to BT8, the mean value test. Hence we have another reason for
failing the geometric price index and its corresponding implicit quantity index.
On the other hand, the implicit Fisher quantity index satisfies tests BT1–BT8
adapted for the quantity context.

The implicit Fisher quantity index QF is:

QF (p1, p2, x1, x2)
≡ p2 · x2/p1 · x1PF (p1, p2, x1, x2)

= (p1 · x2p2 · x2/p1 · x1p2 · x1)1/2 using (9)
= PF (x1, x2, p1, p2).(14)

Thus QF has the same functional form as PF except that the role of prices
and quantities has been interchanged. We have shown that PF and QF satisfy
Fisher’s [1922] factor reversal test which may be stated as follows:

(15) P (p1, p2, x1, x2)P (x1, x2, p1, p2) = p2 · x2/p1 · x1.
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Of the price indexes defined in the previous section, only the Fisher
price index satisfies (15). However, the Fisher price index is by no means
the only index number formula that satisfies the factor reversal test. Walsh
[1921] showed how to generate hundreds of formulae that would satisfy the
test: take a price index P (p1, p2, x1, x2), and define its factor antithesis by
p2 · x2/ p1 · x1P (x1, x2, p1, p2). Define a new price index by taking the square
root of the product of the original index and its factor antithesis. This new
index will automatically satisfy the factor reversal test.

The consistency and independence of various bilateral index number tests
was studied in some detail by Eichhorn and Voeller [1976]. Our conclusion at
this point echoes that of Frisch [1936]: the test approach to index number
theory, while extremely useful, does not lead to a single unique index number
formula. Thus we turn to economic approaches to index number theory to see
if we are led to a more definite conclusion.

3. Microeconomic Approaches to Price Indexes

Before a definition of a microeconomic price index is presented, it is necessary
to make a few preliminary definitions.

Let F (x) be a function of N variables, x ≡ (x1, . . . , xN ). In the consumer
context, F represents a consumer’s preferences; i.e. if F (x2) > F (x1), then the
consumer prefers the commodity vector x2 over x1. In this context, F is called
a utility function. In the producer context, F (x) might represent the output
that could be produced using the input vector x. In this context, F is called a
production function. In order to cover both contexts, we follow the example of
Diewert [1976a] and call F an aggregator function.

Suppose the consumer or producer faces prices p ≡ (p1, . . . , pN) for the
N commodities. Then the economic agent will generally find it is useful to
minimize the cost of achieving at least a given utility or output level u; we define
the cost function or expenditure function C as the solution to this minimization
problem:

(16) C(u, p) ≡ minimum
x

{p · x : F (x) ≥ u}

where p ·x ≡
∑N

n=1 pnxn is the inner product of the price vector p and quantity
vector x.

Note that the cost function depends on 1 + N variables; the utility or
output level u and the N commodity prices in the vector p. Moreover, the
functional form for the aggregator function F completely determines the func-
tional form for C.

We say that an aggregator function is neoclassical if F is: (i) continuous,
(ii) positive; i.e. F (x) > 0 if x � 0N (which means each component of x is
positive), and (iii) linearly homogeneous; i.e. F (λx) = λF (x) if λ > 0. If F is
neoclassical, then the corresponding cost function C(u, p) equals u times the
unit cost function, c(p) ≡ C(1, p), where c(p) is the minimum cost of producing
one unit of utility or output; i.e.,

(17) C(u, p) = uC(1, p) ≡ uc(p).

Shephard [1953] formally defined an aggregator function F to be homothetic
if there exists an increasing continuous function of one variable g such that
g[F (x)] is neoclassical. However, the concept of homotheticity was well known
to Frisch [1936] who termed it expenditure proportionality. If F is homothetic,
then its cost function C has the following decomposition:

C(u, p) ≡ min
x

{p · x : F (x) ≥ u}

= min
x

{p · x : g[F (x)] ≥ g(u)}

= g(u)c(p)(18)

where c(p) is the unit cost function that corresponds to g[F (x)].
Let p1 � 0N and p2 � 0N be positive price vectors pertaining to periods

or observations 1 and 2. Let x > 0N be a nonnegative, nonzero reference
quantity vector. Then the Konüs [1924] price index or cost of living index is
defined as:

(19) PK(p1, p2, x) ≡ C[F (x), p2]/C[F (x), p1].

In the consumer (producer) context, PK may be interpreted as follows. Pick a
reference utility (output) level u ≡ F (x). Then PK(p1, p2, x) is the minimum
cost of achieving the utility (output) level u when the economic agent faces
prices p2 relative to the minimum cost of achieving the same u when the agent
faces prices p1. If N = 1 so that there is only one consumer good (or input),
then it is easy to show that PK(p1

1, p
2
1, x1) = p2

1x1/p1
1x1 = p2

1/p1
1.

Using the fact that a cost function is linearly homogeneous in its price
arguments, it can be shown that PK has the following homogeneity property:
PK(p1, λp2, x) = λPK(p1, p2, x) for λ > 0 which is analogous to the propor-
tionality test BT2 in the previous section. PK also satisfies PK(p2, p1, x) =
1/PK(p1, p2, x) which is analogous to the time reversal test, BT5.

Note that the functional form for PK is completely determined by the
functional form for the aggregator function F which determines the functional
form for the cost function C.

In general, PK depends not only on the two price vectors p1 and p2, but
also on the reference vector x. Malmquist [1953], Pollak [1971a] and Samuelson
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and Swamy [1974] have shown that PK is independent of x and is equal to a
ratio of unit cost functions, c(p2)/c(p1), if and only if the aggregator function
F is homothetic.

If we knew the consumer’s preferences or the producer’s technology, then
we would know F and we could construct the cost function C and the Konüs
price index PK . However, we generally do not know F or C and thus it is useful
to develop bounds that depend on observable price and quantity data but do
not depend on the specific functional form for F or C.

Samuelson [1947] and Pollak [1971a] established the following bounds
on PK . Let p1 � 0N , and p2 � 0N . Then for every reference quantity vector
x > 0N , we have

(20) min
n

{p2
n/p1

n} ≤ PK(p1, p2, x) ≤ max
n

{p2
n/p1

n};

i.e., PK lies between the smallest and largest price ratios. Unfortunately, these
bounds are usually too wide to be of much practical use.

To obtain closer bounds, we now assume that the observed quantity vec-
tors for the two periods, xi ≡ (xi

1, . . . , x
i
N ), i = 1, 2, are solutions to the

producer’s or consumer’s cost minimization problems; i.e., we assume:

(21) pi · xi = C(F (xi), pi), pi � 0N , xi > 0N , i = 1, 2.

Given the above assumptions, we now have two natural choices for the
reference quantity vector x that occurs in the definition of PK(p1, p2, x) : x1

or x2. The Laspeyres–Konüs price index is defined as PK(p1, p2, x1) and the
Paasche–Konüs price index is defined as PK(p1, p2, x2).

Under the assumption of cost minimizing behavior (21), Konüs [1924]
established the following bounds:

PK(p1, p2, x1) ≤ p2 · x1/p1 · x1 ≡ PL(p1, p2, x1, x2);(22)
PK(p1, p2, x2) ≥ p2 · x2/p1 · x2 ≡ PP (p1, p2, x1, x2),(23)

where PL and PP are the Laspeyres and Paasche price indexes defined earlier
by (7) and (8). If in addition, the aggregator function is homothetic, then
Frisch [1936] showed that for any reference vector x > 0N ,

(24) PP ≡ p2 · x2/p1 · x2 ≤ PK(p1, p2, x) ≤ p2 · x1/p1 · x1 ≡ PL.

In the consumer context, it is unlikely that preferences will be homothetic;
hence the bounds (24) cannot be justified in general. However, Konüs [1924]
showed that bounds similar to (24) would hold even in the general nonhomo-
thetic case, provided that we choose a reference vector x ≡ λx1 + (1 − λ)x2

which is a λ, (1 − λ) weighted average of the two observed quantity points.

Specifically, Konüs showed that there exists a λ between 0 and 1 such that if
PP ≤ PL, then

(25) PP ≤ PK [p1, p2, λx1 + (1 − λ)x2] ≤ PL

or if PP > PL, then

(26) PL ≤ PK [p1, p2, λx1 + (1 − λ)x2] ≤ PP .

The bounds on the microeconomic price index PK given by (20) and
(22)–(26) are the best bounds that we can obtain without making further as-
sumptions on F . In the time series context, the bounds given by (25) or (26)
are quite satisfactory: the Paasche and Laspeyres price indexes for consecutive
time periods will usually differ by less than 1 percent. However, in the cross
section context where the observations represent, for example, production data
for two producers in the same industry but in different regions, the bounds are
often not very useful since PL and PP can differ by 50 percent or more in the
cross sectional context; see Ruggles [1967].

In Section 5 below, we will make additional assumptions on the aggregator
function F or its cost function dual C that will enable us to determine PK

exactly. Before we do this, in the next section, we will define various quantity
indexes that have their origins in microeconomic theory.

4. Microeconomic Approaches to Quantity Indexes

In the one commodity case, a natural definition for a quantity index is x2
1/x1

1,
the ratio of the single quantity in period 2 to the corresponding quantity in
period 1. This ratio is also equal to the expenditure ratio, p2

1x
2
1/p1

1x
1
1, divided by

the price ratio, p2
1/p1

1. This suggests that in the N commodity case, a reasonable
definition for a quantity index would be the expenditure ratio divided by the
Konüs price index, PK . This course of action was suggested by Pollak [1971a].
Thus we define the Konüs–Pollak quantity index, QK , by:

QK(p1, p2, x1, x2, x) ≡ p2 · x2/p1 · x1PK(p1, p2, x)

=
[
C[F (x2), p2]/C[F (x), p2]

]
/
[
C[F (x1), p1]/C[F (x), p1]

]
(27)

where the second line follows from the definition of PK , (19), and the assump-
tion of cost minimizing behavior in the two periods, (21).

The definition of QK depends on the reference vector x which appears in
the definition of PK . The general definition of QK simplifies considerably if we
choose x to be x1 or x2. Thus define the Laspeyres–Konüs quantity index as

(28) QK(p1, p2, x1, x2, x1) ≡ C[F (x2), p2]/C[F (x1), p2]
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and the Paasche–Konüs quantity index as

(29) QK(p1, p2, x1, x2, x2) ≡ C[F (x2), p1]/C[F (x1), p1].

It turns out that the indexes defined by (28) and (29) are special cases
of another class of quantity indexes. For any reference price vector p � 0N ,
define the Allen [1949] quantity index by

(30) QA(x1, x2, p) ≡ C[F (x2), p]/C[F (x1), p].

If p is chosen to be p1, (30) becomes (29) and if p = p2, then (30) becomes
(28).

Using the properties of cost functions, it can be shown that if F (x2) ≥
F (x1), then QA(x1, x2, p) ≥ 1 while if F (x2) ≤ F (x1), then QA(x1, x2, p) ≤
1. Thus the Allen quantity index correctly indicates whether the commodity
vector x2 is larger or smaller than x1. It can also be seen that QA satisfies a
counterpart to the time reversal test; i.e., QA(x2, x1, p) = 1/QA(x1, x2, p).

Just as the price index PK depended on the unobservable aggregator
function, so also do the quantity indexes QK and QA. Thus it is useful to
develop bounds for the quantity indexes that do not depend on the particular
functional form for F .

Samuelson [1947] and Allen [1949] established the following bounds for
(28) and (29):

QA(x1, x2, p1) = QK(p1, p2, x1, x2, x2) ≤ p1 · x2/p1 · x1 ≡ QL;(31)
QA(x1, x2, p2) = QK(p1, p2, x1, x2, x1) ≥ p2 · x2/p2 · x1 ≡ QP .(32)

Note that the observable Laspeyres and Paasche quantity indexes, QL and QP ,
appear on the right hand sides of (31) and (32).

Diewert [1981a], utilizing some results of Pollak [1971a] and Samuelson
and Swamy [1974], established the following results: if the underlying aggrega-
tor function F is neoclassical and (21) holds, then for all p � 0N and x � 0N ,

(33) QP ≤ QA(x1, x2, p) = QK(p1, p2, x1, x2, x) = F (x2)/F (x1) ≤ QL.

Thus if the aggregator function F is neoclassical, then the Allen quantity in-
dex for all reference vectors p equals the Konüs quantity index for all reference
quantity vectors x which in turn equals the ratio of aggregates (F (x2)/F (x1)).
Moreover, QA and QK are bounded from below by the Paasche quantity in-
dex QP , and bounded from above by the Laspeyres quantity index QL in the
neoclassical case.

In the general nonhomothetic case, Diewert [1981a] showed that there ex-
ists a λ between 0 and 1 such that QK [p1, p2, x1, x2, λx1+(1−λ)x2] lies between

QP and QL and there exists a λ∗ between 0 and 1 such that QA[x1, x2, λ∗p1 +
(1 − λ∗)p2] also lies between QP and QL. Thus the observable Paasche and
Laspeyres quantity indexes bound both the Konüs quantity index and the Allen
quantity index, provided that we choose appropriate reference vectors between
x1 and x2 and p1 and p2 respectively.

Using the linear homogeneity property of the cost function in its price ar-
guments, we can show that the Konüs price index has the desirable homogeneity
property, PK(p1, λp1, x) = λ for all λ > 0; i.e., if period 2 prices are propor-
tional to period 1 prices, then PK equals this common proportionality factor. It
would be desirable for an analogous homogeneity property to hold for quantity
indexes. Unfortunately, it is not in general true that QK(x1, λx1, p1, p2, x) = λ
or that QA(x1, λx1, p) = λ. Thus we turn to a third microeconomic approach
to defining a quantity index which does have the desirable quantity proportion-
ality property.

Let x1 and x2 be the observable quantity vectors in the two situations as
usual, let F (x) be an increasing, continuous aggregator function, and let x � 0
be a reference quantity vector. Then the Malmquist [1953] quantity index QM

is defined as:

(34) QM (x1, x2, x) ≡ D[F (x), x2]/D[F (x), x1]

where D(u, xi) ≡ maxk{k : F (xi/k) ≥ u, k > 0} is the deflation or distance
function which corresponds to F . Thus D[F (x), x2] is the biggest number
which will just deflate the quantity vector x2 onto the boundary of the utility
(or production) possibilities set {z : F (z) ≥ F (x)} indexed by the reference
quantity vector x while D[F (x), x1] is the biggest number which will just deflate
the quantity vector x1 onto the set {z : F (z) ≥ F (x)} and QM is the ratio of
these two deflation factors.

QM depends on the unobservable aggregator function F and as usual, we
are interested in bounds for QM .

Diewert [1981a] showed that QM satisfied bounds analogous to (20); i.e.,

(35) min
n

{x2
n/x1

n} ≤ QM (x1, x2, x) ≤ max
n

{x2
n/x1

n}.

It should be noted that we do not require the assumption of cost mini-
mizing behavior in order to define the Malmquist quantity index or to establish
the bounds (35). However, in order to establish the following bounds due to
Malmquist [1953] for QM , we do need the assumption of cost minimizing be-
havior (21) and we require the reference vector x to be x1 or x2:

QM (x1, x2, x1) ≤ p1 · x2/p1 · x1 ≡ QL;(36)
QM (x1, x2, x2) ≥ p2 · x2/p2 · x1 ≡ QP .(37)
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Diewert [1981a] showed that under the hypothesis of cost minimizing behav-
ior, there exists a λ between 0 and 1 such that QM [x1, x2, λx1 + (1 − λ)x2]
lies between QP and QL. Thus the Paasche and Laspeyres quantity indexes
provide bounds for a Malmquist quantity index for some reference indifference
or product surface indexed by a quantity vector which is a λ, (1 − λ) weighted
average of the two observable quantity vectors, x1 and x2.

Pollak [1971a] showed that if F is neoclassical, then we can extend the
string of equalities in (33) to include the Malmquist quantity index QM (x1, x2, x),
for any reference quantity vector x. Thus in the case of a linearly homogeneous
aggregator function, all three theoretical quantity indexes coincide and this
common theoretical index is bounded from below by the Paasche quantity in-
dex QP and bounded from above by the Laspeyres quantity index QL.

In the general case of a nonhomothetic aggregator function, our best
theoretical quantity index, the Malmquist index, is also bounded by the Paasche
and Laspeyres indexes, provided that we choose a suitable reference quantity
vector.

We noted in the price index context that the Paasche and Laspeyres price
indexes were usually quite close in the time series context. A similar remark
also applies to the Paasche and Laspeyres quantity indexes. Thus taking an
average of the Paasche and Laspeyres indexes, such as the Fisher price and
quantity indexes, will generally approximate underlying microeconomic price
and quantity indexes sufficiently accurately for most practical purposes. How-
ever, this observation does not apply to the cross sectional context, where the
Paasche and Laspeyres indexes can differ widely. In the following section, we
offer another microeconomic justification for using the Fisher indexes that also
applies in the context of making interregional and cross country comparisons.

5. Exact and Superlative Indexes

Assume that the producer or consumer is maximizing a neoclassical aggregator
function f subject to a budget constraint during the two periods. Under these
conditions, it can be shown that the economic agent is also minimizing cost
subject to a utility or output constraint. Moreover, the cost function C that
corresponds to f can be written as C[f(x), p] = f(x)c(p) where c is the unit
cost function (recall (17) above).

Suppose a price index P (p1, p2, x1, x2) and a quantity index Q(p1, p2, x1, x2)
of the type considered in Sections 1 and 2 are given. The quantity index Q
is defined to be exact for a neoclassical aggregator function f with unit cost
dual c if for every p1 � 0N , p2 � 0N and xi � 0N which is a solution to the
aggregator maximization problem maxx{f(x) : pi · x ≤ pi · xi} = f(xi) > 0 for

i = 1, 2, we have

(38) Q(p1, p2, x1, x2) = f(x2)/f(x1).

Under the same hypothesis, the price index P is exact for f and c if we have

(39) P (p1, p2, x1, x2) = c(p2)/c(p1).

In (38) and (39), the price and quantity vectors are not regarded as being
independent. The pi can be independent, but the xi are solutions to the cor-
responding aggregator maximization problem involving pi, for i = 1, 2. Note
that if Q is exact for a neoclassical f , then Q can be interpreted as a Konüs,
Allen or Malmquist quantity index and the corresponding P defined implicitly
by (13) can be interpreted as a Konüs price index.

The concept of exactness is due to Konüs and Byushgens [1926]. Below,
we shall give some examples of exact index number formulae. Additional exam-
ples may be found in Afriat [1972b], Pollak [1971a] and Samuelson and Swamy
[1974].

Konüs and Byushgens [1926] showed that Irving Fisher’s ideal quantity
index QF defined by (14) and the corresponding price index PF defined by (9)
are exact for the homogeneous quadratic aggregator function f defined by

(40) f(x1, . . . , xN ) ≡
(∑N

n=1

∑N

m=1
anmxnxm

)1/2

≡ (xT Ax)1/2

where A ≡ [anm] is a symmetric N × N matrix of constants. Thus under the
assumption of maximizing behavior, we can calculate f(x2)/f(x1) = QF and
c(p2)/c(p1) = PF where f is defined by (40) and c is the unit cost function that
corresponds to f . The important thing to note is that f depends on N(N+1)/2
unknown anm parameters but we do not need to know these parameters in order
to evaluate f(x2)/f(x1) and c(p2)/c(p1).

Diewert [1976a] showed that the Törnqvist price index PT defined by (11)
is exact for the unit cost function c(p) defined by:

(41) ln c(p) ≡ α0 +
∑N

n=1
αn ln pn + (1/2)

∑N

m=1

∑N

n=1
αmn ln pm ln pn

where the parameters αn and αmn satisfy the following restrictions:

∑N

n=1
αn = 1,

∑N

n=1
αmn = 0 for m = 1, . . . , N and

αmn = αnm for all m, n.(42)

Thus we may calculate c(p2)/c(p1) = PT and f(x2)/f(x1) = p2 ·x2/p1 ·x1PT ≡
Q̃T where c is the unit cost function defined by (41), f is the aggregator function
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which corresponds to this c, and Q̃T is the implicit Törnqvist quantity index.
Note that we do not have to know the parameters αn and αmn in order to
evaluate c(p2)/c(p1) and f(x2)/f(x1).

The unit cost function defined by (41) is the translog unit cost function
defined by Christensen, Jorgenson and Lau [1971]. Since PT is exact for this
translog functional form, PT is sometimes called the translog price index.

Before we present our final example of an exact index number formula,
we need to define a family of quantity indexes Qr that depend on a number,
r 6= 0:
(43)

Qr(p1, p2, x1, x2) ≡
[∑N

n=1
s1

n(x2
n/x1

n)r/2

]1/r

×
[∑N

m=1
s2

m(x2
m/x1

m)−r/2

]−1/r

where si
n ≡ pi

nxi
n/pi · xi is the period i expenditure share for good n. For each

r 6= 0, define the corresponding implicit price index by:

(44) P̃r(p1, p2, x1, x2) ≡ p2 · x2/p1 · x1Qr(p1, p2, x1, x2).

A bit of algebra will show that when r = 2, P̃2 = PF , the Fisher price
index defined by (9) and when r = 1, P̃1 = PW , the Walsh price index defined
by (10).

Diewert [1976a] showed that Qr and P̃r are exact for the quadratic mean
of order r aggregator function fr defined by:

(45) fr(x1, . . . , xN ) ≡
(∑N

m=1

∑N

n=1
amnxr/2

m xr/2
n

)1/r

where A ≡ [amn] is a symmetric matrix of constants. Thus the Walsh price
index PW is exact for f1(x) defined by (45) when r = 1.

Diewert [1974a] defined a linearly homogeneous function f of N variables
to be flexible if it could provide a second order approximation to an arbi-
trary twice continuously differentiable linearly homogeneous function. It can
be shown that f defined by (40), c defined by (41) and (42) and fr defined by
(45) for each r 6= 0 are all examples of flexible functional forms.

Let the price and quantity indexes P and Q satisfy the product test
equality, (13). Then Diewert [1976a] defined P and Q to be superlative indexes
if either P is exact for a flexible unit cost function c or Q is exact for a flexible
aggregator function f . Thus PF , PW , PT and P̃r are all superlative price
indexes.

At this point, it may seem that we are in the same position that we were
at the end of Section 2 where we could not find an index number formula that
satisfied all reasonable tests; hence we could not single out any formula as being

the best. In the present context, we have a similar problem: how are we to
discriminate between PF , PW and PT ? Fortunately, it does not matter very
much which of these formulae we choose to use in applications; they will all
give the same answer to a reasonably high degree of approximation. Diewert
[1978b] showed that all known superlative index number formulae approximate
each other to the second order when each index is evaluated at an equal price
and quantity point. This means the PF , PW , PT and each P̃r have the same
first and second order partial derivatives with respect to all 4N arguments
when the derivatives are evaluated at a point where p1 = p2 and x1 = x2. A
similar string of equalities also holds for the corresponding implicit quantity
indexes defined using the product test (13). Empirically, it has been found that
superlative indexes typically approximate each other to something less than 0.2
percent in the time series context and to about 2 percent in the cross section
context; see Fisher [1922] and Ruggles [1967].

Diewert [1978b] also showed that the Paasche and Laspeyres indexes ap-
proximate the superlative indexes to the first order at an equal price and quan-
tity point. In the time series context, for adjacent periods, the Paasche and
Laspeyres price indexes typically differ by less than 0.5 percent; hence these
indexes may also provide acceptable approximations to a superlative index.

Having considered the case of two observations at great length, we now
turn our attention to the I observation case. In the next section, we consider
the case of I consecutive time series observations of prices and quantities on the
same producer or consumer. We shall consider the general case of I observations
separated by space (and possibly by time) in Section 9 below.

6. The Fixed Base Versus the Chain Principle

Consider the case of I consecutive observations through time on the prices
and quantities of N goods utilized by an economic unit, pi ≡ (pi

1, . . . , p
i
N ) and

xi ≡ (xi
1, . . . , x

i
N ), i = 1, . . . , I .

Suppose that we have decided on a price index P and a quantity index Q
where P and Q satisfy (13). This allows us to compare prices and quantities for
any two observations. Based on the test approach, we would probably choose
P and Q to be the Fisher indexes, PF and QF , since they satisfy the most tests.
Since the Fisher indexes also lie between the Paasche and Laspeyres bounds
derived in Sections 3 and 4 and moreover are superlative indexes, the choice of
the Fisher indexes also fits in well with the microeconomic approach to index
number theory.

However, if we choose any superlative price index P in order to make
bilateral comparisons of prices, then we are faced with a problem when I ≥ 3
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because the circular test BT9 will not be satisfied. Thus choose observation 1
as the base and make all price comparisons relative to period 1, so that the
relative price level in period i is P (p1, pi, x1, xi). Now choose another obser-
vation, say I , as the base so that the price level in period i relative to I is
P (pI , pi, xI , xi). In order to make the price level in period 1 equal to unity,
divide each P (pI , pi, xI , xi) by P (pI , p1, xI , x1). If the circular test held, then
the two price series would coincide; i.e., we would have

(46) P (p1, pi, x1, xi) = P (pI , pi, xI , xi)/P (pI , p1, xI , x1), i = 1, . . . , I.

However, since the circular test does not hold in general, we are faced
with a problem: which period should we choose as the base?

There are a number of alternative strategies that could be followed, in-
cluding: (i) choose the first observation as the base, (ii) take an average over
all possible choices of the base period, (iii) abandon the use of a bilateral for-
mula and develop an entirely new multilateral approach, or (iv) use the chain
principle, which will be explained below.

Alternative (i) seems rather arbitrary but it has simplicity to recommend
it. Virtually all official time series indexes are constructed using fixed base
Paasche or Laspeyres indexes with the base year being changed every 5 to 15
years.

Alternative (ii) seems attractive at first glance since it treats each period
in a symmetric fashion. The problem with the method is that economic history
has to be rewritten every time a new observation is added to the initial I
observations.

Alternative (iii) may also seem attractive. For example, in making a price
comparison between i and j, we may want to utilize the quantity information for
all periods, so that the bilateral index number formula P (pi, pj , xi, xj) could
be replaced by P ∗(pi, pj , x1, . . . , xI). For example, we could use the Scrope
index (6) where x could be taken to be the average quantities over all periods,∑I

i=1 xi/I , or we could use the Törnqvist index (11) where sn could be set
equal to the average over all periods for the commodity n expenditure share,∑I

i=1(1/I)pi
nxi

n/pi · xi. Both of these examples lead to indexes that satisfy
the circularity property for the original I observations. However, as was the
case with alternative (ii), these new multilateral indexes would have to be
recomputed as new time series observations become available.

Alternative (iv) is to use the chain principle, originally suggested by Mar-
shall [1887], although the term is due to Fisher [1911]. This principle makes
use of the natural order provided by the march of time. One first chooses a
bilateral index number formula P . The period 1 price level is set equal to unity
and the period 2 price level is set equal to P (p1, p2, x1, x2). The period 3 price
level is set equal to P (p1, p2, x1, x2)P (p2, p3, x2, x3). The period 4 price level is
set equal to the period 3 price level times P (p3, p4, x3, x4), and so on. Thus the

period i price level is not obtained by the direct comparison of period i prices
with period 1 prices, P (p1, pi, x1, xi), but rather as the product of the period
by period relative price levels; i.e., by travelling along the links of a chain.

The chain principle has one substantial disadvantage: if pi = pj and
xi = xj and periods i and j are not adjacent, then it is not necessarily the case
that the measured price level in period i will coincide with the measured price
level in period j.

However, the chain principle has a number of advantages: (i) no single
period is singled out to play an asymmetric role, (ii) the price levels for I periods
are not changed as additional periods are added to the data set, (iii) if a good
disappears or a new good is introduced so that N , the number of commodities,
changes, then the chain price indexes (and the corresponding implicit quantity
indexes) will still be comparable for all periods before and after the change in
N and (iv) all superlative indexes will closely approximate each other if the
chain principle is used, since changes in prices and quantities tend to be small
for adjacent time periods.

The above mentioned disadvantage of the chain method is due to the lack
of circularity in the bilateral formula P (p1, p2, x1, x2). However, experience has
shown (e.g., see Fisher [1922]) that deviations from circularity for superlative
index number formulae are small in the time series context. In fact, one can
show that if the bilateral index P is superlative (or equal to the Paasche or
Laspeyres index), then P satisfies the circular test to the first order; i.e., the
first order derivatives of P (p1, p3, x1, x3) and of P (p1, p2, x1, x2)P (p2, p3, x2, x3)
with respect to the components of p1, p2, p3, x1, x2 and x3 coincide when
evaluated at an equal price and quantity point where p1 = p2 = p3 and x1 =
x2 = x3. (This is a new result.)

Our conclusion at this point is that alternatives (ii) and (iii) do not look
very attractive in the time series context: the use of a fixed base or the chain
principle seems preferable. However, in the context of cross section data where
there is no natural way of ordering the data sequentially, alternatives (ii) and
(iii) become much more attractive. We consider genuine multilateral index
number formulae in Sections 9 and 10 below.

7. Aggregation Over Consumers

Thus far, our discussion of the microeconomic approach to indexes has been
limited to the one consumer or producer case (or the case of two consumers or
producers who have identical preferences or technologies). In this section, we
relax these restrictions and discuss aggregate consumer or household indexes.
In the following section, we discuss aggregate output price and quantity indexes.
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Consider the case of two countries or regions (or two time periods for the
same country). We suppose that there are Hi households in country i and the
preferences of household h in country i are represented by a continuous utility
function, F ih(x, zih), where x ≡ (x1, . . . , xN ) ≥ 0N is a nonnegative vector of
market goods, pi ≡ (pi

1, . . . , p
i
N ) � 0N is the corresponding vector of positive

prices that each household in region i faces and zih is a vector of demographic
variables or consumption of public goods by household h in country i.

The restricted cost or expenditure function of household h in country i is
defined as:

(47) Cih(uih, pi, zih) ≡ min
x

{pi · x : F ih(x, zih) ≥ uih},

i = 1, 2; h = 1, . . . , Hi,

where uih is a utility or welfare level. We assume that xih > 0N , the observable
consumption vector for household h in the country i, solves (47) with uih =
F ih(xih, zih) for i = 1, 2 and h = 1, . . . , Hi.

We may use the preferences and observed choices of household h in coun-
try i to define a Konüs price index P ih for the level of prices in country 2
relative to country 1:

(48) P ih(p1, p2) ≡ Cih(uih, p2, zih)/Cih(uih, p1, zih),
i = 1, 2; h = 1, . . . , Hi.

Suppose that each expenditure function Cih has a translog functional
form; i.e., ln Cih(u, p, z) is a quadratic function in the logarithms of its vari-
ables, similar to the right hand side of (41) except that now (u, p, z) replaces p.
We note that we can approximate arbitrary preferences to the second order us-
ing this functional form; i.e., the translog restricted expenditure function is a
flexible functional form. Caves, Christensen and Diewert [1982b] establish the
following result: if household h in country 1 and household k in country 2 have
translog expenditure functions with identical coefficients on the second order
terms in commodity prices (this forces some similarity in preferences), then
the geometric mean of the two theoretical Konüs price indexes, P 1h and P 2k,
equals the observable Törnqvist or translog price index PT (p1, p2, x1h, x2k); i.e.,
we have

(49) [P 1h(p1, p2)P 2k(p1, p2)]1/2 = PT (p1, p2, x1h, x2k),
h = 1, . . . , H1; k = 1, . . . , H2.

Rather than deal with the individual household indexes pih defined by
(48), one can define an average index, where the average is taken over all house-
holds in the country. Thus for a nonnegative weights vector αi ≡ (αi

1, . . . , α
i
Hi

)

such that
∑Hi

h=1 αi
h = 1, define the country i average price index P i as an αi

weighted geometric mean of the individual indexes:

(50) P i(p1, p2, αi) ≡
Hi∏

h=1

P ih(p1, p2)αi
h , i = 1, 2.

The theoretical index P i defined in (50) utilizes the price vectors p1 and
p2 in both countries but utilizes only the preferences of households in country i.
As a final bit of averaging, we take the geometric mean of P 1 and P 2 to obtain
a final theoretical price index that treats each household in each country in a
symmetric fashion:

(51) P (p1, p2, α1, α2) ≡ [P 1(p1, p2, α1)P 2(p1, p2, α2)]1/2.

The natural choices for the household weighting vectors α1 and α2 are:
(i) democratic weights and (ii) plutocratic weights. In case (i), each household
in each country is given an equal weight; i.e., αi

h ≡ 1/Hi, i = 1, 2, and h =
1, . . . , Hi. In case (ii), each household gets a weight that is proportional to
its share of consumption in its own country; i.e., αi

h ≡ pi · xih/pi · xi ≡ si
h

for i = 1, 2 and h = 1, . . . , Hi, where xi ≡
∑Hi

h=1 xih is country i’s aggregate
consumption vector. If each household has a translog restricted expenditure
function with identical coefficients on the second order terms in commodity
prices, then making repeated use of (49), we can deduce that the aggregate
price index (51) in case (i) is:

(52) P (p1, p2, 1/H1, . . . , 1/H1, 1/H2, . . . , 1/H2)

=
H1∏

h=1

H2∏

k=1

PT (p1, p2, x1h, x2k)1/H1H2

while in case (ii), the aggregate price index is

(53) P (p1, p2, s1, s2) = PT (p1, p2, x1, x2)

where si ≡ (si
1, . . . , s

i
Hi

) is the country i expenditure share vector for house-
holds in country i and xi ≡

∑Hi

h=1 xih is the aggregate country i consumption
vector. Thus if individual household consumption data xih are available, then
the democratic aggregate price index defined by (52) can be evaluated as a ge-
ometric mean of individual household translog price indexes. If only aggregate
country consumption data xi are available, then the plutocratic aggregate price
index defined by (53) can be evaluated as a translog price index (recall (11)),
using the aggregate consumption vectors x1 and x2 as quantity weights.
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The terms democratic and plutocratic are due to Prais [1959]. For other
approaches to aggregate consumer price indexes, see Prais [1959], Pollak [1981]
and Diewert [1983a].

We turn now to the construction of an aggregate quantity index for the
two periods. Let the preferences of household h in country i be represented
by the continuous, increasing utility function F ih(x) where we have absorbed
the vector of demographic variables into the function F ih. For i = 1, 2, and
h = 1, . . . , Hi, define the household h in country i deflation function Dih(u, x)
for x > 0N and u in the range of F by

(54) Dih(u, x) ≡ max
δ

{δ : F ih(x/δ) ≥ u, δ ≥ 0}.

As in Section 5, define the Malmquist quantity index for x∗ > 0N relative to
x > 0N using the preferences of household h in country i by:

(55) Qih(x, x∗, u) ≡ Dih(u, x∗)/Dih(u, x), i = 1, 2; h = 1, . . . , Hi.

Let the observed consumption vector of household h in country i be xih >
0N and define the corresponding utility level by uih ≡ F ih(xih).

Define the index of average household consumption in country j relative
to i by:

(56) Qij ≡
∑Hj

k=1
Qjk

(∑Hi

h=1
xih/Hi, x

jk , ujk

) /
Hi; i, j = 1, 2, i 6= j.

To explain the meaning of (56), define the country i average or per capita
consumption vector by

(57) xi ≡
∑Hi

h=1
xih/Hi, i = 1, 2.

Then Q12 is an average of the individual country 2 Malmquist indexes Q2k(x1,
x2k, u2k) which in turn compares the observed consumption vector of house-
hold k in country 2 with the average consumption vector x1 for country 1,
using the indifference surface through x2k of household k in country 2 as the
reference indifference surface. Similarly, Q21 is an average of the individual
country 1 Malmquist indexes Q1k(x2, x1k , u1k).

Diewert [1986] showed that under the assumption of expenditure mini-
mizing behavior on the part of consumers in both countries, Q12 has the lower
bound p2 · x2/p2 · x1, a Paasche quantity index in per capita quantities, and
[Q21]−1 has the upper bound p1 · x2/p1 · x1, a Laspeyres quantity index in per
capita quantities. Diewert also shows that there exists a 0 ≤ λ ≤ 1 such that
λQ12 + (1 − λ)(Q21)−1 lies between these per capita Paasche and Laspeyres
quantity indexes. This suggests that we can approximate the theoretical index

λQ12 + (1 − λ)(Q21)−1 by an average of these Paasche and Laspeyres indexes
such as the Fisher index QF (p1, p2, x1, x2) ≡ (p2 ·x2/p2 ·x1)1/2(p1 ·x2/p1 ·x1)1/2

where the per capita quantity vectors xi are defined by (57).
To summarize this section: we have shown that the translog price in-

dex PT and the Fisher quantity index QF , which had very satisfactory economic
interpretations in the case of one consumer, also have reasonable economic in-
terpretations in the many consumer case.

8. Aggregation Over Producers

We assume that there are two regions or countries that are to be compared.
The two countries could represent the same country at different time periods.
The private production sector in country i uses a vector of primary inputs vi ≡
(vi

1, . . . , v
i
M ), where vi

m is the amount of input m used in country i. These inputs
are different types of labor, capital, land and other natural resources. There are
N net outputs that can be produced by the private production sector in each
country. These goods are different types of consumer and investment goods,
exports and imports. The net output vector for country i is yi ≡ (yi

1, . . . , y
i
N)

and the corresponding price vector is the positive vector wi ≡ (wi
1, . . . , w

i
N ) �

0N . We assume wi · yi ≡
∑N

n=1 wi
nyi

n > 0 for i = 1, 2. If yi
n < 0, then good

n is utilized as an input in country i; this good could be an imported good or
it could be an intermediate input that is produced by the government sector
in country i. Note that in contrast to the consumer case, we no longer assume
that quantity vectors are nonnegative.

The technology set for the private production sector in country i is the
set Si ≡ {(yi, vi)}, a feasible set of net output vectors yi and primary input
vectors vi. If knowledge is freely transferable across countries, then Si = S for
i = 1, 2 so that there is a common technology set across countries. However,
we do not require this assumption in what follows.

Define country i’s private national product function gi by

(58) gi(w, v) ≡ max
y

{w · y : (y, v) belongs to Si}, i = 1, 2.

The number gi(w, v) is the maximum value of outputs (less the value of
imports) that the private production sector of country i can produce, given that
each producer in the country faces the price vector w and the aggregate private
economy has at its disposal the primary input vector v. If each producer faces
the same price vector w and behaves competitively, then we do not have to
concern ourselves with individual producer output vectors: all that matters is
the aggregate net output vector. The national product function was introduced
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into the economics literature by Samuelson [1953–54]; it is sometimes called a
variable or restricted profit function or a net revenue function.

The Fisher–Shell [1972a] output price index of country 2 relative to 1
using the country i technology set Si and primary input vector vi is defined as

(59) P i(w1, w2) ≡ gi(w2, vi)/gi(w1, vi), i = 1, 2.

We assume optimizing behavior on the part of producers in each country
so that the observed country i price and net output vectors, wi and yi, satisfy
wi · yi = gi(wi, vi) > 0 for i = 1, 2.

Assume that the private national product function gi(w, v) has a translog
functional form for each i (recall (41) except that now ln gi(w, v) is a quadratic
form in the logarithms of wn and vm) and further assume that the coefficients
for the quadratic terms in the logarithms of output prices are the same across
the two countries. Then Diewert [1986] showed that the geometric mean of
the two theoretical output price indexes defined by (59) is exactly equal to the
observable translog price index PT (w1, w2, y1, y2), where PT is defined by (11);
i.e.,

(60) [P 1(w1, w2)P 2(w1, w2)]1/2 = PT (w1, w2, y1, y2).

Thus the translog price index PT again turns out to have a strong microeco-
nomic justification.

The Malmquist quantity index has been applied to the problem of con-
structing output indexes by Caves, Christensen and Diewert [1982b], and Diew-
ert [1986]. It is first necessary to define the country i output deflation func-
tion di: for a primary input vector v and a net output vector y, define

(61) di(y, v) ≡ min
δ

{δ : (y/δ, v) belongs to Si, δi ≥ 0}, i = 1, 2

where Si is the technology set for country i. Thus di(y, v) denotes the amount
the net output vector y must be deflated so that the deflated output vector and
the reference input vector v are just on the frontier of the country i production
possibilities set Si.

The Malmquist output index of country 2 relative to country 1 using the
country i technology and primary input vector vi is:

(62) Qi(y1, y2) ≡ di(y2, vi)/di(y1, vi), i = 1, 2.

Assume the observed country i net output vector yi solves the country i
private product maximization problem, maxy{wi · y : (y, vi) belongs to Si}
for i = 1, 2. Then Diewert [1986] established the following bounds for the
Malmquist indexes Qi defined by (62):

Q1(y1, y2) ≥ w1 · y2/w1 · y1 ≡ QL(w1, w2, y1, y2);(63)
Q2(y1, y2) ≤ w2 · y2/w2 · y1 ≡ QP (w1, w2, y1, y2)(64)

where QL and QP are the Laspeyres and Paasche quantity indexes.
It is also possible to define a deflation function d that uses a convex

combination of the input vectors, λv1 + (1 − λ)v2, and a convex combination
of the technology sets for the two countries, λS1 + (1 − λ)S2:

(65) d(y, λ) ≡ min
δ>0

{
δ :

[
y/δ, [λv1 + (1 − λ)v2]

]
belongs to λS1 + (1 − λ)S2

}
.

The Malmquist λ weighted average output index for country 2 relative to 1 may
be defined as:

(66) Qλ(y1, y2) ≡ d(y2, λ)/d(y1, λ).

Assuming maximizing behavior, Diewert [1986] shows that there exists a λ such
that 0 ≤ λ ≤ 1 and Qλ(y2, y2) lies between the Laspeyres and Paasche quantity
indexes QL and QP defined in (63) and (64). Thus the Fisher quantity index,
QF ≡ (QLQP )1/2, should provide an adequate approximation to the theoretical
output index Qλ(y1, y2).

Our conclusion is that the translog price index PT and the Fisher quantity
index QF have reasonably strong justifications in the bilateral aggregate private
production context.

We now turn our attention to the multilateral case.

9. Multilateral Test Approaches

We are finally in a position to study the multilateral index number problem
which was set out in the introduction. To review the notation, there are I pos-
itive price vectors pi ≡ (pi

1, . . . , p
i
N ) and I quantity vectors xi ≡ (xi

1, . . . , x
i
N )

with pi · xi > 0 for i = 1, . . . , I . We wish to find 2I positive numbers P i (price
indexes) and X i (quantity indexes) such that P iX i = pi · xi for i = 1, . . . , I .
The I data points (pi, xi) will typically be observations on production or con-
sumption units that are separated spatially but yet are still comparable. For
the sake of definiteness, we shall refer to the I data points as countries. Each
commodity n is supposed to be the same across all countries. This can always
be done by a suitable extension of the list of commodities.

Our first approach to the construction of a system of multilateral price
and quantity indexes is based on the use of a bilateral quantity index Q. In
this method, the first step is to pick the ‘best’ bilateral index number formula:
e.g., the Fisher index QF defined by (14) or the implicit translog quantity in-
dex defined by Q̃T (p1, p2, x1, x2) ≡ p2 · x2/p1 · x1PT (p1, p2, x1, x2) where PT is
defined by (11). Secondly, pick a numeraire country, say country 1, and then
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calculate the aggregate quantity for each country i relative to country 1 by
evaluating the quantity index Q(p1, pi, x1, xi). In order to put these relative
quantity measures on a symmetric footing, we convert each relative to coun-
try 1 quantity measure into a share of world quantity by dividing through by∑I

k=1 Q(p1, pk, x1, xk). For a general numeraire country j, define the share of
world quantity for country i, using country j as the numeraire country, by:

(67) σj
i (p, x) ≡ Q(pj , pi, xj , xi)

/ ∑I

k=1
Q(pj , pk, xj , xk), i = 1, . . . , I,

where p ≡ (p1, . . . , pI) is the N × I matrix of price data and x ≡ (x1, . . . , xI)
is the N × I matrix of quantity data. Once the numeraire country j has
been chosen and the country i shares σj

i calculated, we may set X i ≡ σj
i and

P i ≡ pi · xi/X i for i = 1, . . . , I . Thus we have provided a solution to the
multilateral index number problem (1). Of course, one is free to renormalize
the resulting P i and X i if desired; i.e., all X i can be multiplied by a number
provided all P i are divided by this same number. Kravis [1984] calls this
method the star system, since the numeraire country plays a starring role: all
countries are compared with it and it alone.

We shall assume throughout this section that the index number formula Q
satisfies the quantity counterpart to the bilateral price tests BT1 through BT6.
(The quantity counterpart to BT1 is Q(αp1, βp2, x1, x2) = 1 if p1 = p2 and x1 =
x2, the quantity counterpart to BT2 is Q(p1, p2, x1, αx2) = αQ(p1, p2, x1, x2)
for α > 0, and so on.) This assumption is not restrictive since our best bilateral
formulae, QF and Q̃T , both satisfy these tests.

Of course, the problem with the star system for making multilateral com-
parisons is its lack of invariance to the choice of the numeraire or star country.
Different choices for the base country will in general give rise to different in-
dexes P i and X i. This problem can be traced to the lack of circularity of the
bilateral formula Q: if Q satisfies the time reversal test BT5 and the circular
test BT9 for quantity indexes, then σj

i = σk
i for all i, j and k; i.e., the shares

σj
i defined by (67) do not depend on the choice of the numeraire country j.

However, given that the bilateral formula Q does not satisfy the circularity test
(as is the case with QF and Q̃T ), how can we generate multilateral indexes that
treat each country symmetrically?

Fisher [1922] recognized that the simplest way of achieving symmetry
was to average base specific index numbers over all possible bases. Thus define
country i’s share of world output Si(p, x) by

(68) Si(p, x) ≡
∑I

j=1
σj

i (p, x)/I, I = 1, . . . , I

where the σj
i are defined by (67). We can now define country i quantities and

prices by

(69) X i ≡ Si(p, x), P i ≡ pi · xi/X i, i = 1, . . . , I.

Fisher [1922] called this method of constructing multilateral indexes the blend
method while Diewert [1986] called it the democratic weights method, since each
share of world output using each country as the base is given an equal weight
in the formation of the average.

Of course, there is no need to use an arithmetic average of the σj
i as in

(68); one can use a geometric average:

(70) σi(p, x) ≡




I∏

j=1

σj
i (p, x)




1/I

, i = 1, . . . , I.

Using (70), the resulting shares no longer sum to one in general, so country i’s
share of world output is now defined as:

(71) Si(p, x) ≡ σi(p, x)
/ ∑I

k=1
σk(p, x), i = 1, . . . , I.

If the Fisher index QF is used in the definition of the σj
i , then

(72) Si(p, x)/Sj(p, x) =

[
I∏

k=1

QF (pk, pi, xk , xi)
/ I∏

m=1

QF (pm, pj , xm, xj)

]1/I

and in this case, the multilateral method defined by (70) reduces to a method
recommended by Eltetö and Köves [1964] and Szulc [1964], the EKS method.
Instead of using the Fisher formula in (72), Caves, Christensen and Diewert
[1982a] advocated the use of the translog quantity index QT while Diewert
[1986] suggested the use of the implicit translog quantity index Q̃T , since Q̃T is
well defined even in the case where some quantities xi

n are negative (whereas QT

is not). We call the indexes generated by (69) and (71) for a general bilateral
index Q, generalized EKS indexes.

When forming averages of the σj
i as in (68) or (70), there is no necessity

to use equal weights: one can define country j’s value share of world output
as βj ≡ pj · xj/

∑I
k=1 pk · xk (this requires all prices to be measured in units

of a common currency) and then we may define a plutocratic share weighted
average of the σj

i :

(73) Si(p, y) ≡
∑I

j=1
βj(p, x)σj

i (p, x).

Diewert [1986] called this method of constructing multilateral indexes the plu-
tocratic weights method.

Another multilateral method that is based on a bilateral index Q may be
described as follows. Define

(74) αi(p, x) ≡
∑I

j=1
[Q(pj , pi, xj , xi)−1]−1, i = 1, . . . , I.
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If there is only one commodity so that N = 1 and the bilateral index Q satisfies
BT1, BT2 and BT3, then αi =

[∑I
j=1(x

i/xj)−1
]−1 =

[∑I
j=1 xj/xi

]−1 =
xi/

∑I
j=1 xj which is country i’s share of world product. In the general case

where N > 1, the ‘shares’ αi do not necessarily sum up to unity, so it is
necessary to normalize them:

(75) Si(p, x) ≡ αi(p, x)
/ ∑I

k=1
αk(p, x), i = 1, . . . , I.

Diewert [1986] called this the own share method for making multilateral com-
parisons.

The above methods for achieving consistency and symmetry rely on aver-
aging over various bilateral index number comparisons. Fisher [1922] realized
that symmetry could be achieved by making comparisons with an average; he
called this broadening the base. Thus the basket method (which corresponds
to Fisher’s [1922] formula 6053 and to method 8 described in Ruggles [1967])
may be described as follows. The price level of country i relative to coun-
try j is set equal to pi · (

∑J
k=1 xk/I)/pj · (

∑J
k=1 xk/I). This index number

formula is a Scrope index (6), where the reference quantity vector is cho-
sen to be the average market basket,

∑
k xk/I . The same result could be

achieved if we chose x to be the total market basket,
∑

k xk. Now define
Qji ≡ pi ·xi/pj ·xj [pi · (

∑
k xk)/pj · (

∑
k xk)] to be the implicit output of coun-

try i relative to j. Choose a j as a numeraire country and calculate country i’s
share of world output as:

(76) Si(p, x) ≡ Qji
/ ∑I

k=1
Qjk

=
(
pi · xi/pi ·

∑

k

xk
) / ∑I

m=1

(
pm · xm/pm

∑

k

xk
)
, i = 1, . . . , I.

Note that the final expression for Si does not depend on the choice of the
numeraire country j. As usual, once the share functions, Si, have been defined,
the aggregate X i and P i may be defined by (69).

A variation on the basket method due to Geary [1958] and Khamis [1972]
is defined by (77)–(79) below:

πn ≡
∑I

i=1
pi

nxi
n

/
P i

∑I

k=1
xk

n, n = 1, . . . , N ;(77)

P i ≡
∑N

n=1
pi

nxi
n

/ ∑N

m=1
πmxi

m, i = 1, . . . , I ;(78)

X i ≡ pi · xi/P i, i = 1, . . . , I.(79)

πn is interpreted as an average international price for good n. From
(78), it can be seen that P i, the price level or purchasing power parity for

country i, is a Paasche-like price index for country i except that the base prices
are chosen to be the international prices πn. The πn and (P i)−1 can be solved
for as a system of simultaneous linear equations (up to a scalar normalization)
or the (P i)−1 may be determined as the components of the eigenvector that
corresponds to the maximal positive eigenvalue of a certain matrix. The P i

can be normalized so that the quantities X i defined by (79) sum up to unity.
This GK method for making multilateral comparisons has been widely used in
empirical applications: see Kravis et al. [1975].

We have defined seven methods for making multilateral comparisons: the
star method (67), the democratic (68) and plutocratic (73) weights methods,
the generalized EKS method (71), the own share method (74), the basket
method (76) and the GK method (79). How can we discriminate among them?

One helpful approach would be to define a system of multilateral tests
and then evaluate how the above methods satisfy these tests.

In the bilateral situation, it was natural to phrase the tests in terms of the
price index P or the quantity index Q, since if either of these functions were
given (along with a single normalization such as P 1 = 1), then the aggregates
P 1, P 2, X1 and X2 were all determined.

In the multilateral situation, it seems natural to phrase the tests in terms
of the properties of the system of world output share functions, S(p, x) ≡
[S1(p, x), . . . , SI(p, x)], since given these share functions, we may set X i ≡
Si(p, x) and P i = pi · xi/X i for i = 1, . . . , I .

The tests MT1 to MT6 listed below are multilateral counterparts to the
bilateral tests BT1 to BT6 applied to quantity indexes rather than price in-
dexes. MT0 is a preliminary test that does not have a bilateral counterpart.
Recall that p ≡ (p1, . . . , pI) and x ≡ (x1, . . . , xI ).

MT0: Share Test:
∑I

i=1 Si(p, x) = 1.
MT1: Multilateral Identity Test: Si(α1p

1, . . . , α1p
I , β1x

1, . . . , βIx
I ) = βi

for i = 1, . . . , I for all αi > 0, βi > 0 if p1 = · · · = pI , x1 = · · · = xI and∑
j βj = 1.

MT2: Proportionality Test: For i = 1, . . . , I and λi > 0, Si(p, x1, . . . , xi−1,
λix

i, xi+1, . . . , xI)/Sj(p, x1, . . . , xi−1, λix
i, xi+1, . . . , xI) = λiSi(p, x)/Sj(p, x)

for j = 1, . . . , i − 1, i + 1, . . . , I .
MT3: Invariance to Changes in Scale Test: Si(α1p

1, . . . , αIp
I , βx1, . . . ,

βxI ) = Si(p, x) for all αi > 0, β > 0, i = 1, . . . , I .
MT4: Invariance to Changes in Units Test: Si(α1p

1
1, . . . , αNp1

N ; . . . ;
α1p

I
1, . . . , αNpI

N ; α−1
1 x1

1, . . . , α−1
N x1

N ; . . . ; α−1
1 xI

1, . . . , α−1
N x1

N ) = Si(p, x) for
i = 1, . . . , I and α1 > 0, . . . , αN > 0.

MT5: Symmetric Treatment of Countries Test: Let p̂ denote a permuta-
tion of the I columns of the N ×I matrix p, let x̂ denote the same permutation
of the I columns of x, and let Ŝ(p, x) denote the same permutation of the I

columns of the row vector S(p, x). Then Ŝ(p, x) = S(p̂, x̂).
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MT6: Symmetric Treatment of Commodities Test: Let p̃ denote a per-
mutation of the N rows of p and let x̃ denote the same permutation of the N
rows of x. Then Si(p̃, x̃) = Si(p, x) for i = 1, . . . , I .

MT7: Country Partitioning Test: Let SI
j ≡ Sj(p1, . . . , pI ; x1, . . . , xI) for

j = 1, . . . , I and let 0 < λi < 1. Define SI+1
j ≡ Sj [p1, . . . , pI , pi; x1, . . . , xi−1,

λix
i, xi+1, . . . , xI , (1 − λi)xi] for j = 1, . . . , I , I + 1. Then SI

j = SI+1
j for

j = 1, . . . , i−1, i+1, . . . , I , SI+1
i = λiS

I
i and SI+1

I+1 = (1−λi)SI
i . This property

is to hold no matter which country i is partitioned.
The functions SI

j are the share functions for the initial world economy
that consists of I countries. The functions SI+1

j are the share functions for
a new world economy, where the original country i with price vector pi and
quantity vector xi, has been partitioned into two countries with price vectors
pi and pi and quantity vectors λix

i and (1−λi)xi. MT7 says that under these
conditions, the original country i share SI

i splits into λiS
I
i and (1− λi)SI

i and
the remaining shares are unaffected.

MT8: Irrelevance of Tiny Countries Test: Let λi > 0 and define SI
j (λi) ≡

Sj(p, x1, . . . , xi−1, λix
i, xi+1, . . . ,xI) for j = 1, . . . , I . Define SI−1

j ≡ Sj(p1,
. . . , pi−1, pi+1, . . . , pI ; x1, . . . , xi−1, xi+1, . . . , xI ) for j = 1, . . . , I − 1. Then
limλi→0 SI

j (λi) = SI−1
j for j = 1, . . . , i − 1 and limλi→0 SI

j (λi) = SI−1
j−1 for

j = i+1, i+2, . . . , I . This property is to hold for all choices of the disappearing
country i.

In the above test, the quantity vector for country i is deflated down to a
zero vector. Consider the resulting system of limiting share functions. For all
countries except i, the limiting share is equal to the share we would get if we
simply deleted the data for country i and defined a system of share functions
for a world economy consisting of only I − 1 countries. MT8 is a country
counterpart to the irrelevance of tiny commodities test, (12).

The above multilateral tests were proposed by Diewert [1986]. Our final
multilateral test is a new one.

MT9: Bilateral Property Test: When I = 2, S2(p1, p2, x1, x2)/S1(p1, p2,
x1, x2) satisfies the bilateral tests BT1–BT6 for quantity indexes.

When I = 2, the multilateral system collapses down to a bilateral system.
Hence it seems perfectly sensible to demand that S2/S1 should satisfy tests
BT1–BT6 at least, since our best bilateral indexes, QF and Q̃T , satisfied these
tests.

The seven multilateral methods mentioned above satisfy most of the mul-
tilateral tests, assuming that the bilateral index Q satisfies BT1–BT6 (recall
that all of the multilateral methods utilize a bilateral index Q except the basket
and GK methods).

The star system fails MT5 (it is obviously not symmetric) and it fails
MT8 when the tiny country is chosen to be the numeraire country.

The plutocratic weights method fails MT2 and MT3; thus the resulting
quantity indexes are not invariant to country inflation rates, a very severe
defect.

The democratic weights method fails the multilateral proportionality test
MT2 and the two consistency in aggregation tests, MT7 and MT8. This method
is dominated by the generalized EKS method which fails only MT7 and MT8.

The basket and GK methods fail MT2 and MT9: both methods fail BT2
when I = 2. When I = 2, S2/S1 = p2 · x2p1 · (x1 + x2)/p1 · x1p2 · (x1 + x2) for
the basket method, and S2/S1 = p2 · x2/p1 · x1PGK(p1, p2, x1, x2) for the GK
method where the GK bilateral price index is defined as

(80) PGK(p1, p2, x1, x2) ≡[∑N

n=1
p2

nx1
nx2

n/(x1
n + x2

n)
] / [∑N

k=1
p1

kx1
kx2

k/(x1
k + x2

k)
]

.

The five multilateral methods that use a bilateral index Q as a building
block all have the property that S2/S1 = Q when I = 2, which explains why
these methods pass MT9.

Unfortunately, none of the above multilateral methods satisfies all nine
multilateral tests. Our tentative conclusion is that if a symmetric multilateral
method is desired, then the choice seems to be between the EKS (which fails
MT7 and MT8, the consistency in aggregation properties) and the own share
method (which fails the multilateral proportionality test, MT2). However, the
systematic study of multilateral methods has only begun, so it may well be
that better methods will be discovered in the future.

We turn now to another class of methods for constructing multilateral
indexes.

10. Neostatistical Approaches to Multilateral Indexes

In one of the early statistical approaches to the construction of a price in-
dex, P 2/P 1, the index was found by minimizing the sum of squared residuals,∑N

n=1(p
2
n/p1

n − P 2/P 1)2 with respect to P 2/P 1. The resulting price index
turns out to equal (4). Note that this price index was defined independently of
quantities.

Theil [1960] initiated a neostatistical approach where the price and quan-
tity indexes, P i and X i, are simultaneously determined. Theil’s best linear
price and quantity indexes may be found by solving the following constrained
minimization problem:

(81) min
P 1,...,P I ,X1,...,XJ

∑I

i=1

∑I

j=1
(pi · xj − P iXj)2
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subject to a normalization on the P i or X i such as

(82)
∑I

i=1
X i = 1,

which means that we can interpret the Theil X i as shares. We may define
eij ≡ pi · xj − P iXj as an error and then the interpretation of (81) becomes
straightforward: we choose the P i and X i to minimize the sum of squared
errors subject to (82).

The Theil index numbers have not been widely used, since they do not
satisfy the product test equalities:

(83) P iX i = pi · xi, i = 1, . . . , I.

Kloek and de Wit [1961] suggested a number of variants of the Theil
indexes including one where the constraints (83) were imposed. Thus define
the Kloek and de Wit multilateral indexes as the P i and X i which solve (81)
subject to (82) and (83). Unfortunately, the resulting indexes do not have very
satisfactory properties: they fail the multilateral tests MT2, MT3, MT7, MT8
and MT9 (when I = 2, the resulting bilateral quantity index fails BT2 and
BT3 for quantity indexes.)

Another neostatistical approach has been suggested by van Yzeren [1956]
which he called the balanced method. The price indexes P i are determined
(up to a normalization or factor of proportionality) by solving the following
minimization problem:

(84) min
P 1,...,P I

∑I

i=1

∑I

j=1
(P i)−1(pi · xj/pj · xj)P j .

The X i are then determined by (83) and the price normalization may be cho-
sen so that (82) is satisfied. In this case, the errors eij may be defined by
(P iXj)−1(pi · xj/pj · xj)P jXj = 1 + eij and the P i may be found by minimiz-
ing ∑I

i=1

∑I

j=1
eij

subject to a normalization.
The van Yzeren system of share functions does rather well in the multilat-

eral test examination: the share functions pass all tests except the consistency
in aggregation tests MT7 and MT8. When I = 2, X2/X1 turns out to equal
the Fisher quantity index, QF . Thus the balanced method satisfies the same
tests as the EKS method. However, the EKS method has a more satisfactory
economic interpretation and is easier to construct numerically.

Many other neostatistical approaches to the construction of multilateral
indexes could be explored. However, the resulting methods seem to be rather
arbitrary and, moreover, they lack economic interpretations.

11. Other Aspects

There are many aspects of index number theory that we cannot cover in this
brief survey, such as: (i) sampling problems (see Fisher [1922] and Allen [1975]),
(ii) the treatment of seasonality (see Turvey [1979], Balk [1980] and Diewert
[1983c]), (iii) consistency in aggregation and the theory of subindexes (see Var-
tia [1976a], Pollak [1975] and Diewert [1983a]), (iv) productivity indexes (see
Jorgenson and Griliches [1967], Caves, Christensen and Diewert [1982b] and
Denny and Fuss [1983]), and (v) econometric approaches to cost of living in-
dexes (see Jorgenson and Slesnick [1983]).

However, one area of concern that must be discussed is the new goods
problem. Suppose that we are in the time series context and we have price and
quantity data for N − 1 commodities in periods 1 and 2, pt

n and xt
n for t = 1, 2

and n = 1, . . . , N − 1. Suppose in addition, that x2
N units of a new good are

sold at the price p2
N during period 2. How are we to compute the bilateral price

index, P (p1, p2, x1, x2), when we do not know p1
N , the price of the new good

in period 1? Of course, we can assume x1
N = 0, so determining the quantity of

the new good in period 1 is no problem.
From the viewpoint of the microeconomic approach to index number the-

ory, Hicks [1940] provided a formal solution to this new good problem: if we
are in the consumer context, p1

N should be the price which would just make
the consumer’s demand for good N in period 1 equal to zero. The practical
problem is that this shadow price is not observable: we require a knowledge
of the consumer’s indifference surfaces to calculate it. Of course, econometric
techniques could be used to estimate these shadow prices (see Diewert [1980]
for an example of such a technique in the producer context), but most index
number practitioners will find it inconvenient to resort to econometrics. In
practice, most official indexes ignore the existence of new goods.

In order to illustrate the price index bias that can result from the omission
of new goods, we shall present a hypothetical example. Suppose that there are
three periods, one ‘old’ good with constant price and quantity, pt

1 = xt
1 = 1

for t = 1, 2, 3 and one ‘new’ good which appears in period 2, so that x1
2 = 0.

Typically, new goods follow a product cycle: they are introduced at a relatively
high price and then the price declines over time. Thus we assume that p2

2 = 2
and p3

2 = 1, so that the period 2 price for the new good is twice as high as
the period 3 price. We assume that the quantity purchased of the new good in
period 2 is f > 0, where f is a fraction which represents the period 2 proportion
of new goods to old goods. We assume that the quantity purchased of the new
good in period 3 is 2f and that the shadow price p1

2 in period 1 that would
make the demand for the new good equal to zero is 4.

If the new good is ignored, we find that P t = 1 for t = 1, 2, 3 for any
reasonable index number formula. The true chain Laspeyres price indexes
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which do not ignore the new good are: P 1 = 1, P 2 = 1 and P 3 = (1 + f)/(1 +
2f). The reader can verify that the same indexes result no matter what shadow
price p1

2 is chosen. Evaluating P 3 for various reasonable values of f yields the
following period 3 price indexes: if f = 0.01, then P 3 = 0.9902; if f = 0.02,
then P 3 = 0.9808 and if f = 0.05, then P 3 = 0.9545. Thus the conventional
Laspeyres price index which ignores the existence of new goods will have an
upward bias of about 1 to 4.5 percent compared with the true Laspeyres index.

In order to evaluate the bias in the conventional chained Paasche and
Fisher price indexes, we have to use our assumption that p1

2 = 4. Under
our assumptions, we obtain the following values for the true chained Paasche
price indexes in period 3: if f = 0.01, then P 3 = 0.9619; if f = 0.02, then
P 3 = 0.9273 and if f = 0.05, then P 3 = 0.8403. We also obtain the following
values for the true chained Fisher price indexes in period 3: if f = 0.01, then
P 3 = 0.9759; if f = 0.02, then P 3 = 0.9537 and if f = 0.05, then P 3 = 0.8956.
Thus the conventional Fisher ideal price index will have an upward bias of
about 2.5 to 10.5 percent in period 3, depending on the fraction f of new
goods introduced in period 2.

The above analysis of bias is only illustrative but it does indicate that
ignoring new goods could lead to a substantial overestimation of price infla-
tion and a corresponding underestimation of real growth rates, especially in
advanced market economies where millions of new goods are introduced each
year.
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Konüs, A.A. and S.S. Byushgens, 1926. “K probleme pokupatelnoi cili deneg”
(English translation of Russian title: “On the Problem of the Purchasing
Power of Money”), Voprosi Konyunkturi II(1) (supplement to the Eco-
nomic Bulletin of the Conjuncture Institute), 151–172.

Kravis, I.B., 1984. “Comparative Studies of National Incomes and Prices,”
Journal of Economic Literature 22, 1–39.

Kravis, I.B., Z. Kenessey, A. Heston, and R. Summers, 1975. A System of
International Comparisons of Cross Product and Purchasing Power, Bal-
timore: Johns Hopkins University Press.

Laspeyres, E., 1871. “Die Berechnung einer mittleren Waarenpreissteigerung,”
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