Makroekonomické modelování - přednáška 8 RBC model s nedělitelnou prací Původní model, výsledky ze simulace Volatilita Relativní vol. Korelace xt s výstupem yt Proměnná xt °x (M) °x (D) ax/ay (M) o *l°v (D) p{yt,xt) (M) p(yt,xt) (D) výstup yt 1.351 1.72 1 1 1 1 spotřeba Cf 0.329 1.27 0.244 0.738 0.84 0.83 investice it 5.954 8.24 4.407 4.791 0.99 0.91 odprac, hodiny ht 0.769 1.65 0.569 0.930 0.99 0.86 Technologický šok je velmi persistentní, způsobí spíše permanentní růst mzdy, nabídka práce málo reaguje (malá mezičasová substituce v nabídce práce) a volatilita hodin je malá. Původní specifikace užitkové funkce u(ct, ht) = log(c) + tp log(l - h) Nízká volatilita hodin v modelu Řešení: • opustit log specifikaci v užitkové funkci (log(l — h)), dostat větší elasticitu nabídky práce => model s nedělitelnou nabídkou práce (lineární specifikace užitkové funkce) • zavedení fluktuace zaměstnanosti (osobn). V datech je fluktuace celkových hodin způsobena ze 2/3 změnami zaměstnanosti - extensive margin a 1/3 jsou změny v odpracovaných hodinách na pracovníka - intensive margin. (opět lineární užitková funkce z odpracovaných hodin) Použijeme tuto specifikaci, kterou pak dále konkretizujeme u(ct, ht) = log(cf) - v(ht) kde v(.) je funkce. Máme množinu ex-ante identických agentů (domácností). Domácnost buď pracuje na plný úvazek ht — 1 nebo nepracuje vůbec ht — 0. Jaké je odůvodnění tohoto tvaru užitkové funkce? Dva ekvivalentní způsoby: Loterie Každý agent hraje loterii, 7rt je pravděpodobnost, že bude zaměstnán a bude pracovat, 7rt G (0,1). Agenti jsou ex-ante homogenní, čelí stejné pravděpodobnosti. Tím pádem 7rt je také podíl (část) agentů, kteří jsou zaměstnáni. Agenti se mohou pojistit proti nezaměstnansti (state contingent claims). Existuje plné pojištění v nezaměstnanosti - nezáleží na tom zda pracujete nebo ne, obdržíte stejné množství spotřeby. (Není možné se vyhýbat práci, jinak by agenti raději nepracovali a obdrželi stejnou spotřebu, proto loterie.) 1 Sociální plánovač Obdobně, sociální plánovač vybere část populace, která bude pracovat 7rt a spotřebu Cf, kteří budou zaměstnaní i nezaměstnaní mít (opět poskytuje plné pojištění v nezaměsnanosti). Všichni čelí stejné pravděpodobnosti 7Tt, že budou vybráni. Příklad Očekávaný užitek E[u{ct,ht)] = E[log(ct) - v(ht)] Výsledkem je: E[u(ct,ht)} = log(Cf) - tpTTt kde [v(1) — f (0)] — ip. Počet odpracovaných hodin (v produkční funkci) je část pracujících agentů irt krát čas, který pracujou (=1), tedy irt — ht. Jelikož jsou všichni agenti identiční, je ht i průměrný počet odpracovaých hodin jednoho agenta. Můžeme tedy psát E[u(ct, ht)] = log(cf) - tpht Disutilita z práce je lineární, nabídka práce hodně reaguje na změny mezd. ip je mezní disutilita z práce a je konstantní. Jednoduchý příklad Agenti žijí 2 období, nediskontují budoucnost (j3 — 1) a spotřebovávají jen ve durhém období c2. Žádná akmulace kapitálu, ale domácnost může uskladnit spotřebu do budoucna. Rozpočtové omezení C2 — w\h\ + w2h2, kde w\ a w2 je mzda v prvním a druhém období. Srovnáme dvě užitkové funkce ln c2 + ip ln(l - hx) + ip ln(l - h2) a ln C2 — iphi — iph2 Řešení u první rovnice: w2 _ 1 — hi wi 1 - h2 když wi > W2 => h\ > h2, dočasné zvýšení mzdy, zvýšení pracovního úsilí. Pokud podíl w2/wi není příliš velký pracují v obou obdobích. Malé změny w2/wi ne příliš velké změny v nabídce práce. Řešení u druhé rovnice: (plus předpoklad, že ip > 1, aby omezení h\,h2 < 1 nebylo závazné) Pokud w\ — w2 jsou agenti indiferentní mezi prací v prvním a druhém období (dohromady dá nabídka práce ^). Pokud w\ > W2 pracují pouze v prvním období, W2 > wi pracují pouze ve druhém období. Disutilita z jedné jednotky práce je ip bez ohledu na to, kdy agent pracuje. Proto si vybere to období, kde je více produktivní. Konkrétně wi > w2, pak h2 — 0. Řešíme max[ln(c2) — iph±] C2 — w±h± Tedy h\ — \ a C2 — Shrnutí v tabulce. 2 Mzdy hi h2 C2 Wi > W2 Wi < W2 Wi — W2 — W 1 v> 0 0 1 0 e [0,^1 0 "102 0 0 Lineární užitková funkce z práce, pracovníci reagují velmi silně na změny ve mzdě (nepatrné odchýlení, velká změna nabídky práce). Částečně způsobeno abstrahováním od akumulace kapitálu a spotřeby v prvním období. Ale hlavní vliv je lineární disutilita z práce. Shrnutí • Agenti ex-ante homogenní, ex-post heterogenita (pracuje nebo ne). • Plné pojištění v nezaměstnantosti - všichni spotřebovávají stejně, (můžeme opět pracovat s reprezentativním spotřebitelem, poznámka o pojištění). • Fluktuace celkových odpracovaných hodin je tažena fluktacemi v zaměstnanosti, nikoliv v hodinách (extrémní případ). • Frischova elasticita nabídky práce (jak moc se změní nabízené množství práce při změně reálné mzdy přičemž užitek ze spotřeby je konstatní). Rozdíl na mikro a makro úrovni. — agregátní úroveň (obecnější tvar —'